
Using Histograms to Better Answer Queries to
Probabilistic Logic Programs

Matthias Broecheler∗

May 4, 2009

Abstract

Probabilistic logic programs (PLPs) define a set of probability distribution
functions (PDFs) over the set of all Herbrand interpretations of the underlying
logical language. When answering a query Q, a lower and upper bound on Q is
obtained by optimizing (min and max) an objective function subject to a set of
linear constraints whose solutions are the PDFs mentioned above. A common cri-
tique not only of PLPs but many probabilistic logics is that the difference between
the upper bound and lower bound is large, thus often providing very little useful
information in the query answer. In this paper, we provide a new method to an-
swer probabilistic queries that tries to come up with a histogram that “maps” the
probability that the objective function will have a value in a given interval, subject
to the above linear constraints. This allows the system to return to the user a his-
togram where he can directly “see” what the most likely probability range for his
query will be. We prove that computing these histograms is #P -hard, and show
that computing these histograms is closely related to polyhedral volume computa-
tion. We show how existing randomized algorithms for volume computation can
be adapted to the computation of such histograms. A prototype experimental im-
plementation is discussed.

1 Introduction
Since the introduction of quantitative logic programs by Shapiro [19], van Emden [20],
and others, there has been extensive interest in logic programming with uncertainty.
While these early frameworks were fuzzy in nature, Ng and Subrahmanian [16] in-
troduced probabilistic logic programs by building on top of probabilistic logics studied
earlier by several authors such as Hailperin [8], Fagin et al. [7], and Nilsson [18]. There
has been much subsequent work in this vein [13, 14, 4].

A fundamental problem with all of these probabilistic logics is the assumption of
ignorance — it is assumed that we do not know of any dependencies or correlations
between the events represented in these logics. Given a probabilistic logic program Π
∗The research presented in this paper was conducted jointly with Gerardo I. Simari under the supervision

and guidance of Dr. V.S. Subrahmanian

1

1 INTRODUCTION 2

over a logical language L, we write down an associated set LC(Π) of linear constraints.
Each (ground) rule in Π generates one constraint. In addition, we have one variable in
LC(Π) for each Herbrand interpretation for language L. While the rules in Π constrain
what interpretations satisfy Π, these variables denote the probability that a Herbrand
interpretation I actually represents the true state of the world. Assuming that the Her-
brand Base of L is denoted BL, this means the linear program has 2BL variables in
it, and O(|grd(Π)|) constraints. In many of these cases, 2BL is significantly larger
than |grd(Π)|. A consequence of this — well known to those in the field — is that
LC(Π) is vastly underconstrained as the number of variables very often significantly
exceeds the number of rules. This has profound implications for the prospective utility
of probabilistic logics and probabilistic logic programs. When answering a query Q
(think of a query for now as a logical formula), we need to find the “lower bound”
probability lowQ such that every Herbrand interpretation satisfying Π also satisfies Q
with probability greater than or equal to lowQ. Likewise, we want to find the “up-
per bound” probability upQ such that every Herbrand interpretation satisfying Π also
satisfies Q with probability less than or equal to upQ. To find the tightest such inter-
val [lowQ, upQ] of this type, we minimize and maximize (respectively) an objective
function associated with Q. When the problem is underconstrained as in most cases,
it is often the case that lowQ is very close to 0 and upQ is very close to 1, providing
the user who wants to know the probability of Q very little information about the true
probability of Q. The example below shows a very simple probabilistic logic program.

Example 1 (Stock Example) Consider a very simple probabilistic logic program Πstock

(using the syntax of [16]):

r1 stim pkg : [0.30, 0.90] ← .
r2 home sales up : [0.25, 0.85] ← .
r3 up ibm ∧ up goog : [0.40, 0.95] ← home sales up : [0.65, 0.90].
r4 up ibm ∨ up goog : [0.60, 0.95] ← home sales up : [0.65, 0.85].
r5 up ibm : [0.30, 0.80] ← stim pkg : [0.70, 1.0].

The first two rules intuitively say that there is a 30−90% probability that a stimulus
package will be announced (today) and that there is a 25− 85% probability that there
will be an economic report released (today) that home sales are up. Rule r3 says that
if such a home sales report is released today, then IBM and Google’s stock price will
go up tomorrow with 40− 95% probability. Rule r4 says that when such a home sales
report is released (today), there is a 60− 95% probability that either IBM or Google’s
stock price will be up tomorrow. The last rule says that if an economic stimulus package
is announced today, then there is a 30 − 80% probability that IBM’s stock price will
go up tomorrow.1 Though this example is obviously very simplistic, the reader can
easily see that probabilistic logic rules that state that certain stocks go up when certain
conditions are true can easily be derived from historical stock market data. Clearly, a
stock analyst would like to make decisions based on such data.

1We don’t introduce time in this paper for the sake of simplicity. But you can think of the propositional
symbols in the heads of the last three rules intuitively denoting stock movements tomorrow, while all other
propositional symbols in Πstock refer to events today.

1 INTRODUCTION 3

Figure 1: Histogram answers to queries Q1 (left) and Q2 (right) of Stock Example

According to the semantics of probabilistic logic programming [16], the probability
of the conjunctive query Q1 = (stim pkg ∧ home sales up ∧ up ibm ∧ up goog) is
given by the interval [0, 0.8]. This is the tightest possible interval that we can infer for
this query w.r.t. Πstock. A stock analyst would have very little ability to “act” based
on this answer, because the probability interval [0, 0.8] is so wide that it basically tells
the analyst very little. Past work in the AI community has often selected some value in
this interval based on some principle (e.g., maximum entropy, assuming independence,
etc.). Worse still, the query Q2 = up ibm is entailed by Πstock with tightest probability
interval [0.4, 0.8]. Without any further information, the stock analyst may think that
the probability of IBM going up is greater than 0.5, which might induce him to bet on
IBM stock. However, the true story is that the probability of the probability of up ibm
being in the [0.4, 0.5] interval is actually 61%.

Moreover, no stock market analyst is going to want to risk millions of dollars of
a mutual fund’s investment based on what a probabilistic logic expert tells him (espe-
cially when that probabilistic logic expert knows nothing about the stock market and
speaks in generalities about using maximal entropy, independence assumptions, etc.).
The stock analyst wants to make these decisions, not rely on AI experts who do not
understand the stock domain as well as he does.

Figure 1 shows visualizations of the histograms that we can present to such a stock
analyst without making any additional assumptions about the dependencies, correla-
tions, etc. that may or may not exist, that the analyst may or may not believe, etc. The
visualization shows a histogram for each query. The x-axis in Figure 1 (left), which
corresponds to query Q1, ranges from 0 to 0.8 (corresponding to the [0, 0.8] interval
associated with query Q). For a given point x in this interval, the histogram shows the
probability that the probability of Q is at most x. Figure 1 (left) shows a sample value
x0 and its corresponding value h(x0). The histogram in Figure 1 (right) is similar and
corresponds to query Q2.

The stock analyst has an immediate sense, by looking at the histogram in Figure 1
(right) that he should not bet on IBM stock going up. Likewise, the probability of
query Q1 having probability 0.5 or more is low. However, there is no way for him
to see this if we merely present him the interval [0.4, 0.8] as the answer to the query.
The histogram presents this interval (as the x-axis bounds), but it also shows far more
valuable information that can enable the stock analyst to make a decision.

2 PRELIMINARIES 4

The goal of this paper is to show how to present answers of the kind mentioned above
to the user so that we (i) present more information to the user than we did before,
and (ii) so that this answer is expressed in an easy to understand graphical manner.
We do this by using higher order probabilities.

The rest of this paper is organized as follows. In Section 2, we overview past work
on PLPs from [16]. Then, in Section 3, we present the basic declarative semantics
underlying histogram answers to PLP queries, and show that the histogram answer
computation (HAC) for PLP queries is closely related to the problem of computing
volumes of convex polytopes. In Section 4 we show that the HAC problem is #P -
hard; we also present two approximation algorithms for the HAC problem and prove
appropriate complexity theorems. Section 5 contains implementation and experimental
results showing that one of the approximation algorithms is far superior to the other.

2 Preliminaries
We now review (a simplified version of) the syntax and semantics of PLPs given in [17,
16]; there is nothing particularly new in this section.

2.1 Syntax of PLPs
We assume the existence of a set of propositional Lpred logic symbols. Every proposi-
tional symbol is an atom. Formulas are defined as follows.

Definition 1 (Formula) An atom is a formula. If F1 and F2 are formulas, then F1∧F2,
F1 ∨ F2, and ¬F1 are formulas. Let Form(Lpred) denote the set of all formulas.

If F is a formula and [`, u] is a subset of the real unit interval, F : [`, u] is called
an annotated formula.

Returning to Example 1, we can see that stim pkg : [0.3, 0.9], (up ibm ∨ up goog) :
[0.4, 0.95] and (up ibm ∨ up goog) : [0.65, 0.85] are annotated formulas. We now
define the concept of probabilistic rule.

Definition 2 If F : µ, B1 : µ1, . . . , Bm : µm are annotated formulas, then F : µ ←
B1 : µ1 ∧ . . . ∧ Bm : µm is a probabilistic rule. If this rule is named r, then Head(r)
denotes F : µ, and Body(r) denotes B1 : µ1 ∧ . . . ∧Bm : µm.

Intuitively, a probabilistic rule is a statement saying that if the formulas in the body are
true with their associated probabilities, then the formula in the head is also true with its
associated probability.

Definition 3 A probabilistic logic program (PLP) is a finite set of probabilistic rules.

Again, it is easy to see that in Example 1, Πstock is a PLP. 2

2We briefly note that the syntax presented here is — for the sake of space constraints — simpler than that
in [16]. In particular, variable annotations, and function symbols over the annotation domain are eliminated.
Moreover, [16] also removes the assumption of propositional logic and allows predicate symbols and first
order logic atoms. However, the current framework can be easily extended to those cases. The definition of
PLP above, however, does allow more complex formulas to appear both in the head and body of rules than
the framework in [16]; in particular, negation (not a non-monotonic form of negation though) can appear in
rule heads.

2 PRELIMINARIES 5

2.2 Semantics of PLPs
PLPs are characterized by a Krikpe style possible worlds semantics.

Definition 4 (World) A world is any set of atoms.

We use W to denote the set 2Lpred of all possible worlds. Since a world is simply a
Herbrand interpretation, it is clear what it means for a world to satisfy a formula. A
probabilistic interpretation is a probability distribution over worlds.

Definition 5 Let S be a set of annotated formulas in L, and W be the set of pos-
sible worlds. A probabilistic interpretation is a function I : W → [0, 1] such that∑

w∈W I(w) = 1.

Definition 6 (Satisfaction) Let F : [`, u] be an annotated formula and I be a proba-
bilistic interpretation. I is said to satisfy F : [`, u] iff ` ≤ ∑

wi∈W,wi|=F I(wi) ≤ u.
Let r = F : µ ← B1 : µ1 ∧ . . . ∧ Bm : µm be a probabilistic rule; I is said to

satisfy r iff either I satisfies Head(r) or I does not satisfy some Bi : µi ∈ Body(r).

A probabilistic interpretation satisfies a PLP Π if and only if it satisfies all rules in
Π. A PLP Π is said to be consistent if and only if there exists an interpretation I that
satisfies all formulas in Π, and Π entails an annotated formula F : µ if and only if
every interpretation that satisfies all rules in Π also satisfies F : [`, u].

The above definition naturally leads to the definition of a system of linear con-
straints whose solutions will correspond to satisfying interpretations. We call this set
LC(S), and it contains one variable pi for each world wi ∈ W and the following
constraints:

1. For each F : [`, u] ∈ S, ` ≤ ∑
wi∈W,wi|=F pi ≤ u, and

2.
∑

wi∈W pi = 1

It follows immediately from [16], that S is consistent if and only if LC(S) is solvable.
Fixpoint Operator. Via a straightforward extension of a similar procedure in [17, 16],
it is possible to associate a fixpoint operator TΠ with any PLP Π 3. This operator maps
sets of annotated formulas to sets of annotated formulas as follows and first involves
defining an intermediate operator SΠ.

SΠ(X) = {F : µ | (F : µ ← B1 : µ1 ∧ · · · ∧ Bm : µm) ∈ Π ∧
(∀ 1 ≤ i ≤ m)(∃B′

i : µ′i ∈ X)(Fi = Bi ∧ µi ⊆ µ′i)}.
For each formula4 F , let [`F , uF] denote the result of minimizing and maximizing∑

wi∈W,w|=F pi subject to LC(SΠ(X)). We now define TΠ(X) as follows.

TΠ(X) = {F : [`F , uF] | F ∈ Form(Lpred)}.
Using results similar to those in [17, 16], it is easy to show that TΠ has a least fixpoint
and an annotated formula F : [`, u] is a logical consequence of Π iff there is a formula
F : [`′, u′] in the least fixpoint such that [`′, u′] ⊆ [`, u].

3W.l.o.g., we assume that no rules in Π have formulas with a [0, 1] annotation in the body.
4Many methods can be used to reduce the number of formulas in Form(Lpred) we need to consider. Due

to space constraints, and as this is not central to this paper, we ignore this issue.

3 HISTOGRAM ANSWERS TO A PLP QUERY 6

3 Histogram Answers to a PLP Query
In classical PLPs, a query Q is an annotated formula F : [`, u] and we want to check
if Q is entailed by PLP Π (or alternatively if the least fixpoint of TΠ contains an
annotated formula F : [`′, u′] with [`′, u′] ⊆ [`, u]). An alternative version says the
query is a formula F and we want to find the annotated formula F : [`′, u′] in the least
fixpoint of TΠ. In this section, we propose a fundamentally different construct as the
answer to the query that provides far more information to the user. Given a formula F
as the query, we want to provide to the user a histogram answer to the query F w.r.t.
a PLP Π. In order to do this, and in order to make our theory consistent with standard
notation in (continuous) probability theory, we assume, without loss of generality, that
all worlds in W are enumerated as w1, w2, . . . , w|W| in some total order, and that an
interpretation I is represented as a vector (p1, . . . , p|W|) where each pi denotes the
probability of world wi according to interpretation I , i.e., I(wi) = pi. We now define
the probability that a query formula will lie within a given probability interval.

Definition 7 (Higher-Order Probability of Entailment) Suppose Π is a PLP and Q
is a query formula. Suppose [a, b] is a non-empty subset of [0, 1]. We define the higher
order probability that Q is entailed by Π with probability in [a, b] as:

L(a ≤ Q ≤ b | Π) =
∫

I∈Mod(Π)

χ[
a≤∑

wi∈W,wi|=Q I(wi)≤b
]IdPΠI

where χ is the adapted set membership function, i.e., χC(x) = 1 if C(x) is true and 0
otherwise, for some condition C, and PΠ is the uniform probability distribution over
Mod(Π), the set of all interpretations that satisfy Π. Thus, χ[

a≤∑
wi∈W,wi|=Q I(wi)≤b

]I

is true if interpretation I is such that
∑

wi∈W,wi|=Q I(wi) lies between a and b.

We now show that the expression above yields a valid probability distribution.

Theorem 1 Given probability distribution PΠ over the set of interpretations that sat-
isfy Π, a PLP Π, and some query formula Q, L(Q = x | Π) = L(x ≤ Q ≤ x | Π) is a
proper probability distribution over [0, 1].

Proof sketch. Let Mod(Π) be the set of all interpretations that satisfy Π. Then:
∫ 1

0
L(Q = x |Π) = L(0 ≤ Q ≤ 1 |Π)

=
∫

Mod(Π)
χ[

0≤∑
wi∈W′,wi|=Q pi≤1

](I = (pi))dPΠI

=
∫

Mod(Π)
χ[true](I = (pi))dPΠI =

∫
Mod(Π)

1dPΠI = 1

The last equality holds since PΠ is a probability distribution over Mod(Π). ¤
We now return to Example 1 in order to illustrate the above definition of a higher order
probability of entailment.

Example 2 Consider the queries Q1 and Q2 of Example 1:

• L(0 ≤ Q1 ≤ 0.1 | Πstock). This represents the probability that Q1 is entailed by
Πstock with probability in the range [0, 0.1]. We compute this using Definition 7
by solving the integral:

∫
I∈Mod(Π)

χ[
0≤∑

wi∈W,wi|=Q1
I(wi)≤0.1

]IdPΠI .

3 HISTOGRAM ANSWERS TO A PLP QUERY 7

• L(0.7 ≤ Q2 ≤ 0.75 | Πstock). This represents the probability that Q2 is entailed
by Πstock with probability in the range [0.7, 0.75]. Similar to the first case, we
compute this by solving:

∫
I∈Mod(Π)

χ[
0.7≤∑

wi∈W,wi|=Q2
I(wi)≤0.75

]IdPΠI .

Given a query formula Q, we can now ask for the probability that Q is entailed by PLP
Π with point probability p or with a probability in the range [a, b]. The answer to these
queries, respectively, are L(p ≤ Q ≤ p | Π) and L(a ≤ Q ≤ b | S). This gives us
more information than simply knowing the widest interval [`, u] of probability values
for the entailment of Q. L gives us the entire distribution of probability values for a
query formula and not just the smallest interval such that L(` ≤ Q ≤ u |Π) = 1. Thus,
the higher order probability of entailment gives users strictly more information than
answers in classical PLP. Moreover, as shown in Figure 1, we can present the entire
distribution of L for a given query Q, and enable a naive user (who has no in-depth
knowledge of probability theory, and almost certainly no knowledge of higher order
probabilities) to visualize the probability distribution for his query. There are two ways
to do this. As Definition 7 provides a continuous probability distribution, we can just
present an approximation of the continuous histogram as shown in Figure 1, or we can
also present a discrete version of this answer.

Definition 8 (Histogram Answer) Suppose Π is a PLP and Q is a query. The his-
togram answer to query Q w.r.t. PLP Π is the function L.

Further suppose that k ≥ 1 is an integer and that the [`, u] is the tightest interval
such that Π |= Q : [`, u]. The k-discrete histogram answer to query Q w.r.t. PLP Π is
the set {L(` + (i− 1) ∗ u−`

k ≤ Q ≤ ` + i ∗ u−`
k |Π) | 1 ≤ i ≤ u−`

k }.

If the user wants a discrete (rather than a continuous) histogram answer, then he can
select an integer k which specifies the desired level of discretization. The k-discrete
histogram answer splits the tightest [`, u] interval such that Π |= Q : [`, u] into k
equally sized sub-intervals. For each of these subintervals, it finds the probability that
Q’s probability lies in that sub-interval using the formula given above. The following
theorem shows that computing these histograms is closely related to the problem of
volume computation in convex polyhedra.

Theorem 2 Let PΠ be the uniform probability distribution over Mod(S), Q a query
formula, and [a, b] ⊆ [0, 1]. Then:

L(a ≤ Q ≤ b |Π) =
vol

(
SOL

(
a ≤ ∑

wi∈W,wi|=Π,wi|=Q prob(wi) ≤ b
))

vol (SOL(LC(Π)))

where SOL(X) denotes the set of solutions of a set of constraints X , and vol(B)
denotes the m dimensional volume of a set of points B that form an m dimensional
body in Euclidean space5 .

5Note that the solutions of LC(Π) and the models of the PLP Π are in exact one to one correspondence,
so we could speak interchangeably here about either solutions of LC(Π) or models of Π. We prefer speaking
about solutions of LC(Π) as we are using geometric intuitions here in computing polytope volumes.

3 HISTOGRAM ANSWERS TO A PLP QUERY 8

Figure 2: The polytope from Example 3 intersected by the two hyperplanes that are
determined by the query formula and its probability interval (region corresponding to
Q is shown shaded).

For ease of notation, we will denote the numerator of the above expression by
Mod(Π)(a ≤ Q ≤ b) =

{
I ∈ Mod(Π) | a ≤ ∑

wi∈W,wi|=Π,wi|=Q I(wi) ≤ b
}

.
Proof sketch. L(a ≤ Q ≤ b |Π) =

=

∫
I∈Mod(Π)

χ[
a≤∑

wi∈W,wi|=Q I(wi)≤b
]IdPΠI

1

=

∫
I∈Mod(Π)

χ[
a≤∑

wi∈W,wi|=Q I(wi)≤b
]IdPΠI

∫
Mod(Π)

1dPΠI

=
vol

(
SOL

(
a ≤ ∑

wi∈W,wi|=Π,wi|=Q prob(wi) ≤ b
))

vol (SOL(LC(Π)))

¤
Theorem 2 shows that computing the probability distribution L is closely related to
volume computations on the convex polytope formed by the linear constraints in LC(S)
in n dimensional Euclidean space.

Example 3 Suppose we have Π = {a : [0.6, 0.9], b : [0.2, 0.5]}, and the query formula
is Q = a ∧ ¬b. The set of possible worlds is given by w0 = {}, w1 = {a}, w2 = {b},
and w3 = {a, b}. In the following, let pi denote the probability of world wi being true;
LC(Π) is given by:

{0.6 ≤ p1 + p3 ≤ 0.9, 0.2 ≤ p2 + p3 ≤ 0.5, p0 + p1 + p2 + p3 = 1}
In this case, the query formula is satisfied only by world w1. Maximizing and mini-
mizing the value of variable p1 in the LP above yields as a result that Q is entailed
with a probability in the interval [0, 0.5]. Figure 2 shows the geometric interpretation

4 VOLUME COMPUTATION AND ANSWER HISTOGRAMS 9

of these constraints. In the figure, we can see that if we are interested in knowing the
probability that Q will be true with a probability between 0.3 and 0.4, then the region
of interest is the one shown shaded.

4 Volume Computation and Answer Histograms
As shown in the preceding section, computing L(a ≤ Q ≤ b |Π) can be reduced to the
problem of computing the ratio between the two volumes {I | I |= Π∧ a ≤ I(Q) ≤ b}
and Mod(Π). Compared to Mod(Π), {I | I |= Π ∧ a ≤ I(Q) ≤ b} is also a convex
polytope which is defined via the set of linear constraints LC(Π) and two additional
constraints:

(1)
∑

wi∈W,wi|=Q

pi ≥ a, (2)
∑

wi∈W,wi|=Q

pi ≤ b

We use LC(Π, Q, a, b) to refer to this modified set of constraints for a query Q.
Hence, we can build upon previous work on computing volumes of convex poly-

topes. A simple algorithm for the discrete histogram answer to PLP queries would
work as follows and uses a function called vol that takes a set of linear constraints as
input and returns the volume of the convex polytope generated by those linear con-
straints.

Algorithm DiscreteHistoAnswer(Π, Q, k)
1. Result = ∅;
2. Minimize and maximize

∑
wi∈W,wi|=Q pi subject to LC(Π) to get `, u respectively;

3. Let c = (u− `)/k;
4. for i = 1 to c do

a. V`+(i−1)∗c,`+i∗c = vol(LC(Π,Q,`+(i−1)∗c,`+i∗c))
vol(LC(Π,Q,`,u)) ;

b. Add V`+(i−1)∗c,`+i∗c to Result;
5. return Result;

The following result states that this algorithm correctly computes the discrete his-
togram answer and follows immediately from Theorem 2.

Theorem 3 Algorithm DiscreteHistoAnswer(Π, Q, k) correctly computes the k-discrete
histogram answer to this query.

As the correctness of the above algorithm depends on volume computation algorithms,
we provide a brief overview of those algorithms below. Cohen and Hickey [3] were the
first to propose exact algorithms based on triangulation with exponential run time com-
plexity, followed by Khachiyan [9] a decade later. Later, Dyer and Frieze [6] proved
that computing the volume of a convex polytope defined by a set of constraints is #P -
hard, thereby showing that this is the best time complexity one can achieve for exact
algorithms. Dyer et al. [5] proposed a randomized algorithm to compute arbitrarily
tight bounds on the volume of convex polytopes with high probability in polynomial
time. [12] presented an O∗(n4) randomized polynomial time (approximation) algo-
rithm, where n is the dimensionality of the polytope6.

6The O∗ notation ignores logarithmic factors and other factors such as error bounds.

4 VOLUME COMPUTATION AND ANSWER HISTOGRAMS 10

Due to the high dimensionality of the PLP histogram answer computation problem,
exact volume computation algorithms are not going to work in practice. [2] study such
algorithms and only consider cases with dimensionality below 20. Even in our very
small stock market example, which has just 4 propositional symbols, we already have
a 16-dimensional space as there are 16 possible worlds to consider!

The randomized volume computation algorithms use random walks with rapid mix-
ing time7 inside the polytope. Such random walks generate a Markov chain where
each point in the polytope corresponds to a state in the Markov chain, and the tran-
sition probabilities denote the probability of the random walk taking you from one
point to another. Sampling from this Markov Chain in accordance with the mixing
time yields a uniform distribution over the polytope. Using this sampling strategy, one
can compute the ratio between the volume of a known body (e.g., the unit cube) and
the polytope of interest. Naively applying existing volume computation algorithms to
compute L(a ≤ Q ≤ b | Π) as given in the DiscreteHistoAnswer algorithm has two
serious shortcomings:

1. We wish to plot a histogram of the distribution of L, i.e., for an interval width
δ = u−l

k . Computing each of the volumes vol(LC(Π, Q, `+(i−1)∗δ, `+i∗δ)) is
expensive as the (already expensive) volume computation algorithm would need
to be invoked k + 1 times (once for each of the k discretized components, and
once for the entire volume). This increases the running time by O(k).

2. As stated before, computing L(a ≤ Q ≤ b | Π) requires the computation of
the ratio between the two volumes and not the actual volume. This raises the
question: can we somehow do better than volume computation algorithms?

The following theorem provides an answer to point (2).

Theorem 4 Let K denote an arbitrary n dimensional polytope which is defined as
the intersection of a set KM of half-spaces. Let A,B be two additional half-spaces
and let L denote the polytope which is the intersection of the half-spaces in LM =
KM ∪ {A,B}. Under these circumstances, computing vol(L)

vol(K) is #P -hard.

Proof sketch. Dyer and Frieze [6] have proven that computing the volume of a convex
polytope defined by the intersection of half-spaces is #P -hard. We show how con-
vex polytope volume computation can be reduced to relative volume computation in
polynomial time, thereby establishing #P -hardness of relative volume computation.

We assume that an arbitrary polytope K is defined by the intersection of a set of
KM of half-spaces. To compute the volume of K using relative volumes, we proceed
as follows.

Firstly, we make the customary assumption that the origin o is inside K. We can
determine the maximal inscribed n dimensional sphere inside K in time polynomial in
the number of bounding half-spaces |KM |. Let r be the radius of this maximal sphere,
then we can fit a cube C of edge length ` = 2r√

n
centered at the origin inside this circle

and hence C must be contained in K. For more details on how a contained cube can
7The term mixing time refers to the number of steps the random walk must take in order to reach its

stationary distribution; see [15] for a complete treatment.

4 VOLUME COMPUTATION AND ANSWER HISTOGRAMS 11

Figure 3: Schematic Ball Walk (left) and Hit-and-Run (Right)

be determined in polynomial time, the interested reader is referred to Applegate and
Kannan [1] who proved that one can find an affine mapping in polynomial time which
maps K to K ′ such that the unit cube is contained in K ′.

We can compute the volume of C in closed form as vol(C) = `n. Using this base
volume we can derive the volume of K as follows. Let {F i

j} for i = 1, . . . , n and
j = 0, 1 denote the set of faces of the cube C where F i

0, F
i
1 are parallel and opposing

faces, for all i. For our purposes, we consider the faces to be half-spaces which bound
the cube. Then C can be considered as the intersection of the n pairs of parallel half-
spaces F i

0, F
i
1. Now, let Kd denote the polytope defined as the intersection of half-

spaces KM ∪ {F i
0, F

i
1 | i = 1, . . . , d} for 0 ≤ d ≤ n. Then K0 = K and Kn = C,

since C is contained in K. We can now derive the volume of K, vol(K) =

vol(K0) = vol(K1)
vol(K0)
vol(K1)

= vol(Kn)
n∏

d=1

vol(Kd−1)
vol(Kd)

= `n
n∏

d=1

vol(Kd−1)
vol(Kd)

Hence, we have reduced computing the exact volume of K to the product of n relative
volume computations, which completes the polynomial reduction. ¤

4.1 The Approx-HOPE Algorithm
We now present the Approx-HOPE algorithm (short for the Approximate Histogram
Oriented Probabilistic Entailment algorithm) which uses randomized methods to com-
pute the histogram answer to a query Q w.r.t. a PLP Π. The Approx-HOPE algorithm
uses a function called randomWalk that takes LC(Π) as input and performs a random
walk through the convex polytope defined by Π. This function can be implemented in
many ways, two of which we will discuss later.

Algorithm Approx-HOPE(Π, Q, k)
1. Result = ∅;
2. Let δ = (u− l)/k;
3. Sample = randomWalk(LC(Π));
4. For i = 1 to δ do

a. V`+(i−1)∗δ,`+i∗δ = |Sample∩ [`+(i−1)∗δ,`+i∗δ]|
|textitSample| ;

b. Add V`+(i−1)∗δ,`+i∗δ to Result;
5. return Result;

5 EXPERIMENTS 12

The Approx-HOPE algorithm is quite simple. Rather than solve volume computa-
tion problems k + 1 times as the DiscreteHistoAnswer algorithm does, this algorithm
basically executes one pass of the sampling stage of these randomized volume compu-
tation algorithms. All these algorithms sample from a polytope with a view to inferring
the volume of the polytope. Rather than sample to determine the volume of the poly-
tope, we try to use the random walk to estimate the part of the polytope’s volume that
lies within one of the k probability intervals that we are discretizing our problem into.

Though Approx-HOPE can be used with any appropriately designed random walk
algorithm, we have tested it extensively with two well known ones:
(1) The random ball walk (RBW) starts at an arbitrarily chosen point p ∈ SOL(LC(Π))
where SOL(X) denotes the set of solutions of a set X of constraints. It has a fixed asso-
ciated parameter r which denotes the radius of a “ball” used during the random walk.
To move to the next point, we uniformly sample a point q from the n dimensional
sphere of radius r with center p. If q lies inside the polytope LC(Π), the random walk
moves to point q, otherwise the point is rejected and the walk stays at p. The procedure
is then repeated at the selected (new or old) point. Figure 3 (left) visualizes the random
ball walk and shows the point q1 which would be accepted as the next move and q2

which would be rejected.
(2) The Hit-and-Run (HAR) walk also starts at an arbitrary point p ∈ SOL(LC(Π))
and has no parameters. At each step, a direction d (i.e., a point on the n dimensional
sphere surface) is chosen uniformly at random. We compute the segment of line l in-
side the polytope Mod(Π), where l is the line through p in direction d. Finally, a point
q is chosen uniformly at random from this line segment and the walk moves to q. Fig-
ure 3 (right) shows a line segment inside the polytope and the next point q. Note that
the Hit-and-Run walk never rejects any points.

It has been shown that both RBW and HAR have a mixing time of O∗(n3); how-
ever, HAR achieves this mixing time under weaker assumptions [11]. As we will see
in Section 5, our experiments show that HAR performs much better in practice as it
mixes much more rapidly. This is due to the fact that the random ball walk frequently
gets “stuck” for large radii and moves only very slowly for small radii.

Theorem 5 Using either the RBW or HAR sampling strategy, Approx-HOPE runs in
time in O∗(n4m), where m is the number of rules in Π and n is the number of worlds.

Proof sketch. Sampling uniformly at random from a ball of radius r takes time linear
in the number of dimensions n. Determining whether a point lies inside the polytope
defined by LC(Π), as required by RBW, as well as computing the line fragment for a
given direction d, which is needed for HAR, can be done in time in O(nm). ¤

5 Experiments
We implemented Approx-HOPE with both the RBW and HAR methods in Matlab
7.7.0 on a single machine with a 2.6 GHz Intel Core Duo Processor using only a single
core and 3GB of RAM.

In our experiments, we randomly generated least fixpoints of PLPs. These fix-
points contained 3 to 10 annotated formulas, each with up to 4 propositional symbols

6 CONCLUSION 13

500,000 Samples 1,000,000 Samples 2,000,000 Samples
Ball Walk Hit-And-Run Ball Walk Hit-And-Run Ball Walk Hit-And-Run

3 rules, 7 worlds 13.7 23.1 28.6 46.7 56.1 91.4
4 rules, 15 worlds 14.6 23.8 29.7 47.7 58.3 95.6
5 rules, 31 worlds 15.4 26.1 30.7 52.2 62.1 102.6
6 rules, 59 worlds 16.5 29.7 32.9 60.4 65.3 119.0
7 rules, 71 worlds 17.0 31.5 34.0 63.3 68.3 127.5

8 rules, 112 worlds 19.9 38.4 40.5 76.4 76.7 153.5
9 rules, 159 worlds 25.9 46.4 52.0 93.4 100.7 180.8

10 rules, 239 worlds 38.5 65.2 77.1 130.7 149.6 259.8

Figure 4: Running times in seconds for varying numbers of worlds and rules.

in them. No fixpoint contained more than 12 propositional symbols in total. Though
there should be 2k worlds when there are k propositional symbols in such fixpoints,
we eliminated some worlds using a world equivalence method described in [10], which
is why the numbers of worlds in Figure 4 are not necessarily powers of two. We then
recorded run times for the Approx-HOPE algorithm using the RBW and HAR sam-
pling strategies and three different sample sizes. The running times in seconds are
shown in Figure 4. As expected, the run times increase linearly with the number of
samples for all rule sets. Moreover, the run time increases with the number of worlds,
because the computational cost per sample depends on the number of worlds, as ex-
plained in the proof of Theorem 5. We observe that the RBW strategy outperforms the
HAR strategy in running time since its cost per iteration is lower. Note that the sample
sizes were identical for all rule sets, irrespective of the number of worlds and therefore
irrespective of the mixing times.

In the qualitative experiments we studied the convergence of the RBW and HAR
sampling strategies in detail by holding the rule set and query constant and varying the
sample size between 100,000 and 40 million. Part of the results for a single experi-
ment with 10 rules and 341 worlds are shown in Figure 5. Across all experiments we
observed that HAR converges more quickly to the uniform distribution than RBW. As
an example, Figure 5 shows that Approx-HOPE with HAR already clearly indicates
the subinterval with the highest probability after only 1 million samples, whereas the
RBW is still “walking” toward that region in the polytope. After 20 million samples,
HAR has converged to the uniform distribution (i.e., increasing the sample size does
not change the histogram) whereas RBW is still far from convergence. We conclude
that the HAR sampling strategy significantly outperforms RBW, despite its favorable
cost per iteration, since HAR converges much more rapidly and requires significantly
less iterations.

To verify the scalability of Approx-HOPE we experimented with a set of 15 rules
giving rise to 682 worlds using different random queries. The HAR strategy converged
to the uniform distribution after approximately 140 million samples, with a computa-
tion time of 10 hours.

6 Conclusion
Probabilistic logic programming has been studied for almost 25 years [8, 7, 18, 16,
13, 14, 4]. For most of these years, researchers have known that the probability in-

6 CONCLUSION 14

Figure 5: Histograms output by different runs of the Ball Walk (left) and Hit and Run
(right) algorithms on the same PLP with 10 rules (341 variables in the LP) for different
sample sizes. Note that the y axis has different scales at different sample sizes.

tervals associated with PLP queries can be inordinately wide, often giving very little
information to the user about the truth or falsity of the query and, as illustrated in our
stock example, making it difficult for the user to make decisions. Past approaches to
this problem have been relatively ad hoc, arbitrarily choosing solutions in LC(Π) that
somehow correspond to some intuition of the researcher, such as maximal entropy.
Such approaches are valid when the assumptions are valid in the application domain,
but little or no effort has gone into verifying whether those assumptions are valid. Pre-
sumably the user will decide, but consider the feasibility of asking a stock analyst who
has no idea what entropy is to decide whether maximal entropy is the right semantics
for him.

In this paper, we solve this problem without making any assumptions, and at the
same time providing a simple, graphical output to the user in the form of an easy to
understand histogram. We do this by defining, for the first time, the unique notion of
a histogram answer to a query Q w.r.t. a PLP Π. We show that the histogram answer
computation problem is #P -hard, and further show a close relationship between the

REFERENCES 15

problem of histogram answer computation and volume computation in convex poly-
topes. We provide an exact algorithm to compute histogram answers (which is expect-
edly inefficient because of the #P -hardness result). We further develop an approxima-
tion algorithm Approx-HOPE that can work with any sampling method and evaluate
it using two types of random walk sampling strategies: Random Ball Walk and Hit and
Run. We develop an initial (small) prototype and quickly discover that Approx-HOPE
combined with Hit and Run is much more efficient than with Random Ball Walk.

References
[1] APPLEGATE, D., AND KANNAN, R. Sampling and integration of near log-

concave functions. In ACM STOC (New Orleans, USA, 1991), ACM, pp. 156–
163.

[2] BIIELER, B., ENGE, A., AND FUKUDA, K. Exact volume computation for poly-
topes: A practical study. In Polytopes: Combinatorics and Computation (2000),
Birkhauser.

[3] COHEN, J., AND HICKEY, T. Two algorithms for determining volumes of convex
polyhedra. Journal of the ACM 26, 3 (1979), 401–414.

[4] DEKHTYAR, A., AND DEKHTYAR, M. I. Possible worlds semantics for proba-
bilistic logic programs. In ICLP (2004), pp. 137–148.

[5] DYER, M., FRIEZE, A., AND KANNAN, R. A random polynomial-time algo-
rithm for approximating the volume of convex bodies. Journal of the ACM 38, 1
(1991), 1–17.

[6] DYER, M. E., AND FRIEZE, A. M. On the complexity of computing the volume
of a polyhedron. SIAM Journal on Computing 17, 5 (1988), 967–974.

[7] FAGIN, R., HALPERN, J. Y., AND MEGIDDO, N. A logic for reasoning about
probabilities. Information and Computation 87, 1/2 (1990), 78–128.

[8] HAILPERIN, T. Probability logic. Notre Dame J. of Formal Logic 25 (3) (1984),
198–212.

[9] KHACHIYAN, L. The problem of calculating the volume of a polyhedron is enu-
merably hard. Russian Mathematical Surveys 44, 3 (1989), 199–200.

[10] KHULLER, S., MARTINEZ, M. V., NAU, D., SIMARI, G., SLIVA, A., AND
SUBRAHMANIAN, V. Computing most probable worlds of action probabilistic
logic programs: Scalable estimation for 1030,000 worlds. AMAI 51, 2–4 (2007),
295–331.

[11] LOVÁSZ, L., AND VEMPALA, S. Hit-and-run from a corner. In ACM STOC
(Chicago, IL, USA, 2004), ACM, pp. 310–314.

REFERENCES 16

[12] LOVÁSZ, L., AND VEMPALA, S. Simulated annealing in convex bodies and
an O∗(n4) volume algorithm. Journal of Computer and System Sciences 72, 2
(2006), 392–417.

[13] LUKASIEWICZ, T. Probabilistic logic programming. In ECAI (1998), pp. 388–
392.

[14] LUKASIEWICZ, T., AND KERN-ISBERNER, G. Probabilistic logic programming
under maximum entropy. LNAI (ECSQARU-1999) 1638 (1999).

[15] MONTENEGRO, R., AND TETALI, P. Mathematical aspects of mixing times in
markov chains. Foundations and Trends in Theoretical Computer Science. 1, 3
(2006), 237–354.

[16] NG, R. A semantical framework for supporting subjective and conditional proba-
bilities in deductive databases. Journal of Automated Reasoning 10 (1993), 565–
580.

[17] NG, R. T., AND SUBRAHMANIAN, V. S. Probabilistic logic programming. In-
formation and Computation 101, 2 (1992), 150–201.

[18] NILSSON, N. Probabilistic logic. Artificial Intelligence 28 (1986), 71–87.

[19] SHAPIRO, E. Y. Logic programs with uncertainties: A tool for implementing
rule-based systems. In IJCAI (1983), pp. 529–532.

[20] VAN EMDEN, M. Quantitative deduction and its fixpoint theory. Journal of Logic
Programming 4 (1986), 37–53.

