
An Unsupervised Learning Method for Representing Simple Sentences

Derek Monner and James A. Reggia

Abstract— A recent neurocomputational study showed that
it is possible for a model of the language areas of the brain
(Wernicke’s area, Broca’s area, etc.) to learn to process words
correctly [1]. This model is unique in that it is a neu-
roanatomically based model of word learning derived from the
Wernicke-Lichtheim-Geschwind theory of language processing.
For example, when subjected to simulated focal damage, the
model breaks down in ways reminiscent of the classic aphasias.
While such results are intriguing, this previous work was
limited to processing only single words: nouns corresponding
to concrete objects. Here we take the first steps towards
generalizing the methods used in this earlier model to work
with full sentences instead of isolated words. We gauge the
richness of the neural representations that emerge during purely
unsupervised learning in several ways. For example, using
a separate “recognition network”, we demonstrate that the
model’s encoding of sentences is adequate to permit subsequent
extraction of a symbolic, hierarchical representation of sentence
meaning. Although our results are encouraging, substantial
further work will be needed to create a large-scale model of
the human cortical network for language.

I. I NTRODUCTION

Researchers have been investigating language learning in
artificial neural networks for more than 20 years. Yet in
that time, a biologically plausible model of natural language
learning that can be demonstrated to work at a level compara-
ble to that of the human language learning faculty has failed
to emerge. Towards that end, this paper describes some first
steps towards a neuroanatomically based model that can learn
representations of natural language at the sentence level.The
model’s input, a stream of phonemes, each represented by a
vector of distinctive features, approximates the input to the
human language learning system. The model makes sense
of this stream through unsupervised learning, using only
methods that are suspected to occur in biological cortex [2].
Our goal is to show that unsupervised self-organization is
sufficient to shape a language reception pathway, causing it
to produce distributed representations that are rich enough
to support the complexities of sentence-length utterances.
We employ several methods to assess the richness of the
produced representations, including the use of a separate
recognition network that reads from the model’s output and
maps its discovered representations to symbolic meanings of
heard sentences.

Previous work by Elman [3] seems to capture some of
the important characteristics of human language acquisition.
Elman trained a simple recurrent network using error back-
propagation [4] on a next-letter prediction task, using a large

Derek Monner and James A. Reggia are with the Department of Computer
Science, University of Maryland - College Park, Maryland, USA (email:
{dmonner, reggia}@cs.umd.edu)

This work was supported by NIH Award NS35460 and in part by NSF
IGERT Award DGE-0801465.

corpus of text as input. After the network had become adept
at the prediction task, characteristic representations for the
words in the training set were determined by averaging the
network’s activations following many in-context presenta-
tions of each word. A hierarchical clustering analysis of these
representations showed that words with similar functions
were grouped together in the hierarchy. Further, the network
was able to correctly place novel words in the hierarchy
based solely upon where they occurred in context and without
additional training. While this work was revolutionary and
influential, it suffers from a lack of biological plausibility due
to the use of error backpropagation [5] as the sole learning
method. The absence of local lateral interactions between
nodes, which are known to occur in the human cerebral
cortex, further weakens the work’s biological analogy. Our
model produces similar clustering results via a form of
completely unsupervised learning which seems to be a more
biologically plausible method [2].

Our model is based on a modified one-shot multi-winner
self-organizing map [2], a neural network that learns in
an unsupervised fashion to aggregate input sequences into
distributed activation patterns. Earlier work established a set
of parameter values (many of which we borrow directly)
suitable for learning to produce unique activation patterns for
differing sequences of phonemes representing single words.
This past work also demonstrated that a trained layer can
become a topologically clustered map with respect to its
phoneme inputs [2], and that mirror-image topographical
maps also occur naturally in the model [6], which provides
convincing support for the analogy between this type of
neural network and biological cortex.

A recent neuroanatomically grounded model of the
cerebral language centers [1], based on the Wernicke-
Lichtheim-Geschwind model, used one-shot multi-winner
self-organizing maps to great effect. This model learned
to associate 50 concrete nouns (presented as phoneme se-
quences) with representative visual images, such that it
could repeat heard words and provide the name of seen
pictures. After artificial “lesioning” or damaging of various
pieces of the model, it was able to reproduce deficits that
closely mimicked the classic aphasia syndromes in human
subjects, exposing a deep connection between the model
and human language processing. However, this work was,
by design, limited to processing single words. Our work
directly extends the language recognition portion of this past
model by expanding the phoneme sequence input from single
words to structured multi-word utterances, for the first time
challenging a neuroanatomically based model to learn to
process complete sentences.

Fig. 1. The information flow in our recurrent neural network model
representing the early stages of cortical language reception. Circles represent
neural processing units, though the number of elements per layer is reduced
in this diagram for ease of presentation. Straight arrows represent full for-
ward connectivity, and circular arrows represent local recurrent connectivity
between neighboring nodes within a layer. The input layer (left) is a vector
of binary units onto which the feature vector representations of individual
phonemes are imposed sequentially, representing a heard sentence. After
the presentation of each phoneme, activation propagates tothe word layer
(middle), which learns distributed representations for the various phoneme
combinations that comprise words by modifying the local lateral and afferent
weights in an unsupervised fashion. Thesentence layer (right) receives input
from the word layer, and functions in much the same way, but instead learns
distributed representations of entire sentences.

II. M ETHODS

Our model is designed to take as input a temporal sequence
of phonemes representing a sentence and produce a repre-
sentation of that sentence distributed over its output layer.
Our hypothesis is that each learned distributed representation
will be rich enough to allow recovery of the meaning of the
associated sentence. Furthermore, the trained layers of the
model should develop organizational properties that, when
examined, attest to the linguistic knowledge the model has
acquired.

The following subsections will describe the model’s re-
current architecture, activation dynamics, and unsupervised
learning methods in detail, before taking a brief detour into
the processes we used to generate meanings and sentences
to use as targets and inputs, respectively. We then discuss
several techniques for gauging model performance in the
experimental methods section.

A. Model Architecture and Dynamics

Information flow in the model (see Fig. 1) begins in the
input layer, a vector of binary neural elements upon which
input phonemes are imposed in sequence. Each phoneme
is represented as a 34-bit feature vector, following previous
work [1], [2]; see Fig. 10 in [1] for the full list of phonemes
and associated feature vectors. After a phoneme is presented
to the input layer, activity propagates via the weighted
connections to theword layer, a special type of self-recurrent
layer, which will be discussed below. During training, the
word layer learns immediately after it is activated and resets
its activity values to zero after it has received a complete
word. This process repeats as phonemes are presented, until,
following word layer activation on the last phoneme of a

word, activity propagates to thesentence layer. The sentence
layer is of the same type as the word layer, though typically
larger, as its task of aggregating words into sentences is
significantly more difficult than aggregating phonemes into
words. The sentence layer also learns after each activation
and, after witnessing a complete sentence, clears its activity
before processing the next sentence. The clearing of these
latter two layers effectively lets the model know word and
sentence boundariesa priori. This design choice was made
for ease of analysis—it allows us to segment the distributed
representations on each layer and associate them with spe-
cific words and sentences.

The word layer and sentence layer are modified versions
of one-shot multi-winner self-organizing maps [2]. This type
of layer is a hybrid descendent of Kohonen’s self-organizing
maps [7] and the more realistic but computationally expen-
sive models of von der Malsburg [8]. In essence, these layers
are Kohonen maps modified to support multiple concurrent
local winners. They are thus recurrent neural networks that
learn via competitive, unsupervised Hebbian training rules
(described below). This type of layer has been found to
mimic some organizational properties of biological cortex
[1], [6].

Each layer is a two-dimensionalm × n grid of neural
elements, with each nodei maintaining a real-valued non-
negative activation levelai. Each node within the layer has
a weighted afferent connection to each node in the previous
layer; collectively these afferent weights are represented by
the matrixA. Each node is also connected laterally to other
nearby nodes in the same layer to form a local neighborhood.
The set of neighbors of nodei is denotedNi and defined
based on a distance metricd and a radiusr, as follows:

Ni = {nodesj s.t. d(i, j) < r} (1)

The distance functiond above is a box-distance metric that
treats the layer as a toroidal surface in which the left and
right edges connect seamlessly, as do the top and bottom.
Intuitively, d(i, j) is the radius of the smallest box, centered
at i, that includesj. If nodesi andj are located at row and
column(ri, ci) and (rj , cj) respectively,d(i, j) is:

d(i, j) = max















min

{

|rj − ri|
m− |rj − ri|

min

{

|cj − ci|
n− |cj − ci|

(2)

Neighboring nodes share activation from one time step
to the next via weighted connections, represented by the
(sparse) matrixL. In any given time step, neighbors also
compete with each other for activation, as follows: The net
input to a nodei at time t, denotedIi(t), is calculated as
the weighted sum of its inputs from afferent and lateral
sources. Any node that has a net input higher than all
of the others in its connection neighborhood is dubbed a
“winner”. We let W denote the set of winning nodes. Each
non-winning node has its activation reset to zero, and then
receives some small amount of activation from each winner

in its neighborhood, although the amount of this activation
decreases exponentially with the node’s distance from the
winner. Denoting the activations of the input units to the
layer at timet by the vector~b(t), we can express activation
rules as:

Ii(t) = α ~Ai ·~b(t) + (1 − α) ~Li · ~a(t− 1) (3)

W = {nodesi s.t. Ii(t) > Ij(t), ∀j ∈ Ni} (4)

ai(t) =

{

Ii(t) if i ∈W
∑

j∈Ni∩W

Ij(t) γd(i,j) otherwise (5)

whereγ represents the activation dropoff factor, andα is a
tuning factor for the relative strength of afferent versus lateral
connections; both of these are constants in the interval[0, 1].

After each round of activation during training, the layer
learns in an unsupervised fashion. Afferent weights associ-
ated with connections between layers are updated according
to the Hebbian rule:

Aij ← Aij + µ ai(t) bj(t) (6)

whereµ is the afferent learning rate. Lateral weights within
each layer learn using a temporally asymmetric Hebbian
rule, which strengthens each connection in proportion to how
much the sending node contributed to the receiving node’s
increase in activation between the previous time step and the
current one:

Lij ← Lij + η aj(t− 1)max {ai(t)− ai(t− 1), 0} (7)

whereη is the learning rate for the lateral weights. If a node’s
activity did not increase since the last step, its incoming
lateral weights are not updated. Note that this rule does not
make much sense wheni = j, as this weight will increase
more than any other and eventually dominate the weight set.
To remedy this, we force all nodes to have a fixed self-
connection weight ofβ, which is a constant in the interval
[−1, 1]. Both the afferent and lateral weight vectors into
each layer node are normalized to unit length following each
learning step in order to foster further competition among the
weights and prevent unbounded weight increases.

Thus, as the model receives sentences as input, it gradually
modifies its representations of words and sentences, dis-
tributed over the word layer and sentence layer respectively.
But how do we know if the new representations are better or
worse in some sense than the old ones? In our experiments
we employ a variety of techniques to verify the richness of
the representations, but the most important indicator is the
extent to which we can recover the symbolic meanings of
the sentences from the learned representations. To attempt
this, we use another, simpler neural network, termed the
recognition network, which is described in the next section.

B. The Recognition Network

After training the model, we can use arecognition net-
work to recover each sentence’s symbolic meaning from
the distributed representation over the sentence layer. The
recognition network is not part of our language reception

model; it simply provides a mechanism for determining the
extent to which the model has learned to represent a unique
meaning for each individual input sentence. If the recognition
network can successfully recover sentence meanings, we
can be reasonably certain that the distributed representa-
tions generated by the model contain enough information
to “understand” the sentences. We contend that, if a simple
supervised neural network can perform this translation, so
could a higher brain region that is concerned with the
semantic content of the heard sentence, even though the
methods of learning may be different. Thus, if the recognition
network is successful at its task, we know that the sentence
representations learned by the sentence layer are sufficiently
rich to be useful to another neural system.

The recognition network is a two-layer feed-forward neu-
ral network. Its input is the distributed representation ofa
sentence formed on the model’s sentence layer, and its output
is a symbolic meaning associated with the original sentence.
All units in both layers have a logistic activation function,
and weight updates are performed by RPROP [9], using the
normal error function on the hidden layer; the output layer is
trained with an asymmetric error function designed to bias
towards active units, since active units are expected to be
sparse in correct output.

The form of the symbolic meanings that the recognition
network attempts to recover is described in the next section,
which also explains how we generate input to train the model.

C. Meaning and Syntax

Any language learner, whether natural or artificial, will
encounter a finite set of meanings in its lifetime. For our
experiments we chose to carefully define themeaning space,
or the set of meanings that the model will attempt to learn.
The meaning space used in our experiments is focused on
a simple tabletop environment, in which several different
kinds of objects reside on a small, flat surface. This meaning
space is capable of describing these objects, as well as
simple actions, such as grabbing, moving, and placing, that
involve the objects. We chose this setting for our meaning
space for possible future applicability with an embodied
model. Language experiments in the human aphasia literature
often involve working with objects in such an environment;
use of this meaning space provides important comparison
opportunities between that future model and the existing
literature.

The meaning space is comprised of rules definingmeaning
predicates and meaning atoms, a full list of which can be
found in Appendix I. A fully instantiated example meaning
is shown in Fig. 2.

The goal of the recognition network is to recover these
meanings when given an English sentence—a temporal se-
quence of phonemes—as input. We are aware of no neural
network models that are able to learn output of anexplic-
itly hierarchical nature. As such, we take the approach of
converting each hierarchical meaning into a one-dimensional
binary vector, termed ameaning vector, which the recogni-
tion network attempts to learn from the distributed sentence

Meaning(
type=put,
obj=Object(

det=Determiner(d=definite),
shp=Shape(s=block)

),
loc=Location(

rel=Relational(r=near),
det=Determiner(d=definite),
col=Color(c=red),
shp=Shape(s=pyramid)

)
)

Fig. 2. An example of the hierarchical representation of a specific meaning
that is legal in the meaning space defined in Appendix I. This meaning is
for the sentence “put the block near the red pyramid”.

Fig. 3. An example meaning vector corresponding to the meaning in Fig. 2
(“put the block near the red pyramid”). Below the vector is the hierarchical
grouping of the bits into the fields described by the meaning space. Each
such group has a null bit that is active if no other bits in the group are
active. Since our recognition network will try to generate meaning vectors,
the null bits allow it to use a winner-take-all approach for each group of
bits, since each group will always have exactly one bit active. Note that the
depicted meaning vector is simpler than the one used in our experiments,
as some superfluous bits have been removed for space considerations.

representations created by the model. We define a bijec-
tion between meanings and meaning vectors such that any
meaning legal in the meaning space can be represented by a
meaning vector, and we can easily recover the hierarchical
meaning given only the flat meaning vector.

Meaning vectors are constructed such that each bit repre-
sents a single meaning atom coupled with a position at which
it may appear in the meaning hierarchy. Meaning vectors
contain extra null bits, one of which is activated when a
specific field in a meaning is not instantiated; these are useful
when performing winner-takes-all dynamics on groups of
related meaning atoms. Fig. 3 shows the example sentence
from Fig. 2 in meaning vector form.

In our experiments, we randomly select a set of meanings
from the meaning space to use to create natural language
input data for training the model. To turn these hierarchical
meanings into natural language fit for consumption by our
model—or a human—we use a set of syntactic rules that
collectively produce a grammatical English sentence from a
meaning. The rules define mappings to be used, subject to
certain conditions, to transform a given meaning predicateor
meaning atom into a sequence of words in natural language.
The words are then broken down into their constituent
phonemes and concatenated into a single uninterrupted se-
quence. Any phonetically expressible language could be
used, but we chose English for our experiments. The full set
of syntax rules used in our experiments is in Appendix II.

TABLE I

MODEL PARAMETER VALUES USED IN EXPERIMENTS.

Parameter Word Layer Value Sentence Layer Value
m× n 20× 20 30× 30

r 3
α 0.2
β 0.5

γ 0.37/(1 + e(t−0.2)/0.16)

µ 0.4/(1 + e(t−0.44)/0.0001)

η 0.62/(1 + e(t−0.3)/0.04)

Once a meaning has become a sequence of English words,
we use the CMU Pronouncing Dictionary [10] to convert
each word into its constituent phonemes. We represent each
phoneme by a 34-bit feature vector as discussed in section
II-A. The phonemes from all the words and sentences are
concatenated to form one long phonemic sequence, to be
fed to our model one phoneme at a time.

D. Experimental Methods

1) Map Formation: We first performed a set of experi-
ments designed to gauge the effectiveness of map formation
on both the word layer and sentence layer. We used a simple
meaning space containing only command-type sentences,
with 4 verbs, 6 nouns, 5 adjectives, 5 prepositions, and 2
articles (see Appendix I). This meaning space can generate
over 50,000 legal meanings. From this meaning space we
generated 500 unique, random meanings and their associated
sentences to form the training set. Crucially, we made sure
that no meaning in the training set contained any of 3 specific
meaning atoms. After training, we use sentences generated
using any of the 3 novel meaning atoms to assess the ability
of the model to encode unfamiliar input words.

Table I shows the model parameters used in the ex-
periments reported here, which were obtained from pilot
experiments. Parametersγ, µ, and η are determined by
functions that decrease monotonically as training progresses,
following [2]. In those functions,t ∈ [0, 1] indicates the
amount of training complete, witht = 0 indicating the
beginning of training andt = 1 the end of training.

We trained the model for 100 epochs, presenting all 500
sentences from the training set in random order during
each epoch. During training, we tracked map formation by
recording the activation patterns present on the word layer
after the presentation of each word, as well as those on the
sentence layer following each sentence. Ideally, the maps
should learn a distinct activation pattern for each word and
sentence to ensure the uniqueness of the learned meanings,
and should also spread these patterns out in space to make
them easier to diffentiate from each other. Our first instinct
was to use Euclidean distance to measure how spread out the
various patterns were, but this technique requires treating
the 2-dimensional layer as a 1-dimensional vector for the
comparison, so adjacency information is lost. Instead, we
analyzed this using a metric we callwinner separation,

which captures how closely the set of winning nodes for one
activation pattern resembles the winners of another pattern,
as laid out in space on the 2-dimensional map. IfW1 is the
set of winning nodes for one pattern, andW2 contains the
winners of another pattern, then the winner separation is:

dwin(W1, W2) =
∑

i∈W1

min
j∈W2

{dbox(i, j)}+
∑

j∈W2

min
i∈W1

{dbox(i, j)}

(8)

This metric is appropriate in that patterns with identical
winner sets will score a distance of zero, and distance
increases linearly as the patterns begin to have fewer winning
nodes in common and those nodes become further from each
other in the grid. Measuring the mean winner separation
across all pairwise combinations of patterns gives us a good
idea whether there is a general trend towards spreading out
patterns.

2) Meaning Recovery: Our second set of experiments
tests the richness of the distributed representations learned
by the model by attempting to recover the meanings directly
using the recognition network. The model parameters are still
as in Table I. We use the same meaning space, generating
500 unique sentences, this time using all meaning atoms in
the training set.

For these experiments, the recognition network described
in Section II-B is instantiated with 100 hidden units and
65 output units, the latter number corresponding to the size
of the meaning vector for our meaning space. After model
training has completed, we train the recognition network
using the RPROP algorithm. Borrowing notation from [9],
we used parameters∆0 = 0.1, η+ = 1.2, andη− = 0.5, for
the initial per-connection learning rate, learning rate growth
factor, and learning rate decay factor, respectively.

After training the recognition network, we assess perfor-
mance in two ways—by measuring the number of meaning
atoms recovered correctly versus those omitted or spuriously
generated; and by counting the number of full meaning
vectors that the recognition network correctly recovers from
each set. The phrase “correctly recovers” deserves some
explanation. We apply winner-takes-all activation logic to
the output produced by the recognition network for a given
input sentence; that is, we compare the activations of all units
in each group of related meaning atoms in the produced
meaning vector, and the winner in each group becomes
fully active, while the others are turned off completely. This
creates a binary vector from the recognition network’s output,
which is then compared with the target meaning vector. If
and only if the two match exactly, the recognition network
scores a correct recovery. The percentage of meaning vectors
correctly recovered in this way is termed theaccuracy of
the network. These two measures together provide an easy-
to-understand view of the performance of the recognition
network.

III. R ESULTS

A. Map Formation

We performed 20 independent trials of the map formation
experiment. Fig. 4 shows the mean winner separation be-
tween each pair of patterns as training progresses, for both
the word layer and the sentence layer, averaged over these
20 trials. The nearly monotonic increase in winner separation
shows that the model learned to separate its representations
from each other over time, making them easier to distinguish.
The winner separation on the word layer levels out before
the half-way point in training, probably due to the relatively
small number of patterns it has to learn: 22 word patterns,
versus 500 sentence patterns for the sentence layer.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100

M
e
a
n
 W

in
n
e
r

D
is

ta
n
c
e

Epoch

Word Layer

Sentence Layer

Fig. 4. The mean winner separation at each epoch, calculatedas the
average winner separation between all pairs of words (for the word layer)
or sentences (for the sentence layer) in the training set. Note that the
sentence layer has a larger surface, which accounts for its higher winner
separation values. Each data point represents the average over 20 repetitions
of the unsupervised map formation experiment; error bars show one standard
deviation.

We also examined the learned representations topographi-
cally. Fig. 5 shows a representative word layer after training.
Each map unit is labeled with the input phoneme to which
it responds most strongly, and the units are color-coded to
represent different categories of inputs—here vowels and
consonants. The maps shows a clear tendency to cluster
vowels together into “islands” in a “sea” of consonants, in a
way reminiscent of the centerpiece figure from [2]. Fig. 6 is a
similar depiction of the sentence layer, using the word layer’s
learned representation of each word as the input patterns.
This image shows something even more interesting—the
sentence layer naturally learns to cluster the input words
by their function, even though its only clue is the temporal
occurrence patterns of the words in the input.

By watching the sequences of words as they pass by, the
sentence layer seems to learn that some words are more-
or-less interchangeable syntactically, and groups these words
together. To gather further evidence of these groupings, we
ensured that the training set excluded the noun “pyramid”,
the adjective “orange”, and the preposition “below”. Af-
ter training was complete, the model was tested on novel

Fig. 5. A view of the trained word layer where each unit is labeled with
the input phoneme that activates it most strongly. The unitsare also colored
by type of phoneme, with vowels in light color and consonantsdarker. The
clustering of the vowels suggests that the map learned to differentiate the
two types of phonemes based upon their patterns of occurrence within the
input.

sentences from the original meaning space, some of which
contained one or more of these three omitted words. Fol-
lowing Elman [3], we performed a hierarchical clustering
analysis on the in-context activation patterns on the sentence
layer after the presentation of each word, averaged over
each occurrence of the word. As can be seen in Fig. 7,
after training, the model appears to classify novel words that
appear in familiar contexts and group these words with their
learned counterparts, despite having never been trained on
these words.

B. Meaning Recovery

The results from the previous set of experiments suggest
that our model learns to create distributed representations
for the input sentences that, at least to some extent, take into
account the relationships between words. In order to quantify
how rich these representations are, we attempted to map
each to the hierarchical meaning underlying the associated
sentence by training the recognition network after model
training was complete.

While mean squared error (MSE) is a standard metric, it
does not lend itself to easy interpretation of the number or
types of errors the recognition network is making during re-
covery. Fig. 8 helps to illuminate this by showing, on average,
how many meaning atoms the recognition network should
recover for each sentence, versus how many of those the net-
work recovered correctly. It also shows how many omissions
and spurious generations the network made. The recognition
network does very well, asymptotically approaching full
recovery and virtually eliminating omissions and spurious
generations. Finally, Fig. 9 shows the accuracy scores of the
recognition network. We can see that the recognition network

Fig. 6. We looked at a representative trained sentence layerand noted,
for each unit, the input word that caused the strongest response in that unit.
The units were then partitioned based on the syntactic category of that word,
resulting in the five separate diagrams above, each representing a different
word category. The clear clustering effect shows that the map has learned to
group words by their function, as determined by their temporal occurrence
patterns.

was able to perfectly recover the meaning of, on average,
approximately 95% of the sentences on which the model
was trained. These results together show that the model’s
learned sentence representations are sufficient for recovering
the meanings of sentences it has seen before.

IV. D ISCUSSION& FUTURE WORK

The results discussed in the previous section show that
our model was able to learn something about the phonemes,
words, and sentences it received as input, using purely unsu-
pervised learning methods on a neuroanatomically grounded
network model. The word and sentence representations it
generated were unique and spread out in space, increasing
their discriminability. The trained word and sentence layers
were topologically organized into clusters of units based on
the functional categories of the units’ preferred inputs. The
learned representations of words were clustered hierarchi-
cally by function, and the model’s spontaneous representa-
tions for novel words fit neatly into this hierarchy. These
model results represent predictions about the organization
of human language cortex that will hopefully be testable
in the near future using non-invasive methods. Finally, the
learned sentence representations proved to be rich enough
for the recognition network to recover hierarchical meanings
of sentences the model had previously encountered. Thus,
we believe that the language reception model described
in this paper provides a convincing, biologically plausible
beginning for natural language understanding at the sentence
level. Though it does not yet function at a level remotely
comparable to the human language faculty, we believe it is
an important step in the right direction.

Generalization is an extremely important aspect of gen-
erative language learning that we hardly touched on in this
work. The first priority for future work with this model is a

Fig. 7. A hierarchical clustering analysis of the in-context activation
patterns on a typical sentence layer following the presentation of each word.
Capitalized words were not present during training. This clustering suggests
that the model has not only partitioned the words into classes, but that it
can effectively classify novel stimuli based on their patterns of occurrence
in sentences.

 0

 1

 2

 3

 4

 5

 6

 1 10 100 1000

M
e
a
n
in

g
 A

to
m

s

Epoch

Possible Atoms

Correct Atoms

Omitted Atoms

Spurious Atoms

Fig. 8. With training, the recognition network is able to recover nearly all
meaning atoms while hardly generating any spurious ones.

study of how a recognition network performs at recovering
sentences that the model has not seen before, but nonetheless
come from the same meaning space as the set of sentences
on which the model was trained. After training, the model
should ideally be able to generate unique representations
for these related-but-novel sentences such that the trained
recognition network could recover their meanings without
error. Such a result would confirm that the model had, in
a sense, generalized to the entire meaning space, which is
what normal human language learners are observed to do.

The model presented here is the first piece of a larger
model that attempts to learn natural language at the sentence
level while retaining biological plausibility. This involves

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
e
a
n
 C

o
rr

e
c
t
R

e
c
o
v
e
ry

 %

Epoch of RPROP

Fig. 9. The accuracy (correct recovery percentage) of the recognition
network during training. Each point is averaged over 20 trials, with error bars
representing standard deviation. The average accuracy approaches478/500

sentences (95.6%).

the reception pathway (discussed herein), a cognitive facility
for manipulating meanings gleaned from the input pathway,
and a production pathway to allow the model to “speak”.
After such a model is completed and successfully trained, we
intend to study the effects of “lesioning” the model [1]. The
data obtained from these tests will be directly comparable to
data from human aphasia patients, which will either validate
the model or direct further research in modifying it to more
closely mimic the behavior of the human language faculty.

REFERENCES

[1] S. Weems and J. Reggia, “Simulating single word processing in
the classic aphasia syndromes based on the Wernicke–Lichtheim–
Geschwind theory,”Brain and Language, vol. 98, no. 3, pp. 291–309,
2006.

[2] R. Schulz and J. Reggia, “Temporally asymmetric learning supports
sequence processing in multi-winner self-organizing maps,” Neural
Computation, vol. 16, no. 3, pp. 535–561, 2004.

[3] J. Elman, “Finding structure in time,”Cognitive Science, vol. 14, no. 2,
pp. 179–211, 1990.

[4] D. Rumelhart, G. Hinton, and R. Williams,Learning internal repre-
sentations by error propagation. MIT Press Cambridge, MA, USA,
1986.

[5] P. Mazzoni, R. Andersen, and M. Jordan, “A more biologically plau-
sible learning rule for neural networks,”Proceedings of the National
Academy of Sciences of the United States of America, vol. 88, no. 10,
pp. 4433–4437, 1991.

[6] R. Schulz and J. Reggia, “Mirror symmetric topographic maps can
arise from activity-dependent synaptic changes,”Neural Computation,
vol. 17, no. 5, pp. 1059–1083, 2005.

[7] T. Kohonen,Self-Organizing Maps. Springer, 2001.
[8] C. von der Malsburg, “Self-organization of oriented sensitive cells in

the striate cortex,”Kybernetik, vol. 14, pp. 85–100, 1973.
[9] M. Riedmiller and H. Braun, “A direct adaptive method forfaster

backpropagation learning: The RPROP algorithm,”Proceedings of the
IEEE International Conference on Neural Networks, vol. 1993, pp.
586–591, 1993.

[10] R. Weide, “The Carnegie Mellon Pronouncing Dictio-
nary [cmudict 0.6],” 1998, Carnegie Mellon University:
[http://www.speech.cs.cmu.edu/cgi-bin/cmudict].

APPENDIX I
MEANING SPACE DEFINITION

In the following, each statement represents a specific
definition for a meaning predicate, whose symbols start with
an uppercase letter. The symbols starting with lowercase
letters are field identifiers when they appear on the left
side of an assignment operator (=), or meaning atoms
on the right side. When instantiating a predicate, all
of its fields are required by default; a question mark
following a field identifier indicates optionality of that
field. Brackets after a predicate name enclose a list of
conditions on the instantiation of that predicate in the
given context; a minus sign before a predicate name in this
list means that the given predicate cannot be instantiated
as part of the parent predicate. For example, given
Meaning(type=release, obj=Object[-loc]),
we will never instantiate theloc field of theobj field that
is part of thisMeaning.

The following meaning space can generate 52344 legal
meanings. The meaning vector used to represent each mean-
ing is 65 bits long.

Meaning(type=put, obj=Object[-loc], loc=Location)
Meaning(type=grab, obj=Object)
Meaning(type=release, obj=Object[-loc])
Meaning(type=go, loc=Location)

Object(det=Determiner, col?=Color,
shp=Shape, loc?=Location)

Location(rel=Relational, det=Determiner,
col?=Color, shp=Shape)

Determiner(d=indefinite)
Determiner(d=definite)

Color(c=red)
Color(c=blue)
Color(c=green)
Color(c=purple)
Color(c=orange)

Shape(s=block)
Shape(s=box)
Shape(s=disc)
Shape(s=peg)
Shape(s=pyramid)
Shape(s=ring)

Relational(r=above)
Relational(r=below)
Relational(r=behind)
Relational(r=near)
Relational(r=supported_by)

APPENDIX II
SYNTAX RULE DEFINITIONS

Each line below represents a syntax rule that transforms
the indicated meaning predicate into a string of words,
possibly invoking other rules along the way. The bracketed
items after the predicate name are conditions that must be
true in order for the rule to apply. When trying to apply a
rule to a given predicate, the first applicable rule in the list is
always chosen and any remaining rules are ignored. Tokens
in quotes on the right-hand side of the rule are English words
or phrases that make up the final generated sentence. Other
tokens on the right-hand side represent the names of fields
in the meaning predicate being expanded that themselves
need to be recursively expanded in place by applying the
appropriate syntax rule for that field. After all applicable
rules have been applied, only quoted words will remain,
which are then concatenated in order to form the natural
language sentence produced by the rule.

The following syntax rules are sufficient to convert any
meaning generated by the meaning space listed in Appendix I
into a valid English sentence.

Meaning[type==put] -> "put" obj loc
Meaning[type==grab] -> "grab" obj
Meaning[type==release] -> "release" obj
Meaning[type==go] -> "move" loc

Object -> det col shp loc

Location -> rel det col shp

Determiner[d==indefinite] -> "a"
Determiner[d==definite] -> "the"

Color[c==red] -> "red"
Color[c==blue] -> "blue"
Color[c==green] -> "green"
Color[c==purple] -> "purple"
Color[c==orange] -> "orange"

Shape[s==block] -> "block"
Shape[s==box] -> "box"
Shape[s==disc] -> "disc"
Shape[s==peg] -> "peg"
Shape[s==pyramid] -> "pyramid"
Shape[s==ring] -> "ring"

Relational[r==above] -> "above"
Relational[r==below] -> "below"
Relational[r==behind] -> "behind"
Relational[r==near] -> "near"
Relational[r==supported_by] -> "on"

