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Abstract— A recent neurocomputational study showed that corpus of text as input. After the network had become adept
it is possible for a model of the language areas of the brain at the prediction task, characteristic representationgte
(Wemicke's area, Broca's area, etc.) to learn to process wds \yqrqs in the training set were determined by averaging the

correctly [1]. This model is unique in that it is a neu- twork’ tivati followi . text t
roanatomically based model of word learning derived from tre Network's activations foflowing many in-context presenta

Wernicke-Lichtheim-Geschwind theory of language procesag.  tions of each word. A hierarchical clustering analysis @fsi

For example, when subjected to simulated focal damage, the representations showed that words with similar functions
model breaks down in ways reminiscent of the classic aphasia \were grouped together in the hierarchy. Further, the ndtwor
While such results are intriguing, this previous work was \yaq able to correctly place novel words in the hierarchy
limited to processing only single words: nouns correspondig . .

to concrete objects. Here we take the first steps towards basgq solely ‘_JPO” Wher_e they occurred in contex_tand without
generalizing the methods used in this earlier model to work additional training. While this work was revolutionary and
with full sentences instead of isolated words. We gauge the influential, it suffers from a lack of biological plausittilidue
richness of the neural representations that emerge duringprely  to the use of error backpropagation [5] as the sole learning
unsupervised leaming in several ways. For example, using methog. The absence of local lateral interactions between

a separate “recognition network”, we demonstrate that the d hich K t in the h bral
model’s encoding of sentences is adequate to permit subseau nodes, which are Kknown 1o occur in the human cerebra

extraction of a symbolic, hierarchical representation of entence ~ cortex, further Wea_ke_ns the WOFKS biological .ana|09)/- Our
meaning. Although our results are encouraging, substantia model produces similar clustering results via a form of
further work WI!| be needed to create a large-scale model of completely unsupervised learning which seems to be a more
the human cortical network for language. biologically plausible method [2]

. INTRODUCTION Our model is based on a modified one-shot multi-winner

Researchers have been investigating language learningsilf-organizing map [2], a neural network that learns in
artificial neural networks for more than 20 years. Yet iran unsupervised fashion to aggregate input sequences into
that time, a biologically plausible model of natural langea distributed activation patterns. Earlier work establilaeset
learning that can be demonstrated to work at a level comparesf parameter values (many of which we borrow directly)
ble to that of the human language learning faculty has faileslitable for learning to produce unique activation pateon
to emerge. Towards that end, this paper describes some fid#ffering sequences of phonemes representing single words
steps towards a neuroanatomically based model that can ledhis past work also demonstrated that a trained layer can
representations of natural language at the sentence Twel. become a topologically clustered map with respect to its
model’s input, a stream of phonemes, each represented bplioneme inputs [2], and that mirror-image topographical
vector of distinctive features, approximates the inputhi® t maps also occur naturally in the model [6], which provides
human language learning system. The model makes semsmvincing support for the analogy between this type of
of this stream through unsupervised learning, using onkyeural network and biological cortex.
methods that are suspected to occur in biological cortex [2]
Our goal is to show that unsupervised self-organization |s
sufficient to shape a language reception pathway, causmg%

A recent neuroanatomically grounded model of the
rebral language centers [1], based on the Wernicke-

to produce distributed representations that are rich emou ichtheim-Geschwind model, used one-shot multi-winner

to support the complexities of sentence-length utterances glf-organizing maps to great effect. This model leared

We employ several methods to assess the richness of ltﬁ)eassomate 50 concrete nouns (presented as phoneme se-
produced representations, including the use of a separgtléences) with representative visual images, such that it

recognition network that reads from the model’s output anﬁOl:Id rep:fz;lt he?;d V\ll(?,rlds and prov(|jde the nanf1e of seen
maps its discovered representations to symbolic meanrhgspdC ures er artificial *lesioning” or damaging o \{ape
heard sentences. pieces of the model, it was able to reproduce deficits that

Previous work by Elman [3] seems to capture some O(%Iosely mimicked the classic aphasia syndromes in human

the important characteristics of human language acquisiti UZJehcts ex?osmg a deep connec|_t||on betw;ahen thekmodel
Elman trained a simple recurrent network using error bacind human language processing. However, this work was

propagation [4] on a next-letter prediction task, usingrgda by design, limited to processing single words. Our work
directly extends the language recognition portion of thastp
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word, activity propagates to treentence layer. The sentence
layer is of the same type as the word layer, though typically
larger, as its task of aggregating words into sentences is
significantly more difficult than aggregating phonemes into
words. The sentence layer also learns after each activation
and, after witnessing a complete sentence, clears itsitgctiv
before processing the next sentence. The clearing of these
latter two layers effectively lets the model know word and
sentence boundariespriori. This design choice was made
for ease of analysis—it allows us to segment the distributed
representations on each layer and associate them with spe-

Fig. 1.  The information flow in our recurrent neural networlodsl
representing the early stages of cortical language rexeplircles represent
neural processing units, though the number of elementsager Is reduced
in this diagram for ease of presentation. Straight arrovgsesent full for-
ward connectivity, and circular arrows represent localiremt connectivity
between neighboring nodes within a layer. The input layeft)(is a vector
of binary units onto which the feature vector representatiof individual
phonemes are imposed sequentially, representing a heatense. After
the presentation of each phoneme, activation propagatdéseteord layer
(middle), which learns distributed representations fa tarious phoneme
combinations that comprise words by modifying the locattal and afferent
weights in an unsupervised fashion. Teatence layer (right) receives input
from the word layer, and functions in much the same way, katead learns
distributed representations of entire sentences.

Il. METHODS
Our model is designed to take as input a temporal seque

of phonemes representing a sentence and produce a re
sentation of that sentence distributed over its outputrlaye[h

cific words and sentences.

The word layer and sentence layer are modified versions
of one-shot multi-winner self-organizing maps [2]. Thipéy
of layer is a hybrid descendent of Kohonen's self-orgaigjzin
maps [7] and the more realistic but computationally expen-
sive models of von der Malsburg [8]. In essence, these layers
are Kohonen maps modified to support multiple concurrent
local winners. They are thus recurrent neural networks that
learn via competitive, unsupervised Hebbian training sule
(described below). This type of layer has been found to
mimic some organizational properties of biological cortex
[1], [6].

Each layer is a two-dimensionak x n grid of neural
elements, with each nodemaintaining a real-valued non-
negative activation levet;. Each node within the layer has

nce

a weighted afferent connection to each node in the previous

Réﬁer; collectively these afferent weights are represtine

e matrixA. Each node is also connected laterally to other

Our hypothesis is that each learned distributed repretemta

will be rich enough to allow recovery of the meaning of th . . :
associated sentence. Furthermore, the trained layerseof bhe set of ngghbors of nodeis denc_;tele and def.med
ased on a distance metdcand a radius:, as follows:

model should develop organizational properties that, when
examined, attest to the linguistic knowledge the model has (1)
acquired.

The f0||owing subsections will describe the model’s re- The diStance funCtiOd abOVe iS a bOX—diStance metriC that
current architecture' activation dynamiCS, and unsuped/i treats the |ayel‘ as a toroidal surface in which the left and
learning methods in detail, before taking a brief detouo int"ight edges connect seamlessly, as do the top and bottom.
the processes we used to generate meanings and sentefgidtively, d(i, j) is the radius of the smallest box, centered
to use as targets and inputs, respectively. We then discig, that includesj. If nodes: and;j are located at row and
several techniques for gauging model performance in t@lumn(r;, ¢;) and(r;,c;) respectivelyd(i, j) is:
experimental methods section.

nearby nodes in the same layer to form a local neighborhood.

N; = {nodesj s.t.d(i,j) < r}

. |T‘j — T‘i|
min
A. Model Architecture and Dynamics d(i, j) = max m—|rj =il )
Information flow in the model (see Fig. 1) begins in the min e — il

. . : n—|c; — ¢
input layer, a vector of binary neural elements upon which

input phonemes are imposed in sequence. Each phonem&leighboring nodes share activation from one time step
is represented as a 34-bit feature vector, following prnevio to the next via weighted connections, represented by the
work [1], [2]; see Fig. 10 in [1] for the full list of phonemes (sparse) matrixZ. In any given time step, neighbors also
and associated feature vectors. After a phoneme is present®empete with each other for activation, as follows: The net
to the input layer, activity propagates via the weightedihput to a node; at time ¢, denoted;(¢), is calculated as
connections to thevord layer, a special type of self-recurrent the weighted sum of its inputs from afferent and lateral
layer, which will be discussed below. During training, thesources. Any node that has a net input higher than all
word layer learns immediately after it is activated and t®seof the others in its connection neighborhood is dubbed a
its activity values to zero after it has received a completavinner”. We let W denote the set of winning nodes. Each
word. This process repeats as phonemes are presented, unth-winning node has its activation reset to zero, and then
following word layer activation on the last phoneme of aeceives some small amount of activation from each winner



in its neighborhood, although the amount of this activatiomodel; it simply provides a mechanism for determining the
decreases exponentially with the node’s distance from thextent to which the model has learned to represent a unique
winner. Denoting the activations of the input units to theneaning for each individual input sentence. If the recagnit
layer at timet by the vectorl;(t), we can express activation network can successfully recover sentence meanings, we
rules as: can be reasonably certain that the distributed representa-
R I tions generated by the model contain enough information
Li(t) = a 4; - b(t) + (1 —a) Li - a(t — 1) @) 1 “ungerstand” ch sentences. We contend tﬁat, if a simple
W = {nodesi s.t. I;(t) > I;(t), Vi € N;}  (4) supervised neural network can perform this translation, so

I;(t) ifieW could a higher brain region that is concerned with the
ai(t) = ST Ii(t) y43)  otherwise (5) semantic content of the heard sentence, even though the
JEN;NW methods of learning may be different. Thus, if the recogniti

where~ represents the activation dropoff factor, ands a network is successful at its task, we know that the sentence

tuning factor for the relative strength of afferent versatetal representations learned by the sentence layer are sufficien
connections; both of these are constants in the intéval.  rich to be useful to another neural system.

After each round of activation during training, the layer The recognition network is a two-layer feed-forward neu-
learns in an unsupervised fashion. Afferent weights assod@l network. Its input is the distributed representationaof
ated with connections between layers are updated accord@gjitence formed on the model’s sentence layer, and itsoutpu

to the Hebbian rule: is a symbolic meaning associated with the original sentence
All units in both layers have a logistic activation functjon
Aij — Aij + pai(t) b;(t) (6) and weight updates are performed by RPROP [9], using the

wherey is the afferent learning rate. Lateral weights Withinno,rmal error function on th_e hidden Iaygr; the o.utput Ia;ser. !
ained with an asymmetric error function designed to bias

each layer learn using a temporally asymmetric Hebbidh q ) : ) . ) dtob
rule, which strengthens each connection in proportion t@ hotowar S active units, since active units are expected to be
much the sending node contributed to the receiving node®arse in correct output.

increase in activation between the previous time step amd th The form of the symbolic meanings th_at the recogmtl_on
current one: network attempts to recover is described in the next section

which also explains how we generate input to train the model.

Lij « Lij +na;(t = 1) max{a;(t) —ai(t = 1), 0} (7)o Meaning and Syntax

wherer is the learning rate for the lateral weights. If a node’s Any language learner, whether natural or artificial, will
activity did not increase since the last step, its incomingncounter a finite set of meanings in its lifetime. For our
lateral WEightS are not updated. Note that this rule does ﬂ@kperimentg we chose to Carefu”y define theani ng space,
make much sense when= j, as this weight will increase or the set of meanings that the model will attempt to learn.
more than any other and eventually dominate the weight sqthe meaning space used in our experiments is focused on
To remedy this, we force all nodes to have a fixed selfy simple tabletop environment, in which several different
connection weight of3, which is a constant in the interval kinds of objects reside on a small, flat surface. This meaning
[-1,1]. Both the afferent and lateral weight vectors intospace is capable of describing these objects, as well as
each Iayer node are normalized to unit Iength fO”OWing eacgmp|e actions, such as grabbing, mo\/ing’ and p|acing’ that
learning step in order to foster further competition amdre t jnvolve the objects. We chose this setting for our meaning
weights and prevent unbounded weight increases. space for possible future applicability with an embodied
Thus, as the model receives sentences as input, it graduatipdel. Language experiments in the human aphasia literatur
modifies its representations of words and sentences, disiten involve working with objects in such an environment;
tributed over the word layer and sentence layer respegtiveise of this meaning space provides important comparison
But how do we know if the new representations are better @pportunities between that future model and the existing
worse in some sense than the old ones? In our experimefisrature.
we employ a variety of techniques to verify the richness of The meaning space is comprised of rules defimiegning
the representations, but the most important indicator és thpredicates and meaning atoms, a full list of which can be
extent to which we can recover the symbolic meanings gbund in Appendix I. A fully instantiated example meaning
the sentences from the learned representations. To atterpshown in Fig. 2.
this, we use another, simpler neural network, termed the The goal of the recognition network is to recover these
recognition network, which is described in the next sectiormeanings when given an English sentence—a temporal se-
. guence of phonemes—as input. We are aware of no neural
B. The Recognition Network network models that are able to learn output ofexplic-
After training the model, we can useracognition net- itly hierarchical nature. As such, we take the approach of
work to recover each sentence’s symbolic meaning frormonverting each hierarchical meaning into a one-dimemgion
the distributed representation over the sentence layee. Thinary vector, termed aeaning vector, which the recogni-
recognition network is not part of our language receptiotion network attempts to learn from the distributed sergenc



Meani ng( TABLE |

type=put, MODEL PARAMETER VALUES USED IN EXPERIMENTS
obj =Obj ect (

det =Det er mi ner (d=definite), Parameter Word Layer Value| Sentence Layer Valug
) shp=Shape(s=bl ock) mXxn 20 x 20 30 x 30

: r 3

| oc=Locati on(
rel =Rel ati onal (r=near),
det =Det er mi ner (d=definite),
col =Col or (c=red),
shp=Shape(s=pyrani d)

0.2
0.5

0.37/(1 4 e —0-2/0.16)

0.4/(1 ¥ (=049 0.0001)

0.62/(1 + e(F=0-9/0-04)

)
)
Fig. 2. An example of the hierarchical representation ofecsig meaning
that is legal in the meaning space defined in Appendix |. Thimmmng is
for the sentence “put the block near the red pyramid”.

IR |R| IR

Once a meaning has become a sequence of English words,

& @ & & @ . S
s & & Fs & £ s & & F we use the CMU Pronouncing Dictionary [10] to convert
A L1 AU LN S F X each word into its constituent phonemes. We represent each
v @57 VT E Y d Ve VT T IS Yp oV TFI LT & .
TS TETESTETe $TF 8T8 ETEST8 : P . Pres ;
11000100010101000100110010610010 phoneme by a 34-bit feature vector as discussed in section
col [ shp || det J[rel|| col ][ shp || det \} col || shp ]| det | rel [I-A. The phonemes from all the words and sentences are
loc .
ype loc obj concatenated to form one long phonemic sequence, to be

fed to our model one phoneme at a time.

Fig. 3. An example meaning vector corresponding to the meginiFig. 2 . Experimental Methods
(“put the block near the red pyramid”). Below the vector is thierarchical
grouping of the bits into the fields described by the meanimacs. Each 1) Map Formation: We first performed a set of experi-

such group has a null bit that is active if no other bits in theug are  ants designed to gauge the effectiveness of map formation
active. Since our recognition network will try to generateaming vectors, .
the null bits allow it to use a winner-take-all approach facle group of ON both the word layer and sentence layer. We used a simple
bits, since each group will always have exactly one bit actNote that the meaning space containing only command-type sentences,
depicted meaning vector is simpler than the one used in qqte_rbnents, with 4 verbs, 6 nouns, 5 adjectives, 5 prepositions, and 2
as some superfluous bits have been removed for space catsider . . . .

articles (see Appendix I). This meaning space can generate

over 50,000 legal meanings. From this meaning space we

generated 500 unique, random meanings and their associated
representations created by the model. We define a bijesentences to form the training set. Crucially, we made sure
tion between meanings and meaning vectors such that agmat no meaning in the training set contained any of 3 specific
meaning legal in the meaning space can be represented byeaning atoms. After training, we use sentences generated
meaning vector, and we can easily recover the hierarchiaasing any of the 3 novel meaning atoms to assess the ability
meaning given only the flat meaning vector. of the model to encode unfamiliar input words.

Meaning vectors are constructed such that each bit repre-Table | shows the model parameters used in the ex-
sents a single meaning atom coupled with a position at whigieriments reported here, which were obtained from pilot
it may appear in the meaning hierarchy. Meaning vectorsxperiments. Parameterg u, and n are determined by
contain extra null bits, one of which is activated when dunctions that decrease monotonically as training preg®s
specific field in a meaning is not instantiated; these areuliseffollowing [2]. In those functions; € [0,1] indicates the
when performing winner-takes-all dynamics on groups ofimount of training complete, with = 0 indicating the
related meaning atoms. Fig. 3 shows the example senterimeginning of training and = 1 the end of training.
from Fig. 2 in meaning vector form. We trained the model for 100 epochs, presenting all 500
In our experiments, we randomly select a set of meaningentences from the training set in random order during

from the meaning space to use to create natural languag&ch epoch. During training, we tracked map formation by
input data for training the model. To turn these hierardhicaecording the activation patterns present on the word layer
meanings into natural language fit for consumption by ouafter the presentation of each word, as well as those on the
model—or a human—we use a set of syntactic rules thaentence layer following each sentence. Ideally, the maps
collectively produce a grammatical English sentence from should learn a distinct activation pattern for each word and
meaning. The rules define mappings to be used, subjectdentence to ensure the uniqueness of the learned meanings,
certain conditions, to transform a given meaning predioate and should also spread these patterns out in space to make
meaning atom into a sequence of words in natural languaghem easier to diffentiate from each other. Our first ingtinc
The words are then broken down into their constituenvas to use Euclidean distance to measure how spread out the
phonemes and concatenated into a single uninterrupted safious patterns were, but this technique requires trgatin
quence. Any phonetically expressible language could kbe 2-dimensional layer as a 1-dimensional vector for the
used, but we chose English for our experiments. The full sebmparison, so adjacency information is lost. Instead, we
of syntax rules used in our experiments is in Appendix Il. analyzed this using a metric we calinner separation,



which captures how closely the set of winning nodes for one [1l. RESULTS
activation pattern resembles the winners of another patters. Map Formation

as laid out in space on the 2-dimensional mapif is the
set of winning nodes for one pattern, akidb contains the
winners of another pattern, then the winner separation is:

We performed 20 independent trials of the map formation
experiment. Fig. 4 shows the mean winner separation be-
tween each pair of patterns as training progresses, for both
the word layer and the sentence layer, averaged over these

dwin(W1, Wa) = min {dbox (i, 5) } + (8) 20 trials. The nearly monotonic increase in winner sepamati
€Wy . shows that the model learned to separate its represergation
jeZV:V ZIQ&I)I {dbox (4, 7)} from each other over time, making them easier to distinguish
2

The winner separation on the word layer levels out before

This metric is appropriate in that patterns with identicaih® half-way point in training, probably due to the relalyve
winner sets will score a distance of zero, and distanc¥Mall number of patterns it has to learn: 22 word patterns,
increases linearly as the patterns begin to have fewer ngnniVersus 500 sentence patterns for the sentence layer.
nodes in common and those nodes become further from each
other in the grid. Measuring the mean winner separation 10 ' ' '
across all pairwise combinations of patterns gives us a good ¢ | H

@H{HHH%HHP&%

R

Sentence Layer -

idea whether there is a general trend towards spreading out
patterns. 90

Fﬁ
ol o
. iﬁ{ﬁﬁﬁﬁﬁﬁﬁ i |

60 E

2) Meaning Recovery: Our second set of experiments
tests the richness of the distributed representationséear
by the model by attempting to recover the meanings directl
using the recognition network. The model parameters dfe sti §
as in Table I. We use the same meaning space, generatir%g 50 Eﬁgggﬁfﬂm‘“ 1

inner Distance

. . . . . . Word Layer
500 unique sentences, this time using all meaning atoms in Hﬂﬂqﬂﬁﬁﬁmﬁﬁf |
the training set.
) . i 30 1 1 1 1
For these experiments, the recognition network described 0 20 40 60 80 100

in Section II-B is instantiated with 100 hidden units and Epoch
65 output un_lts, the latter number cqrrespondlng to the SIZ& 4 The mean winner separation at each epoch, calculasethe
of the meaning vector for our meaning space. After modelerage winner separation between all pairs of words (fervibrd layer)
training has completed, we train the recognition networR" Sentenlces (fﬁr thelsentencef layer) hi_nhthe tfai“ingf S_?{;E'm the
. . . : sentence layer has a larger surface, which accounts forigtethwinner
using the RPROP algorlthm' Borrowing notation from [9]’separation values. Each data point represents the avevag@®repetitions
we used parameters, = 0.1, n* = 1.2, andn~ = 0.5, for of the unsupervised map formation experiment; error bava/sine standard
the initial per-connection learning rate, learning ratevgh  deviation.

factor, and learning rate decay factor, respectively. . . .
9 y P y We also examined the learned representations topographi-

After training the recognition network, we assess perforeally. Fig. 5 shows a representative word layer after trajni
mance in two ways—by measuring the number of meaningach map unit is labeled with the input phoneme to which
atoms recovered correctly versus those omitted or spuyioust responds most strongly, and the units are color-coded to
generated; and by counting the number of full meaningepresent different categories of inputs—here vowels and
vectors that the recognition network correctly recoveosrfr consonants. The maps shows a clear tendency to cluster
each set. The phrase “correctly recovers” deserves somwels together into “islands” in a “sea” of consonants, in a
explanation. We apply winner-takes-all activation logic t way reminiscent of the centerpiece figure from [2]. Fig. 6 is a
the output produced by the recognition network for a givesimilar depiction of the sentence layer, using the wordifaye
input sentence; that is, we compare the activations of @éunlearned representation of each word as the input patterns.
in each group of related meaning atoms in the producekhis image shows something even more interesting—the
meaning vector, and the winner in each group becomeentence layer naturally learns to cluster the input words
fully active, while the others are turned off completelyid'h by their function, even though its only clue is the temporal
creates a binary vector from the recognition network’s atitp occurrence patterns of the words in the input.
which is then compared with the target meaning vector. If By watching the sequences of words as they pass by, the
and only if the two match exactly, the recognition networlsentence layer seems to learn that some words are more-
scores a correct recovery. The percentage of meaning gector-less interchangeable syntactically, and groups thesdsv
correctly recovered in this way is termed thecuracy of together. To gather further evidence of these groupings, we
the network. These two measures together provide an eagyisured that the training set excluded the noun “pyramid”,
to-understand view of the performance of the recognitiothe adjective “orange”, and the preposition “below”. Af-
network. ter training was complete, the model was tested on novel
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e e 0w e [ Fig. 6. We looked at a representative trained sentence kyernoted,
ilifd|s|ag|d|:|a|a|afd|:]|a|alalz]|a]|=a]|l]d for each unit, the input word that caused the strongest respim that unit.
alalall |1 |d|s]s]|alalsldlaols|d]lalc|s]|s]os The units were then partitioned based on the syntactic oatexf that word,

resulting in the five separate diagrams above, each repimgendifferent

word category. The clear clustering effect shows that thp hees learned to
group words by their function, as determined by their terapoccurrence
patterns.

Fig. 5. A view of the trained word layer where each unit is letdewith

the input phoneme that activates it most strongly. The wari¢salso colored
by type of phoneme, with vowels in light color and consonatagker. The
clustering of the vowels suggests that the map learned ferelittiate the
two types of phonemes based upon their patterns of occerreitbin the

input. was able to perfectly recover the meaning of, on average,
approximately 95% of the sentences on which the model
v¥]as trained. These results together show that the model’s
farned sentence representations are sufficient for reogve
Ee meanings of sentences it has seen before.

sentences from the original meaning space, some of whi
contained one or more of these three omitted words. F
lowing Elman [3], we performed a hierarchical clustering
analysis on the in-context_activation patterns on the seste IV. DISCUSSION& FUTURE WORK

layer after the presentation of each word, averaged over ] . ] ]

each occurrence of the word. As can be seen in Fig. 7 The results discussed in the previous section show that
after training, the model appears to classify novel words th©Ur model was able to learn something about the phonemes,
appear in familiar contexts and group these words with thef¥rds, and sentences it received as input, using purely-unsu
learned counterparts, despite having never been trained Bffvised leaming methods on a neuroanatomically grounded

these words. network model. Th_e word and sentencg represeqtations_it
_ generated were unique and spread out in space, increasing
B. Meaning Recovery their discriminability. The trained word and sentence taye

The results from the previous set of experiments suggesere topologically organized into clusters of units basad o
that our model learns to create distributed representatiothe functional categories of the units’ preferred inputse T
for the input sentences that, at least to some extent, tafie inearned representations of words were clustered hierarchi
account the relationships between words. In order to giyantically by function, and the model’s spontaneous representa-
how rich these representations are, we attempted to mtpns for novel words fit neatly into this hierarchy. These
each to the hierarchical meaning underlying the associatetbdel results represent predictions about the organizatio
sentence by training the recognition network after modeif human language cortex that will hopefully be testable
training was complete. in the near future using non-invasive methods. Finally, the

While mean squared error (MSE) is a standard metric, iearned sentence representations proved to be rich enough
does not lend itself to easy interpretation of the number dor the recognition network to recover hierarchical megsin
types of errors the recognition network is making during reef sentences the model had previously encountered. Thus,
covery. Fig. 8 helps to illuminate this by showing, on averag we believe that the language reception model described
how many meaning atoms the recognition network shoula this paper provides a convincing, biologically plausibl
recover for each sentence, versus how many of those the nleéginning for natural language understanding at the seaten
work recovered correctly. It also shows how many omissiorisvel. Though it does not yet function at a level remotely
and spurious generations the network made. The recognitioamparable to the human language faculty, we believe it is
network does very well, asymptotically approaching fullan important step in the right direction.
recovery and virtually eliminating omissions and spurious Generalization is an extremely important aspect of gen-
generations. Finally, Fig. 9 shows the accuracy scoreseof terative language learning that we hardly touched on in this
recognition network. We can see that the recognition nééwomvork. The first priority for future work with this model is a
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Fig. 9. The accuracy (correct recovery percentage) of tlbegrtion

network during training. Each point is averaged over 20griaith error bars
representing standard deviation. The average accuracpagesi78,/500
sentences95.6%).

the reception pathway (discussed herein), a cognitivditiaci
for manipulating meanings gleaned from the input pathway,
and a production pathway to allow the model to “speak”.
After such a model is completed and successfully trained, we
intend to study the effects of “lesioning” the model [1]. The
data obtained from these tests will be directly comparable t
data from human aphasia patients, which will either vaédat
the model or direct further research in modifying it to more
closely mimic the behavior of the human language faculty.
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APPENDIX | APPENDIXII
MEANING SPACE DEFINITION SYNTAX RULE DEFINITIONS

In the following, each statement represents a specific Each line below represents a syntax rule that transforms
definition for a meaning predicate, whose symbols start witthe indicated meaning predicate into a string of words,
an uppercase letter. The symbols starting with lowercagmssibly invoking other rules along the way. The bracketed
letters are field identifiers when they appear on the leftems after the predicate name are conditions that must be
side of an assignment operator)( or meaning atoms true in order for the rule to apply. When trying to apply a
on the right side. When instantiating a predicate, alule to a given predicate, the first applicable rule in theisis
of its fields are required by default; a question marlkalways chosen and any remaining rules are ignored. Tokens
following a field identifier indicates optionality of that in quotes on the right-hand side of the rule are English words
field. Brackets after a predicate name enclose a list @f phrases that make up the final generated sentence. Other
conditions on the instantiation of that predicate in théokens on the right-hand side represent the names of fields
given context; a minus sign before a predicate name in this the meaning predicate being expanded that themselves
list means that the given predicate cannot be instantiate@éed to be recursively expanded in place by applying the
as part of the parent predicate. For example, giveappropriate syntax rule for that field. After all applicable

Meani ng(type=rel ease, obj=bject[-1o0c]), rules have been applied, only quoted words will remain,
we will never instantiate theoc field of theobj field that which are then concatenated in order to form the natural
is part of thisMeani ng. language sentence produced by the rule.

The following meaning space can generate 52344 legal The following syntax rules are sufficient to convert any
meanings. The meaning vector used to represent each meareaning generated by the meaning space listed in Appendix |

ing is 65 bits long. into a valid English sentence.

Meani ng(type=put, obj=0bject[-1oc], |oc=Location) Meani ng[ type==put] -> "put" obj loc
Meani ng(type=grab, obj=0bject) Meani ng[ t ype==grab] -> "grab" obj

Meani ng(type=rel ease, obj=Cbject[-loc]) Meani ng[type==rel ease] -> "rel ease" obj
Meani ng(type=go, | oc=Locati on) Meani ng[ t ype==go] -> "nobve" |oc

bj ect (det =Det er mi ner, col ?=Col or, Obj ect -> det col shp loc

shp=Shape, |oc?=Locati on)
Location -> rel det col shp
Location(rel =Rel ational, det=Determ ner,
col ?=Col or, shp=Shape) Det ermi ner[d==i ndefinite] -> "a"
Det ermi ner[ d==definite] -> "the"
Det er mi ner (d=i ndefinite)

Det er mi ner (d=definite) Col or[c==red] -> "red"
Col or[ c==bl ue] -> "bl ue"
Col or (c=red) Col or[ c==green] -> "green"
Col or (c=bl ue) Col or[ c==purpl e] -> "purple"
Col or (c=green) Col or [ c==or ange] -> "orange"
Col or (c=purpl e)
Col or (c=or ange) Shape[ s==bl ock] -> "bl ock"
Shape[ s==box] -> "box"
Shape(s=bl ock) Shape[ s==di sc] -> "disc"
Shape( s=box) Shape[ s==peg] -> "peg"
Shape(s=di sc) Shape[ s==pyrani d] -> "pyram d"
Shape( s=peg) Shape[s==ring] -> "ring"
Shape(s=pyramni d)
Shape(s=ri ng) Rel ati onal [ r==above] -> "above"
Rel ati onal [r==bel ow] -> "bel ow'
Rel ati onal (r=above) Rel ati onal [ r==behi nd] -> "behi nd"
Rel ati onal (r=bel ow) Rel ational [r==near] -> "near"
Rel ati onal (r=behi nd) Rel ati onal [ r==supported_by] -> "on"

Rel ati onal (r=near)
Rel ati onal (r=supported_by)



