
Unifying RL based learning framework for workload aware

database partitioning

May 2023

1 Introduction

Partitioning is an important technique for organizing data in data storage systems. Modern ana-
lytics systems split data into blocks, allowing queries to skip data blocks that are not required and
significantly reduce I/O costs. Query processing engines (e.g. SparkSQL, Hive, and Trino/Presto)
and distributed database systems (e.g. Citus, CockroachDB) often partition data across multiple
machines to parallelize complex query operations. However, producing an optimal partitioning is a
non-trivial task, and a sub-optimal partitioning may degrade performance. For example, if two large
tables are not co-partitioned in a distributed database, a join between them will result in expensive
data shuffling across the network.

Numerous methods have been proposed in the past to find the best partitioning for a given
database and workload [1–11]. Recent works have avoided using heuristics and cost estimation
from the query optimizer by taking advantage of new developments in reinforcement learning (RL)
to produce better partitionings. For example, Yang et al. [12] propose using RL to learn a qd-
tree, a data structure that facilitates routing tuples to data blocks amenable to data skipping for
a given workload. However, the partitionings produced by this work are not optimized for join
operations. On the other hand, Hilprecht et al. [13, 14] train an RL agent that decides whether to
partition a table on certain columns or replicate the entire table, while adhering to co-partitioning
constraints on some pairs of tables. Nevertheless, they only assume hash-partitioning, which nullifies
the data skipping benefit. Jointly optimizing the partitioning of multiple tables for data locality
while retaining their data skipping capability remains unexplored.

For our project, we aim to develop a comprehensive learning framework that can efficiently
generate partitionings to cater to both efficient data filtering and efficient distributed joins. Our
framework consists of two main steps. In the first step, we use reinforcement learning to train an
agent that constructs a modified version of qd-tree that supports hash-based partitioning for each
table. The result of this step includes a policy network and a value network of every table, which are
subsequently used in the next step. It is important to note that the tables remain unpartitioned at
this stage. In the second step, we train another RL agent using a different MDP, which determines a
partitioning scheme that optimizes both data locality and data skipping. The value network from the
first step measures the trade-off between hash-based partitioning and range-based partitioning in this
step. Finally, we apply hash-based partitioning on the tables following the policy obtained from the
second step, followed by a range-based partitioning, conditioned on the existing hash partitioning,
using the policy obtained from the first step.

We implemented the first step, which involves an agent that is trained to construct a qd-tree for
a given workload and data. In this report, we details the steps taken to implement such an agent.

1



Furthermore, we report our experimental results on the trade-off between hash-based partitioning
and range-based partitioning.

2 Problem Definition

Our learning framework tackles the following problem: within a specific system configuration (e.g.
storage capacity, disk speed, number of machines, etc.), determine the optimal combination of hash-
based and range-based partitioning schemes that maximizes both data skipping (for efficient filtering)
and data locality (for efficient joining) for a given database schema and query workload.

We consider a system where a table can first be partitioned using a hash-based scheme on certain
columns and then further partitioned using a range-based scheme on a different set of columns. We
note that range-based partitioning can be used to generate partitions produced by a qd-tree by range
partitioning on a column that denotes the qd-tree partition a row belongs to. Therefore, we use the
term “range-based partitioning” to refer to both range-based and qd-tree-based partitioning.

800 800

1600 1600

400 400 400 400

= 200

Hash 
Partitioning

Range 
Partitioning

Figure 1: An example of the trade-off between hash partitioning and range partitioning

A fundamental constraint in partitioning a table is the minimum size of each partition due to
I/O or compression efficiency reasons. This limit leads to a trade-off between hash partitioning and
range partitioning. The more partitions that a table is first hash partitioned into, the qd-tree of
each intermediate partitions has less room to grow before the final partitions become too small, thus
impacting the effectiveness of data skipping; on the other hand, using less partitions for the hash
partitioning phase can improve data skipping but reduce the parallelism when executing a join.

As an example, Figure 1 shows two partitioning strategies for the same table containing 1600
tuples. The left strategy first hash-partitions the table into two partitions and the subsequent qd-
trees can grow to 2 levels before each final partition reaches the limit of 200 tuples. In contrast,
the right strategy has 4 partitions for the hash partitioning, but can only construct 1-level qd-
trees. Consequently, our framework need to find the optimal balance between partition size, hash
partitioning, and range partitioning.

2



3 Proposed Solution

Our proposed framework consists of two steps. The first step aims to develop a cost model to range
partition each table conditioned on varying levels of hash partitioning. The second step involves
training an agent that utilizes the cost model to determine the optimal partitioning strategy for the
entire database. We describe these two steps in this section.

3.0.1 First Step

We provide an overview of the qd-tree and its learning algorithm. Following this, we describe our
approach for this step.

Qd-tree. A qd-tree is a binary decision tree where each inner node is labeled with a filter
predicate (i.e. a cut); the leaf nodes represent the different data blocks that the tuples are eventually
routed to through the qd-tree. The two children of an inner node correspond to the true and false
answers when a tuple is evaluated with the predicate of that inner node. We route every tuple of a
table through the qd-tree until it reaches the data block that it will be stored. For example, in the
qd-tree in Figure 2, tuples are routed to different blocks based on the filter predicates:

• Tuples satisfying Age < 45, Experience < 15, and Salary < 25K are routed to B0.

• Tuples satisfying Age < 45, Experience < 15, and not satisfying Salary < 25K are routed to
B1.

• Tuples satisfying Age < 45, and not satisfying Experience < 15 are routed to B2.

• Tuples satisfying Age < 45 are routed to B3.

Age<45

Exp<15

Salary<25K

B3

T

T F

B0 B1

T F

B2

F

Age Experience Salary Block

44 12 24K B0

44 10 26K B1

41 17 30K B2

47 21 56K B3

Records assignment to blocks

Query Blocks

Select * from where Age>46 B3

Select * from where Age<45 and 
Exp>16

B2

Select * from where Age<45 and 
Exp<15

B0, B1

Queries and blocks to access

Figure 2: An example qd-tree

3



During query execution, the qd-tree guides the query to the blocks that are relevant to the
query. For example, consider the following query: SELECT * FROM table WHERE Age < 45 AND

Experience < 15. Only blocks B0 and B1 in Figure 2 intersect with the predicate in this query,
hence we can skip block B2 and B3.

To construct the RL agent called Woodblock, the author defines the tree construction process
as a Markov Decision Process (MDP). The state of the agent is defined as an uncut node on the
tree. For example, initially, the root node does not have any predicate assigned to it, making it
the first state to be visited by the agent. The set of allowed cuts defines the actions that can be
taken by the agent. Taking an action on a state results in the assignment of the cut on that state
and the creation of two new nodes. These new nodes are added to a queue for later visits. An
episode begins with only a root node and ends when a stopping condition is met. At the end of
each episode, the reward is calculated, which is defined as the number of tuples skipped across the
workload. Woodblock uses PPO, which involves training both a policy network and a value network.
During training, the action is sampled using these networks, and gradient updates occur only when
the reward is computed at the end of an episode.

Our approach. The aim of this step is to train the policy and value networks that enables the
agent to derive an optimal qd-tree under varying levels of hash partitioning. We note that we do not
immediately apply the learned policy to construct the qd-tree after this step but pass the resulting
neural networks to the next step.

To achieve this, we modify the qd-tree by enabling it to start with its root being split once through
hash partitioning. The number of children of the root corresponds to the number of partitions the
table is hash partitioned into. Each of these children’s sub-tree is the qd-tree for the hash partition
of that child, referred to as a sub-qd-tree. To accommodate this change in the MDP, we augment
the state representation with two values (d, h) where d represents the number of hash partitions and
h denotes the current index of the bucket after taking the modulo of the hash value by d. Figure
3 illustrates a modified qd-tree with d = 3. There are 3 sub-qd-trees constructed for the 3 modulo
buckets numbered from 0 to 2.

Hash layer

Sub-qd-trees

h = 0 h = 1 h = 2

Figure 3: An example of a modified qd-tree with d = 3

During training, we vary d from 0 to a configurable maximum value. We first train the networks
to construct a qd-tree when there is no hash partition (d = 0). Subsequently, for d > 0 we run the
qd-tree training algorithm on each sub-qd-tree one after the other. All of the sub-qd-trees, including
the qd-tree of d = 0, share the same policy and value networks. We hypothesize that this weight
sharing strategy can accelerate learning since all sub-qd-trees are constructed on a random subset
of the data from the same table.

4



The value network obtained from this step serves as the cost model for the next step. It provides
the estimated amount of skipped tuples for a given (d, h) value. The policy network is used at the
end of the second step to perform the actual partitioning.

3.0.2 Second Step

We base our solution for the second step on the framework proposed by Hilprecht et al.[14]. A table
Ti can either be replicated or hash partitioned by one of its attributes ai1, ai2, ..., ain. To represent
the state of a table, they use a one-hot binary vector s(Ti) = (ri, ai1, ai2, ..., ain), where ri indicates
whether the table is replicated, and the rest of the bits denote whether the corresponding attribute
is used for partitioning. For example, if the customer table from Figure 4 is replicated, its state
vector is (1, 0). They use edges between join attributes to indicate co-partitioning, and each edge
can be activated or de-activated. In Figure 4, the active edge e1 implies that the customer and
lineorder tables are co-partitioned (s(E) = (e1, e2) = (1, 0)). They represent a workload using a
frequency vector s(Q) = (f1, ..., fm), where fi is the relative frequency of the query Qi. The overall
state, obtained by concatenating these state vectors, is then input to a Q-network, which is trained
using the DQN algorithm. The reward function is computed based on a cost model in offline mode
and based on real execution in online mode.

Figure 4: State representation from Hilprecht et al. [13]

To support range partitioning, we propose adding an extra bit to each table vector to indicate
whether the table is range partitioned, in addition to any hash partitioning that may already be in
place. Furthermore, we integrate the cost model obtained from the first step into the cost model
used for offline learning. This process should be straightforward, given that the cost model of the
qd-tree is interpretable, as it outputs the number of tuples that can be skipped.

4 Implementation

We implemented the reinforcement learning agent as described in the qd-tree paper using Rllib [15]
and PyTorch. The agent’s architecture comprises separate policy and value networks, each consisting
of two fully-connected layers with 512 units and ReLU activation.

We did not support categorical values and advanced cuts in our implementation. Each node
in the qd-tree is represented by a list of ranges produced from the cuts leading to that node. For

5



example, in Figure 2, the root node is represented by the ranges

(−∞,∞), (−∞,∞), (−∞,∞)

corresponding to the attributes Age, Exp, and Salary respectively.
Consequently, the cut Age < 45 at the root produces two child nodes:

(−∞, 45), (−∞,∞), (−∞,∞)

[45,∞), (−∞,∞), (−∞,∞)

.
We featurize each range into four values: left-open, left-value, right-value, right-open,

indicating whether the left side is open or not, the left value, the right value, and whether the right
side is open or not, respectively. All literal values from the cuts are extracted and dictionary encoded,
hence left-value and right-value are integer indices from the dictionary. Prior to concatenating
these four values into a vector, left-value and right-value are binarized into arrays of 16 binary
numbers. Thus, each range is ultimately represented as a binary vector of length 34.

We encapsulate the qd-tree within a custom Gymnasium environment [16]. A state of the en-
vironment is the current node that the agent is currently located in, starting from the root node.
Each node is featurized by concatenating its range vectors. Actions correspond to cuts that can be
applied to the current node. If it is legal to apply a cut on the current node (i.e. each child node
resulting from the cut contains more data than the mininum block size), the resulting child nodes
are added to a queue, otherwise, nothing will happen. In both cases, a new node is then popped
off the queue to be used as the next state. The reward for each action is not immediately returned
but is instead computed after the environment reaches the terminal state, following the approach
described in the qd-tree paper.

5 Results

In this section, we present the result of the experiment that explores the trade-off between hash
partitioning and range partitioning.

We train our agent on the denormalized data from the TPC-H benchmark with scale factor 1.
The denormalized table contains about 6 million tuples and we set the minimum block size to be
10,000 tuples. We select query templates in the benchmark that have range predicates (q1, q3, q4,
q5, q6, q7, q8, q10, q12, q14, q15, q19, and q20). We generate 7 queries for each template, resulting
in a total of 91 queries. The predicates in each query are extracted using regular expression and are
broken down into 140 unique cuts. To speed up training and due to resource constraints, we use
a sample that is 0.01 times the original data size. Evaluation on the skippability of the resulting
qd-tree is performed on the original data.

To investigate the impact of hash partitions, we conduct an experiment with varying partition
numbers. For each configuration, we train an agent for an hour to produce a qd-tree specifically on
the first partition of the partitioned data. In Figure 5, we present the percentage of tuples skipped
by the workload. Note that we only report the tuples skipped by the range predicates extracted
from the queries. Given that the WHERE clauses of most queries consist of a conjuction of many
more predicates, evaluating the entire query would likely yield more skipped tuples.

With the exception of the initial two data points that represent hash partitioning into 1 and
2 partitions, the qd-tree exhibits a reduction in skipped tuples as the number of hash partitions
increases. This decline can be attributed to the decrease in tuple count within each partition as the

6



Figure 5: Percentage of skipped tuples vs. number of hash partitions

data is divided into more partitions. Consequently, the qd-tree has limited expansion potential for
its leaves before reaching the minimum block size. However, the reduction rate is not substantial
compared to the increase in the number of hash partitions. For instance, the skipping percentage
shows minimal change when transitioning from 4 to 24 partitions. Significant degradation in the
skipping percentage only becomes evident when scaling to more extreme numbers, such as 64 par-
titions. As a result, we conclude that the hash/range partition trade-off only becomes problematic
in large-scale deployments of the data system.

In order to gain a better understanding of the previous findings, we visualize the training episode
information in Figure 6. The episode length strongly correlates with the size of the qd-tree. There-
fore, Figure 6a shows that increasing the number of hash partitions results in a decrease in average
episode length. The reduction in tree size limits the possible qd-tree arrangements, consequently
imposing a constraint on the episode reward for larger hash partition sizes, as depicted in Figure 6b.

(a) Average episode length (b) Average episode reward

Figure 6: Metrics about the training episodes over time

Furthermore, we observe significant variance in both the average reward and episode length when
the number of hash partitions is set to 1 or 2. This variance explains the inferior performance of
the qd-tree in these scenarios as shown in Figure 5. Unless there is an error in our implementation,
we hypothesize that this underperformance is attributed to the enlarged search space associated
with these configurations. The increased variance complicates the learning process, making it more
challenging to achieve high rewards consistently. This outcome suggests a potential optimization
strategy for qd-tree training, which involves sampling the data to a smaller proportion without
multiplying the minimum block size by the same factor. By doing so, we effectively limit the search

7



space of possible qd-trees, leading to a reduction in variance during the training process. For instance,
we find that the best-performing qd-tree in our experiment is generated in the configuration of 4
hash partitions, which is equivalent to sampling the data by a factor of 0.25.

6 Conclusion

In summary, we present a potential solution for the problem of integrating automated generation of
hash-based and range-based partitioning. Our experiment successfully confirms the existence of a
trade-off between hash and range partitioning. However, we observe that this trade-off only becomes
problematic in large data system deployments. Furthermore, we identify a possible optimization
technique for qd-tree learning by sampling a reduced dataset while keeping the minimum block size.

References

[1] Yi Lu, Anil Shanbhag, Alekh Jindal, and Samuel Madden. Adaptdb: Adaptive partitioning for
distributed joins. Proc. VLDB Endow., 10(5):589–600, jan 2017.

[2] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. Integrating vertical and horizontal par-
titioning into automated physical database design. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’04, page 359–370, New York, NY,
USA, 2004. Association for Computing Machinery.

[3] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga, and Michael
Stonebraker. Clay: Fine-grained adaptive partitioning for general database schemas. Proc.
VLDB Endow., 10(4):445–456, nov 2016.

[4] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore, Ashraf Aboul-
naga, Andrew Pavlo, and Michael Stonebraker. E-store: Fine-grained elastic partitioning for
distributed transaction processing systems. Proc. VLDB Endow., 8(3):245–256, nov 2014.

[5] Gabriel Campero Durand, Marcus Pinnecke, Rufat Piriyev, Mahmoud Mohsen, David Broneske,
Gunter Saake, Maya S. Sekeran, Fabián Rodriguez, and Laxmi Balami. Gridformation: To-
wards self-driven online data partitioning using reinforcement learning. In Proceedings of the
First International Workshop on Exploiting Artificial Intelligence Techniques for Data Man-
agement, aiDM’18, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450358514.

[6] Rimma Nehme and Nicolas Bruno. Automated partitioning design in parallel database sys-
tems. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’11, page 1137–1148, New York, NY, USA, 2011. Association for Computing
Machinery.

[7] Tilmann Rabl and Hans-Arno Jacobsen. Query centric partitioning and allocation for partially
replicated database systems. In Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, page 315–330, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450341974.

[8] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: A workload-driven approach
to database replication and partitioning. Proc. VLDB Endow., 3(1–2):48–57, sep 2010.

8



[9] Anil Shanbhag, Alekh Jindal, Samuel Madden, Jorge Quiane, and Aaron J. Elmore. A robust
partitioning scheme for ad-hoc query workloads. In Proceedings of the 2017 Symposium on Cloud
Computing, SoCC ’17, page 229–241, New York, NY, USA, 2017. Association for Computing
Machinery.

[10] K. Ashwin Kumar, Abdul Quamar, Amol Deshpande, and Samir Khuller. Sword: Workload-
aware data placement and replica selection for cloud data management systems. The VLDB
Journal, 23(6):845–870, dec 2014.

[11] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. Locality-aware partitioning in parallel
database systems. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, page 17–30, New York, NY, USA, 2015. Association for
Computing Machinery.

[12] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li, Umar Farooq
Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya. Qd-tree: Learning data lay-
outs for big data analytics. SIGMOD ’20, page 193–208, New York, NY, USA, 2020. Association
for Computing Machinery.

[13] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. Towards learning a partitioning advisor
with deep reinforcement learning. In Proceedings of the Second International Workshop on
Exploiting Artificial Intelligence Techniques for Data Management, aiDM ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[14] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. Learning a partitioning advisor for cloud
databases. In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’20, page 143–157, New York, NY, USA, 2020. Association for Computing
Machinery.

[15] Ray Team. Rllib: Industry-grade reinforcement learning. URL https://docs.ray.io/en/

latest/rllib/index.html. Accessed: May 17, 2023.

[16] Gymnasium farama. URL https://gymnasium.farama.org/. Accessed: May 17, 2023.

9

https://docs.ray.io/en/latest/rllib/index.html
https://docs.ray.io/en/latest/rllib/index.html
https://gymnasium.farama.org/

	Introduction
	Problem Definition
	Proposed Solution
	First Step
	Second Step


	Implementation
	Results
	Conclusion

