
Unique Pointers: Performance, Burden, and Inference

Mujtaba Ali
University of Maryland, College Park

mujtaba@cs.umd.edu

ABSTRACT
Cyclone is an actively developed, type-safe, C-like programming
language. Historically, language designers have either leaned
toward safety or toward explicit memory management. Cyclone
aims to provide the safety of a language like Java, while providing
the control over data representation and memory management of
low-level languages like C. Cyclone features a garbage-collected
heap. However, garbage collection is undesirable in some
applications – the canonical example being the embedded space.
To abate concerns with garbage collection, Cyclone has featured
region-based memory management for well over a year. Until
now, Cyclone regions were fairly coarse grained.

Developed by Dr. Michael Hicks of the University of Maryland,
unique pointers are a new Cyclone construct. Unique pointers
strive to regain the fine granularity of C’s malloc and free
without violating safety.

This paper details experiences with porting Cyclone programs to
use unique pointers. Based on those experiences, this paper
outlines a static, constraint-based analysis to help in the porting
process. Additionally, this paper presents benchmarks comparing
the performance of Cyclone programs before and after
“uniquifying”.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – abstract data types, polymorphism, control structures.

General Terms
Languages, Experimentation, Performance, Human Factors,
Algorithms.

Keywords
Unique pointers, Cyclone, memory management, static analysis,
constraint-based analysis, inference.

1. INTRODUCTION
Cyclone is a programming language embracing a unique (no pun
intended) combination of type-safety and explicit control over
data representation. Garbage collection is an easy way to enforce
safety. However, garbage collectors often exhibit unpredictable
behavior and often add unacceptable overhead. Regions were
introduced into Cyclone as an alternative of sorts to garbage
collection. Earlier, forms of Cyclone regions only supported
allocation and deallocation en masse. Unique pointers, i.e.,
pointers pointing into the unique region, are a new Cyclone

construct providing safe, individual object allocation and
deallocation.

Ideally, a program could be ported such that all pointers
exclusively point into the unique region. In such a case, the
garbage collector need not be linked in the final executable – a
great boon to the embedded space. Even in the presence of heap-
allocated data that must be garbage collected, unique pointers can
significantly decrease memory footprint.

A brief overview of unique pointers in Cyclone is provided in
Section 2. If the reader is unfamiliar with general Cyclone
constructs, she may consult the section entitled “Cyclone for C
Programmers” of the Cyclone User’s Manual [3].

The work presented in this paper consists of three main
contributions:

1. Benchmark results of applications wholly or partially
ported to use unique pointers are presented.

2. The programming burden of porting programs to use
unique pointers is discussed.

3. A static analysis to partially ease the programming
burden is detailed.

Cyclone was purposely modeled on C to ease porting of “legacy”
C code. The porting process from C to Cyclone is the focus of an
orthogonal effort and is not discussed in detail here. This paper is
primarily concerned with comparing a “standard” Cyclone port of
a program with a “uniquified” (still Cyclone) version of a
program.

2. UNIQUE POINTER OVERVIEW
Put simply, a region is just a chunk of memory. Under Cyclone,
pointers always point into a region. In other words, pointers’
types are always annotated with a region. For example, pointers
that live on the heap are said to point into the heap region and are
annotated with the text `H. Individual deallocation is not allowed
on the heap region; the heap region is always garbage collected.
There are quite a few other regions useful under various
circumstances (see Figure 1) [3].

The unique region permits individual allocation and deallocation.
However, to statically (at compile-time) ensure safety, objects
living in the unique region may have only one alias at any given
time. Pointers are declared as pointing into the unique region by
annotating their types with the text `U. For example, in the
following declaration, p is a pointer pointing into the unique
region; p is a unique pointer.

int *`U p;

Below is a simple example of the type of error that can be caught
at compile-time by Cyclone. The function ufree is analogous to
C’s free function.

int *`U p;
p = (int *`U) malloc (sizeof(int));
*p = 5;
ufree(p); // "consumes" p
...
int q = *p + 7; // Error

Aliasing is not allowed on objects in the unique region.

int *`U p;
int *`H q;
p = (int *`U) malloc (sizeof(int));
*p = 5;
q = p; // Error

Working around the restriction on aliasing is undoubtedly the
most difficult aspect of porting Cyclone programs to use unique
pointers.

3. PERFORMANCE RESULTS
3.1 Overview
Generally, performance results are presented later in a paper. In
this case, it makes sense to present performance results early. The
reader must be convinced that unique pointers are beneficial;
otherwise, discussions of programming burden and static analyses
are futile.

A measurement of program memory footprint is presented here.
Program execution time is also a significant measurement. For
embedded environments, however, memory footprint can be as
important as, if not more important than, execution time.

Ports of Boa – a high performance web server – and select
modules from MiBench – an embedded benchmark suite [9] –
were attempted. Boa was not successfully ported to use unique
pointers, although it is very near completion. Footprint data was
accumulated for the vanilla Cyclone version and the uniquified
Cyclone version of the MiBench dijkstra module.

3.2 Memory Footprint
Some uniquified programs were not linked with the Cyclone
garbage collector even though there is still heap-allocated data.

This is because the original C versions of the programs did not
deallocate this data and instead depended on the operating system
to reap the data after the program process terminated. Such a
technique is valid if data will live for the life of a program.

One example of such a uniquified program is the MiBench
dijkstra module. Figure 6 shows the standard garbage collected
run of the program. Figure 7 shows a run from the ported, unique
pointer version of the program. The footprint benefits – 192KB
versus 12KB (respectively) – are obvious.

3.3 Miscellaneous Details
If the Cyclone garbage collector was not linked in, the final
executable was tested with Valgrind [4] to ensure there were no
memory leaks. Valgrind is a run-time instrumentation framework,
and an accompanying suite of tools, for debugging and profiling
x86 Linux programs. The base Valgrind distribution includes
Memcheck – a tool that detects memory-management problems
such as memory leaks. Such testing reinforces that Cyclone’s
code generation is sound.

4. PROGRAMMING BURDEN
Even with performance benefits, programmers may not port their
programs to use unique pointers if confronted with a heavy
programming burden. Unfortunately, the programming burden is
a significant drawback to uniquifying programs. Table 1 shows
the number of lines that changed when porting. A greater LOC
number does not necessarily mean that a greater number of
changes will be required. Informally, the programming burden
increases with regard to the complexity of data structures.

4.1 Manual Porting Process/Approach
Porting a standard Cyclone program to use unique pointers
generally involved the following step:

1. Add a preprocessor directive to include core.h. Also,
for convenience, open the Core namespace.

#include <core.h>

using Core;

The Core namespace provides ufree and the
unique_region handle. The reader can refer to [3]
for information on Cyclone namespaces and region
handles.

2. Look for calls to free and change these to ufree.

Figure 1. Summary of Cyclone regions.

3. Find the declarations for the parameters to ufree and
annotate these declarations to point into the unique
region. For example, assume pointer p was a parameter
to ufree, and p was declared as such:

char *p;

Then the declaration should be changed to:
char *`U p;

Alternatively, p may have been passed in as an
argument to a function:
void foo(char *p);

In this case, the function parameter should be annotated:
void foo(char *`U p);

In the latter case, update any corresponding prototypes
in .h files.

4. Compile the program.

5. Go through each compiler error and decide if an idiom
(see below) can be used to resolve the error. If no idiom
can be applied to resolve a specific error, that error must
be resolved through thorough inspection of the source
code.

4.2 Common Idioms
Here are many common idioms encountered when porting
Cyclone program to use unique pointers. This list is not
exhaustive by any means.

4.2.1 Idiom 1
Casts from calls to malloc (and other alloc’s) must be
annotated.
p = (int *)malloc (sizeof(char));

�

p = (int *`U)malloc (sizeof(char));

Assume p is a unique pointer.

4.2.2 Idiom 2
If the left hand side of an assignment is a unique pointer, the right
hand side must be changed to also point into the unique region.
For example, assume p is a unique pointer:

p = q;

Then the declaration for q should be annotated with the unique
region.

4.2.3 Idiom 3
Freeing global unique pointers is not allowed. This is because
other code may be using the unique pointer (in the presence of
concurrency) or a function earlier on the call chain may also refer
to the global unique pointer after the free. As a side effect of
separate compilation, the Cyclone compiler will not typecheck
interprocedurally to determine if such a violation can occur.
Instead, to preserve safety, the programmer should atomically
swap a NULL value into the global unique pointer and then free
it. If code subsequently dereferences the global unique pointer, a
null exception will be thrown.
let temp_uptr = NULL;

temp_uptr :=: p; // atomic swap

ufree(temp_uptr);

Assume p is a global unique pointer.

4.2.4 Idiom 4
Many functions in the string library return pointers into the heap
region. For example, strdup will accept an argument that
points into any region and will return a new string allocated on
the heap. Therefore, the following is invalid:

char *`U p = strdup("Infer me!"); // invalid

The Cyclone string library provides “region-aware” versions of
many standard functions. These should be used instead. The
region-aware functions will usually expect a region handle as the
first argument. For example:
char *`U p =

rstrdup(unique_region, "Infer me!");

Unfortunately, many of the region-aware function do not work
with the unique region. As explained in [1], offending functions
must be modified to accept the TR kind. A handful of functions –
including rrealloc, rstrdup, and rexpand – were easily
corrected during the course of this project.

4.2.5 Idiom 5
If a return statement returns a unique pointer, then (1) the
return type of the associated function and (2) the declarations for
all other returned pointers must be annotated with the unique
region. Prototypes in .h files should be updated appropriately.

4.2.6 Idiom 6
Arithmetic is not allowed on unique pointers. Fat unique pointers
are not exempt from this restriction. Unique pointers must always
point to their base location so ufree can correctly deallocate
memory. Fortunately, Cyclone provides an alias construct to
temporarily alias unique pointers. Restricting aliasing to alias
blocks helps Cyclone to statically guarantee that uniqueness
properties are not violated. In particular, aliasing is convenient
with loops; and alias blocks provide Cyclone programmers
with a way to use unique pointers with the looping paradigm.
p = (char *@fat `U) malloc(sizeof(char)*5);

q = p;

for(i = 0; i < 5; i++)

 *q++ = 0;

�

p = (char *@fat `U) malloc(sizeof(char)*5);

{

let alias<`r> char *@fat `r q = p;

for(i = 0; i < 5; i++)

 *q++ = 0;

}

4.2.7 Idiom 7
If a unique pointer is passed as a function call argument, annotate
the respective function parameter with the unique region.
Prototypes in .h files should be updated appropriately. For
example, assume p is unique in following statement:

foo(p, 5);

Then foo should be annotated like so:

void foo(char *p);

�

void foo(char *`U p);

4.2.8 Idiom 8
If a unique pointer is consumed via an assignment to another
unique pointer, and later the consumed pointer is dereferenced,
attempt to substitute the unique pointer that was assigned to in its
place. Assume both p and q are unique in the following example.

p = q; // q consumed

foo(q->x);

�

p = q; // q consumed

foo(p->x);

4.2.9 Idiom 9
If a pointer has been previously annotated with the unique region
and later it’s discovered that the pointer’s data structure is used in
a cyclic fashion, then the pointer, and any struct fields
involved in the cycle, must point into the heap region1.
struct bar {int x; struct bar *`U next;};

void foo(struct bar *`U p) {

 p->next = p;

}

�

struct bar {int x; struct bar *`H next;};

void foo(struct bar *`H p) {

 p->next = p;

}

4.2.10 Idiom 10
If a pointer has been previously annotated with the unique region
and later it’s discovered that the pointer takes the address of a
variable, then the pointer must point into the heap region. An
alias creating in this manner is difficult for the typechecking flow
analysis to track.
char *`U p;

p = &q;

�

char *`H p;

p = &q;

4.2.11 Idiom Frequency
As shown in Table 2, idiomatic changes comprise the vast
majority of the total modifications while porting small programs
to use unique pointers. Regardless, if even a few idioms could be
automated via a static program analysis, a programmer
undertaking a port will save considerable time and frustration.
Furthermore, an automated analysis is less likely to introduce
errors. Based on these idioms, one may instinctively sense that a

1 Technically, a reference-counted pointer could be used. This

paper, however, only considers unique and heap pointers.

set-constraint based analysis is a natural choice for automating the
porting process. The author believes the manual porting process
can be fairly termed “human constraint solving.”

4.3 Weaknesses of Unique Pointers
List structures are a difficult paradigm to work with uniquely and
some list function implementations require tedious workarounds
[1]. The cause is essentially the “subtyping under references
problem.”

In general, the solution to subtyping under references is to cast the
subtype as a constant so the subtype cannot mutate the reference
[5]. Figure 2 shows the basic subtyping rule for Cyclone regions.
If region `r1 outlives region `r2, then `r1 pointers can be used
as `r2 pointers. That is, pointers into the region `r1 are
subtypes of pointers into the region `r2. However, the
polymorphic type variable`a is invariant. In other words, the rule
presented in Figure 3 is invalid. Conversely, Figure 4 presents a
valid rule that prevents an aliasing subtype from mutating its
supertype’s content.

4.3.1 List Idiom
Traversing through a list to retrieve or update a node’s data is
accomplished via a two-step process:

1. Creating a copy of the list structure data type, but with
const pointers.

2. Cast the list to the const version before traversing.

The following code illustrates the problem lists pose in the
context of unique pointers:

struct bar {int x; struct bar *`U next;};

void foo(struct bar *`U p) {

 struct bar *`U q;

 q = p->next; // consumes p->next !!

`r1 ≤ `r2

`a *`r1 ≤ `a *`r2

Figure 2. Basic Cyclone subtyping rule.

`r1 ≤ `r2 `a ≤ `b

`a *`r1 ≤ `b *`r2

Figure 3. Invalid subtyping rule due to
subtyping under references problem.

`r1 ≤ `r2 `a ≤ `b

`a *const `r1 ≤ `b *const `r2

Figure 4. Workaround for the subtyping
under references problem.

}

Working around this problem requires the programmer to create a
“clone” of the original list data structure, but with const
pointers. The list can then be cast to a const version, after
which it can be freely aliased. For example:

struct bar<`r>

{int x; struct bar *`r next;};

struct cbar<`r>

 {int x; struct cbar *const `r next;};

void foo(struct bar<`U> *`U p) {

 {

 let alias<`x> struct cbar<`x>

 *const `x q =

 (struct cbar<`U> *const `U) p;

 // freely alias p->next

 }

}

5. INFERENCE ANALYSIS
Intuitively, many of the idioms presented above are targets for
automation. This section presents a sketch of a static analysis to
infer unique region annotations. Additionally, the analysis will
alert the programmer to locations in the source where a particular
idiom may apply. The analysis need not be sound or complete. If
the analysis can automate a large portion of mechanical changes,
the analysis will be valuable even in the absence of soundness and
completeness.

The analysis presented here is different from the typechecking
algorithm the Cyclone compiler uses to guarantee uniqueness
properties are not violated. Cyclone’s typechecker uses a forward
analysis while this analysis is a backward analysis. Furthermore,
Cyclone’s typechecking algorithm is intraprocedural – a common
limitation in the presence of separate compilation. In contrast, the
analysis presented here is interprocedural.

5.1 Overview
The general analysis algorithm is quite simple. The analysis
works backward through a program’s CFG (control flow graph.)
Only pointers that are free’ed are tracked by the analysis. All
tracked pointers start as pointing into the unique region; all
tracked pointers are “innocent until proven guilty.” As the
analysis works backwards through the CFG, constraints are
generated on the region annotations of pointers encountered by
the analysis. It could be that a constraint generated further up the

CFG will ultimately force pointers into the heap region (see
Figure 52.)

5.2 Constraint (and Alert) Generation
Constraint and alert3 generation can be modeled with respect to
the idioms presented in the previous section (see Table 3.) While
perusing Table 3, the reader may find it useful to refer back to the
original idiom descriptions. Assume an online constraint-solver.

5.3 Constraint Solving
The constraints generated using the patterns in the previous
section can be solved using a standard constraint solver, such as
the solver used by Andersen’s alias analysis [7].

6. FUTURE WORK
Boa, at only a couple thousands of lines, can at best be considered
a medium-sized program. Yet, porting Boa proved quite difficult
and it is unclear if the process of porting programs to use unique
pointers is scalable to larger programs. Further research will
determine if the manual porting process and/or the automated,
analysis-assisted porting process are scalable. However, this
might not be an issue with Cyclone’s embedded systems audience.

Program execution time was not measured during benchmarking.
Furthermore, for Boa it would make sense to measure throughput
using a load handling test tool.

Some programming paradigms are difficult to simulate with
unique pointers. Lists in general, and especially circular lists, are
problematic. However, reference-counted pointers [1] can be
used with circular lists and future work can combine idioms for
unique pointers with idioms for reference-counted pointers. Some
list operations – e.g., copying – must currently be implemented
recursively. It might be fruitful to investigate what is so different
about recursion versus explicit iteration. Modeling explicit
iteration with unique pointers will significantly increase
programmer accessibility.

At present, the inference analysis relies on artifacts left over from
when a C program was ported to Cyclone. That is, the analysis
begins at free statements and works backwards. However, in
Cyclone, free (not to be confused with ufree) is a noop; heap-
allocated data is garbage collected. The analysis will most likely
not work on a program written “from scratch “ in Cyclone because
free statements will not exist. A forward analysis would be
ideal in that such an analysis could handle any Cyclone program.
In the absence of free statements, a forward analysis could defer
ufree insertion to the programmer. More interestingly, the
analysis could try to infer where ufree statements should be
placed.

Unfortunately, a working implementation of the analysis is not
available at this time. Work has begun on an implementation
using the CIL analysis and source transformation framework [6].

2 The constraints generated here should not be confused with

Cyclone outlives relationships [3]. For example, in Cyclone the
unique region outlives the heap region: `H ≤ `U.

3 Alerts are just messages printed out to the programmer’s
console.

Statements Constraints

������� ��	
�����⊆ ��
������ ��	
�����⊆ ��	
����
������� ��	
�����⊆ ��

Figure 5. High-level illustration of constraint-based
analysis.

The CIL framework comes with an implementation of Andersen’s
alias analysis, complete with online constraint solver.

7. RELATED WORK
The reader may refer to [1] for additional performance results and
a description of work related to unique pointers in general. The
author of this paper does not know of any prior work to categorize
uniquifying idioms or to infer unique region annotations in
Cyclone.

8. CONCLUSION
Unique pointers in Cyclone provide measurable benefits.
However, programmers face a significant challenge when porting
existing programs to use unique pointers. For some, such as the
embedded systems community, the burden might be worth it. A
static analysis that aids in the porting process may help adoption
of unique pointers.

Further work may reveal that Cyclone’s current unique pointer
implementation is ineffectual and in need of revision or
addendum. In such a case, future researchers can learn from
drawbacks in the current implementation and/or try a modified
approach.

9. ACKNOWLEDGMENTS
The author of this paper would like to thank the following
individuals for their invaluable assistance: Dr. Michael Hicks, Dr.
Jeffrey Foster, Jaime Spacco, Rob Sherwood, and Nikolaos
Frangiadakis.

10. REFERENCES
[1] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor

Jim. Safe and flexible memory management in Cyclone.

Technical Report CS-TR-4514, University of Maryland
Department of Computer Science, July 2003.

[2] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks,
Yanling Wang, and James Cheney. Region-based memory
management in Cyclone. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation. ACM, June 2002.

[3] Cyclone User’s Manual.
http://www.research.att.com/projects/cycl
one/online-manual/.

[4] Julian Seward, Nick Nethercote, Jeremy Fitzhardinge.
Valgrind. http://valgrind.kde.org/.

[5] Michael W. Hicks. Personal communication, 2003.

[6] George Necula, et al. CIL (C Intermediate Language).
http://manju.cs.berkeley.edu/cil/.

[7] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, University of
Copenhagen, DIKU, May 1994.

[8] Larry Doolittle and Jon Nelson. Boa webserver.
http://www.boa.org/.

[9] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,
Todd M. Austin, Trevor Mudge, and Richard B. Brown.
MiBench: A free, commercially representative embedded
benchmark suite. 4th Annual Workshop on Workload
Characterization, December 2001.

Appendix A – Tables and Figures

 Original
LOC

Ported
LOC

Diff
LOC

bitcount 541 543 9

susan 1404 1406 9

dijkstra 268 277 27

patricia 282 288 22

stringsearch 3070 3073 10

boa 5088 5145 149

Table 1. Non-commented source code comparison.

 1 2 3 4 5 6 7 8 9 LI

bitcount

susan 2

dijkstra 1 1 1 1 1

patricia 2 1 2 1

stringsearch 1 1 1

Table 2. Idioms used while porting. LI stands for list idioms.

 Constraint Alert

Idiom 1 region(p) ⊆⊆⊆⊆ region((... *)malloc(...))

Idiom 2 region(p) ⊆⊆⊆⊆ region(q)

Idiom 3
Swap global unique pointer

with temporary pointer before
ufree.

Idiom 4 Use region-aware version of
string library function.

Idiom 5
region(foo())⊆⊆⊆⊆ `U

{region(ret1), region(ret2),..., region(retn)} ⊆⊆⊆⊆ `U
where reti : i = 1 to n are pointers returned by the foo.

Idiom 6 Use alias construct.

Idiom 7 region(p) ⊆⊆⊆⊆ `U

Idiom 8 Substitute use of consumed
pointer with new unique alias.

Idiom 9
region(p) ⊆⊆⊆⊆ `H

region(field next of struct bar) ⊆⊆⊆⊆ `H

Idiom 10 region(p) ⊆⊆⊆⊆ `H

Table 3. Constraint and alert generation rules.

Figure 6. Memory footprint for dijkstra MiBench module. (standard)

Figure 7. Memory footprint for dijkstra MiBench module. (unique)

