
Using Symbolic Evaluation to Understand Behavior in
Configurable Software Systems

Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam Porter
Computer Science Department

University of Maryland
College Park, MD

{elnatan,csfalcon,kkma,jfoster,aporter}@cs.umd.edu

ABSTRACT
Many modern software systems are designed to be highly
configurable, which increases flexibility but can make pro-
grams hard to test, analyze, and understand. We present
an initial empirical study of how configuration options af-
fect program behavior. We conjecture that, at certain lev-
els of abstraction, configuration spaces are far smaller than
the worst case, in which every configuration is distinct. We
evaluated our conjecture by studying three configurable soft-
ware systems: vsftpd, ngIRCd, and grep. We used symbolic
evaluation to discover how the settings of run-time config-
uration options affect line, basic block, edge, and condition
coverage for our subjects under a given test suite. Our re-
sults strongly suggest that for these subject programs, test
suites, and configuration options, when abstracted in terms
of the four coverage criteria above, configuration spaces are
in fact much smaller than combinatorics would suggest and
are effectively the composition of many small, self-contained
groupings of options.

1. INTRODUCTION
Many modern software systems include numerous user-

configurable options. For example, network servers typi-
cally let users configure the active port, the maximum num-
ber of connections, what commands are available, and so
on. While this flexibility helps make software systems ex-
tensible, portable, and achieve good quality of service, it
can also generate a huge number of configurations—in the
worst case every combination of option settings is a distinct
configuration. This software configuration space explosion
presents real challenges to software developers. It makes
testing even more costly, as it significantly magnifies test-
ing obligations; it makes static analysis much more difficult,
as different configurations can be conflated together; and it
generally complicates program understanding tasks.

In this paper, we present an initial empirical study, the
first of a planned family of studies, exploring how vari-
ous program behaviors change in relation to system con-
figuration. We conjecture that at certain levels of abstrac-
tion, the software configuration space is much smaller than
combinatorics might suggest. For example, consider a web
server that can be configured to support sequential or con-
current connections and to enable or disable logging. In
this case, the block coverage achieved by all four possible
configurations might be exactly the same as that achieved
by two configurations: sequential connections with logging
enabled, and concurrent connections with logging enabled.
(Disabling logging would be unlikely to cover any new blocks.)

Thus when considering block coverage, the effective config-
uration space for our example is half the size we would ex-
pect. If our conjecture proves true, then in future work,
new techniques and heuristics might be created to partition
configuration spaces in ways that greatly simplify testing,
analysis, and program understanding.

To evaluate our conjecture, we studied three configurable
subject systems: vsftpd, ngIRCd, and grep. For each sys-
tem we identified a sizable number of run-time configuration
options to analyze, determined their possible settings, and
created a test suite. We then ran the test suites using Otter,
a symbolic evaluator [10, 8, 2] we developed.

In our study, we marked the selected configuration options
as symbolic, meaning they represent unknowns that can take
on any value. As Otter evaluates a program, if it encounters
a branch that depends on a symbolic value, it conceptually
forks execution and explores both possible branches. In this
way, we used Otter to compute all possible program paths
for all possible settings of the selected configuration options.
This required tens or hundreds of thousands of runs, varying
with the application, but that is a small fraction of the tens
of millions or more runs that would have been needed had
we naively enumerated all configurations.

We next projected the runs onto four types of structural
coverage—line, basic block, edge, and condition coverage—
and used the resulting data to discover interactions among
configuration options. Here we define an interaction to be
a partial setting of configuration options such that specific
line, block, edge, or condition coverage is guaranteed to oc-
cur under that setting, but is not guaranteed by any of its
subsets. For example, if a and b are options, then a=0, b=1

is an interaction if it guarantees some coverage that just
setting a=0 or b=1 by themselves do not guarantee. The
strength of an interaction is the number of options it assigns
to. Interactions are interesting because they define small
subsets of the configuration space that provide meaningful
additional coverage.

We computed interactions incrementally starting with com-
binations of zero options (i.e., coverage that occurs in all
runs), then one option, then two, and so on. We contin-
ued until the accumulated guaranteed coverage equaled the
maximum possible coverage across all runs. We found that
for our subject systems and test suites, the largest (i.e.,
strongest) interactions included between five and seven op-
tions. This is much smaller than the total number of op-
tions in any of the systems. Similarly, the total number of
interactions is much smaller than what we would expect if
we simply multiplied out the possible option combinations

1

naively. These trends, and the others reported below, were
essentially the same under all four coverage metrics.

Next, we looked at which specific interactions are needed
to achieve high coverage. We found that most coverage is
supplied by relatively low-strength interactions, though all
three programs had a few (one to three) enabling options
that needed to be set a certain way to get the maximum
coverage. We also used a (non-optimal) greedy algorithm to
pack together interactions into full configurations, with the
aim of finding the smallest set of configurations that would
achieve full coverage. For example, interactions a=0, b=1

and c=0 can be joined into a single configuration, whereas
a=0 and a=1 must go into different configurations. We found
that we needed only at most 9 configurations for vsftpd, 8
for ngIRCd, and 10 for grep to achieve full coverage. All of
these sets are again quite small. This suggests that for the
programs and test suites used, the behavior of all configu-
rations, when abstracted onto our coverage criteria, can be
derived/understood from the composition of a small number
of interactions.

Finally, we created graphs showing all option interactions
to better understand what allows us to achieve coverage with
so few configurations. From this data and the previous anal-
yses, we observe that for our programs, coverage metrics,
test suites, and configuration spaces, many options do not
interact with each other; that when they do interact, they
often do so at low-strength; and the interactions that exist
often cluster into distinct groupings that can be combined
into larger configurations. In other words, at certain lev-
els of abstraction, the configuration spaces behave less like
a monolithic cross product of all option settings, and more
like the union of smaller configuration spaces.

In summary, our results strongly support our main con-
jecture: that in practical systems, when abstracting to spe-
cific program execution behaviors, the configuration space is
much smaller than combinatorics would suggest. We believe
that this work provides a basic but important starting point
for understanding software configurability and for creating
techniques and heuristics for scaling many software develop-
ment tasks across large configuration spaces.

2. CONFIGURABLE SOFTWARE SYSTEMS
For this work, a configurable system is a generic code base

and a set of mechanisms for implementing pre-planned varia-
tions in the code base’s structure and behavior. In practice,
these variations are wide-ranging, covering hardware and
operating system platforms (e.g., Windows vs. Linux), soft-
ware versions (e.g., MySQL 5.0 vs. MySQL 5.1), run-time
features (e.g., enable/disable debugging output) and others.
In this paper, we are focusing on run-time configuration op-
tions, which are usually given values via configuration files
or command-line parameters. A configuration is a mapping
of configuration options to their settings.

Figure 1 illustrates several ways that run-time configu-
ration options can be used, and explains why understand-
ing their usage requires fairly sophisticated technology. All
of these examples come from our experimental subject pro-
grams, which are written in C. In this figure, variables con-
taining configuration options are shown in boldface.

The example in Figure 1(a) shows a section of vsftpd’s
command loop, which receives a command and then uses a
long sequence of conditionals to interpret the command and
carry out the appropriate action. The example shows two

1 ... else if (tunable pasv enable &&

2 str equal text(&p sess−>ftp cmd str, ”EPSV”))

3 {
4 handle pasv(p sess, 1);

5 }
6 ... else if (tunable write enable &&

7 (tunable anon mkdir write enable ||
8 !p sess−>is anonymous) &&

9 (str equal text(&p sess−>ftp cmd str, ”MKD”) ||
10 str equal text(&p sess−>ftp cmd str, ”XMKD”)))

11 {
12 handle mkd(p sess);

13 }

(a) Boolean configuration options (vsftpd)

14 if ((Conf MaxJoins > 0) &&

15 (Channel CountForUser(Client) >= Conf MaxJoins))

16 return IRC WriteStrClient(Client,

17 ERR TOOMANYCHANNELS MSG,

18 Client ID(Client), channame);

(b) Integer-valued configuration options (ngIRCd)

19 else if(Conf OperCanMode) {
20 /∗ IRC−Operators can use MODE as well ∗/
21 if (Client OperByMe(Origin)) {
22 modeok = true;

23 if (Conf OperServerMode)

24 use servermode = true; /∗ Change Origin to Server ∗/
25 }
26 }
27 ...

28 if (use servermode)

29 Origin = Client ThisServer();

(c) Nested conditionals (ngIRCd)

30 not text =

31 (((binary files == BINARY BINARY FILES && !out quiet)

32 || binary files == WITHOUT MATCH BINARY FILES)

33 && memchr (bufbeg, eol ? ’\0’ : ’\200’, buflim − bufbeg));

34 if (not text &&

35 binary files == WITHOUT MATCH BINARY FILES)

36 return 0;

37 done on match += not text;

38 out quiet += not text;

(d) Options being passed through the program (grep)

Figure 1: Example uses of configuration options
(bolded) in subjects.

such conditionals that also depend on configuration options
(all of which begin with tunable in vsftpd). In this case,
the configuration options enable certain commands, and the
enabling condition can either be simply the current setting
of the option (as on line 1) or may involve an interaction
between multiple options (as on lines 6–7).

Not all options need to be booleans, of course. Figure 1(b)
shows an example from ngIRCd, in which Conf MaxJoins is
an integer option that, if positive (line 14), specifies the
maximum number of channels a user can join (line 15). In
this example, error processing occurs if the user tries to join
too many channels.

2

Figure 1(c) shows a different example in which two config-
uration options are tested in nested conditionals. This illus-
trates that it is insufficient to look at tests of configuration
options in isolation; we also need to understand how they
may interact based on the program’s structure. Moreover, in
this example, if both options are enabled then use servermode

is set on line 24, and its value is then tested on line 28. This
shows that the values of configuration options can be indi-
rectly carried through the state of the program.

Figure 1(d) shows another example of using configuration
options indirectly. Here not text is assigned the result of a
complex test involving configuration options, and is then
used in the conditional (lines 34–35) to change the current
setting of two other configuration options (lines 37–38).

3. SYMBOLIC EVALUATION
To understand how configurations resemble and differ from

each other, we have to capture their effect on a system’s run-
time behavior. As we saw above, configuration options can
be used in quite complex ways, and so simple approaches
such as searching through code for option names will be
insufficient. Instead, we use symbolic evaluation [10] to cap-
ture all execution paths a program can take under any con-
figuration.

Our symbolic evaluator, Otter,1 is essentially a C source
code interpreter, with one key difference. We allow the
programmer to designate some values as symbolic, mean-
ing they represent unknowns that may take on any value.
Otter tracks these values as they flow through the program,
and conceptually forks execution if a conditional depends on
a symbolic value. Thus, if it runs to completion, Otter will
simulate all paths through the program that are reachable
for any values that the symbolic data can take.

To illustrate how Otter works, consider the example C
source code in Figure 2(a). This program includes input
variables a, b, c, d, and input. The first four are intended to
represent run-time configuration options, and so we initial-
ize them on lines 1–2 with symbolic values α, β, γ, and δ,
respectively. (In the implementation, the content of a vari-
able v is made symbolic with a special call SYMBOLIC(&v).)
The last variable, input, is intended to represent program in-
puts other than configuration options. Thus we leave it as
concrete, and it must be supplied by the user (e.g., as part
of argv (not shown)).

We have indicated five statements, numbered 1–5, whose
coverage we are interested in. (We focus on line coverage
here for illustration purposes, but the idea is the same for
other forms of coverage.) Figure 2(b) shows the sets of paths
explored by Otter as execution trees for two concrete “test
cases” for this program: the tree for input=1 is on the left,
and the tree for input=0 is on the right. Here nodes corre-
spond to program statements, and branches represent places
where Otter has a choice and hence “forks,” exploring both
possible paths.

For example, consider the tree with input=1. All execu-
tions begin by setting x to 0 and then testing the value of a,
which at this point contains α. Since there are no constraints
on α, both branches are possible. For the sake of simplicity

1DART [8] and EXE [3] are two well known symbolic eval-
uators. By coincidence, Dart and Exe are the names of two
rivers in Devon, England. The others are the Otter, the
Tamar, the Taw, the Teign, and the Torridge.

1 int a=α, b=β,
2 c=γ, d=δ; // symbolic
3 int input=...; // concrete
4 int x = 0;
5 if (a)
6 /∗ 1 ∗/
7 else if (b)
8 {
9 /∗ 2 ∗/

10 x = 1;

11 if (!input) {
12 /∗ 3 ∗/
13 }
14 }
15 int y = c || d;
16 if (x && input) {
17 /∗ 4 ∗/
18 if (y)
19 /∗ 5 ∗/
20 }

(a) Example program

x = 0

a
L1 b

x = 1

L2

input = 1

x && inputx && input

(A) (D)

x = 0

a
L1 b

x = 1

L2

x && input

x && inputx && input

(E) (G)

(F)

input = 0

!input

x && input

L4

y

L5

(B)

(C)

!input

(left branch = true,
 right branch = false)

y = c || d

y = c || d

y = c || d y = c || d y = c || d y = c || d

L3

(b) Full execution trees

Figure 2: Example symbolic evaluation.

we will assume below that α and the other symbolic values
may only represent 0 and 1, but Otter fully models symbolic
integers as arbitrary 32-bit quantities.

Otter then forks its execution at the test of a: First it
assumes that α is true and reaches statement 1 (left branch).
It then falls through to line 15 (the assignment to y) and
performs the test on line 16 (x && input). This test is false,
since x was set to 0 earlier, hence there is no branch. We
label this path through the execution tree as (A).

Notice that as we explored path (A), we made some deci-
sions about the settings of symbolic values, specifically that
α is true. We call this and any other constraints placed on
the symbolic values a path condition. In this case, path (A)
covers statement 1, and so any configuration that sets a=1
on line 1 (corresponding to α being true), with arbitrary
choices for the values of β, γ, and δ, will cover statement 1.
This is what makes symbolic evaluation so powerful: With a
single predicate we characterized the behavior of many pos-
sible concrete choices of symbolic inputs (in this case, there
would be 23 possibilities for all combinations of b, c, and d).

Otter continues by returning to the last place it forked
and trying to explore the other path. In this case, it returns

3

to the conditional on line 5, assumes α is false by adding ¬α
to the path condition, and continues exploring the execution
tree. Each time Otter encounters a conditional, it actually
calls an SMT solver to determine which branches (possibly
both) of the conditional are possible based on the current
path condition.

There are a few other interesting things to notice about
these execution trees. First, consider the execution paths la-
beled (B) and (C). Because we have chosen β to be true on
this path, we set x=1, and hence x && input is true, allowing
us to reach statements 4 and 5. This is analogous to the ex-
ample in Figure 1(c), in which a configuration option choice
resulted in a change to the program state (setting x=1) that
allowed us to cover some additional code. Also, notice that
if input=1, there is no way to reach statement 3, no matter
how we set the symbolic values. Hence coverage depends on
choices of both symbolic values and concrete inputs.

In total, there are four paths that can be explored when
input=1, and three paths when input=0. However, there are
24 possible assignments to the symbolic values α, β, γ, and δ.
Hence using symbolic evaluation for these test cases enables
us to gather full coverage information with only 7 paths,
rather than the 32 runs required if we had tried all possi-
ble combinations of symbolic and concrete inputs. This is
what makes the results in this paper even possible—we can
effectively get the same result as if we had tried all possible
combinations of configuration options with far fewer paths
than that would entail if done concretely.

3.1 Guaranteed Coverage
Otter forms the basis for our empirical study: For each

subject program, we select a number of configuration op-
tions, mark them as symbolic, and then use Otter to execute
a set of test cases. The resulting execution trees contain all
possible paths executed under all configuration option set-
tings for those test cases.

Without further analysis, these paths tell us only a little
about our subject programs. By definition, each path ex-
plored for a particular test case is distinct from all the other
paths for the same test case. Thus with no abstraction,
every configuration option combination given by a path is
unique. For example, in Figure 2(b), there are four distinct
paths if input=1, representing four distinct settings of con-
figuration options. Thus far, then, we only know that that
is fewer than the 16 paths we might naively expect.

However, if we are interested in more abstract properties
of the program, then paths are no longer unique, and the
configuration space collapses further. For example, suppose
we are only interested in covering statement 2 in Figure 2.
Then we can see that paths (A) and (D) are irrelevant, and
either path (B) or (C) is sufficient.

For this study, we project the symbolic evaluation results
onto four commonly used abstractions of program behavior:
line, block, edge, and condition coverage. The principal tool
we use to relate configuration options to coverage is guaran-
teed coverage.

Definition 1. Given a particular coverage criterion, we
say that a predicate p over the configuration options guaran-
tees coverage (line, block, edge, condition, etc.) of X if there
exists some test case such that any configuration satisfying
p is guaranteed to cover X.

For example, from Figure 2(b) we can see that any configu-

ration satisfying α = 0∧β = 1 (i.e., a=0, b=1) is guaranteed
to cover statement 2, no matter the choice of γ and δ.

We can use Otter’s output to compute the guaranteed
coverage for a predicate p, which we will write Cov(p). We
first find CovT (p), the coverage guaranteed under p by test
case T , for each test case; then, Cov(p) =

⋃
T CovT (p). To

compute CovT (p), let pTi be the path conditions from T ’s
symbolic evaluation, and let CT (pTi) be the covered lines
(or blocks, edges, conditions, etc.) that occur in that path.
Then CovT (p) is

ConsistentT (p) = {pTi | SAT(pTi ∧ p)}
CovT (p) =

⋂
q∈ConsistentT (p) C

T (q)

In words, first we compute the set of predicates pTi such
that p and pTi are consistent. If this holds for pTi , the items
in CT (pTi) may be covered if p is true. Since our symbolic
evaluator explores all possible program paths, the intersec-
tion of these sets for all such pTi is the set guaranteed to be
covered if p is true.

Going back to Figure 2, here are some predicates and the
coverage they guarantee:

p Consistent(p) Consistent(p) Cov(p)
(input = 1) (input = 0)

α (A) (E) {1}
β (A), (B), (C) (E), (F) ∅
¬α (B), (C), (D) (F), (G) ∅

¬α ∧ β (B), (C) (F) {2, 3, 4}
¬α ∧ β ∧ γ (B) (F) {2, 3, 4, 5}

Note that we cannot guarantee covering statement 5 without
setting three symbolic values (although we could have picked
δ instead of γ).

As we show in Section 5, we can use guaranteed coverage
to discover interactions among options.

Definition 2. An interaction is a set p of option settings
that guarantees coverage that is not guaranteed by any subset
of p.

For example, since Cov(¬α∧β) is a strict superset of Cov(¬α)∪
Cov(β), ¬α∧β is an interaction. Informally, interactions in-
dicate combinations of options that are“interesting”because
they guarantee some new amount of coverage.

Definition 3. The strength of an interaction is the num-
ber of option settings it contains.

For example, ¬α ∧ β has strength 2. Lower-strength inter-
actions place fewer requirements on configurations, whereas
higher-strength interactions require more options to be set
in particular ways to achieve their coverage.

3.2 Implementation
Otter is written in OCaml, and it uses CIL [13] as a front

end to parse C programs and transform them into an easier-
to-use intermediate representation.

The general approach used by Otter mimics KLEE [2].
A symbolic value in Otter represents a sequence of untyped
bits, e.g., a 32-bit symbolic integer is treated as a vector with
32 symbolic bits in Otter. This low-level representation is
important because many C programs perform bit manipu-
lations that must be modeled accurately. When a symbolic
expression has to be evaluated, Otter invokes STP [7], an
SMT solver optimized for bit vectors and arrays.

4

Otter supports all the features of C we found necessary for
our subject programs, including pointer arithmetic, function
pointers, variadic functions, and type casts. Otter currently
does not handle multiple processes, dereferencing symbolic
pointer values, floating-point arithmetic, or inline assembly.
Multiple processes are used in vsftpd’s standalone mode and
in ngIRCd, but we work around this. For vsftpd, in which
fork() spawns a subprocess that handles client commands, we
interpret fork() as driving the program to that subprocess.
(The parent process would simply cycle around a loop and
spawn another subprocess, so we ignore it.) For ngIRCd,
where the child process parses an IP address and passes the
result to the parent, we treat fork() as a branching point—
we run both subprocesses, but we ignore the child process’s
output, instead supplying the input expected by the parent
process as part of the test case. The other unsupported
features either do not appear in our subject programs or do
not affect the results of our study.

All of our subject programs interact with the operating
system in some way. Thus, we developed “mock” libraries
that simulate a file system, network, and other needed OS
components. Our libraries also allow test cases to control
the contents of files, data sent over the network, and so on.
Our mock library functions are mostly written in C and are
executed by Otter just like any other program. For example,
we simulate a file with a character array, and a file descriptor
points to some file and keeps the current position at which
the file is to be read or written.

As Otter executes, it records the program paths explored
so that we can later compute line, block, edge, and condition
coverage. The precise definitions of these metrics demand
some elaboration, because Otter runs on CIL’s representa-
tion of the input program, which is simplified to use only a
subset of the full C language.

To compute line coverage, we record which CIL state-
ments Otter executes and project that back to the original
source lines using a mapping maintained by CIL.

For block and edge coverage, we group CIL statements
into basic blocks, which are sequences of statements that
start at a function entry or a join point; do not contain
any join point after the first statement; end in a function
call, return, goto, or conditional; or fall through to a join
point. Normally, CIL expands short-circuiting logical oper-
ators && and || into sequences of branches. However, for
block and edge coverage, we disable that expansion as long
as the right operand has no side effect, so that both operands
are computed in the same basic block. Then to compute
block coverage, we record which basic blocks are executed,
and to compute edge coverage, we compute which control-
flow edges between basic blocks are traversed.

Lastly, for condition coverage, we enable expansion of &&

and ||, so that each part of a compound condition is al-
ways in its own basic block. We then compute how many
conditions—that is, how many branches—are taken in the
expanded program.

4. SUBJECT PROGRAMS
The subject programs for our study are vsftpd, a widely-

used secure FTP daemon; ngIRCd, the“next generation IRC
daemon”; and GNU grep, a popular text search utility. All
of our subject programs are written in C. Each has mul-
tiple configuration options that can be set either in system
configuration files or through command-line parameters.

vsftpd ngIRCd grep
Version 2.0.7 0.12.0 2.4.2
Lines (sloccount) 10,482 13,601 9,124
Lines (executable) 4,112 4,387 3,302
Basic blocks 4,584 6,742 5,033
Edges 5,033 7,374 6,332
Conditions 2,528 3,432 4,094
Test cases 64 142 113
Analyzed conf. opts. 30 13 18

Boolean 20 5 14
Integer 10 8 4

Excluded conf. opts. 65 16 4

Figure 3: Subject program statistics.

Figure 3 gives descriptive statistics for each subject pro-
gram. The top two rows list the program version numbers
and lines of code as computed by sloccount. The next group
of rows lists the number of executable lines, basic blocks,
edges, and conditions; these four metrics are what we mea-
sure code coverage against, and they are based on the CIL
representation of the program, as discussed in Section 3.2.
To get more accurate measurements, we removed some un-
reachable code before passing the sources to CIL. Specif-
ically, we commented out 4 unreachable functions in grep.
We also forced vsftpd to run in single-process mode, as Otter
does not support multiprocess symbolic evaluation, and cor-
respondingly eliminated 3 files in vsftpd that are reachable
only in two-process mode.

One thing to note is that there are more basic blocks than
executable lines of code in all 3 programs. This occurs be-
cause, in many cases, single lines form multiple blocks. For
example, a line that contains a for loop will have at least two
blocks (for the initializer and the guard), and lines with mul-
tiple function calls are broken into separate blocks according
to our definition.

The next row in Figure 3 lists the number of test cases.
In creating these test cases, we attempted to both cover the
major functionality of the system and to maximize over-
all line coverage. We stopped creating new tests when the
remaining uncovered code was overwhelmingly devoted to
handling low-level system errors such as malloc() or device
read() failures.

vsftpd does not come with its own test suite, so we devel-
oped tests to exercise its major functionality such as logging
in; listing, downloading, and renaming files; asking for sys-
tem information; and handling invalid commands.

ngIRCd also does not come with its own test suite, so we
created tests based on the IRC functionality defined in RFCs
1459, 2812 and 2813. Our tests cover most of the client-
server commands (e.g., client registration, channel join/-
part, messaging and queries) and a few of the server-server
commands (e.g., connection establishment, state exchange),
with both valid and invalid inputs.

Grep comes with a test suite consisting of hundreds of
tests. To build our test suite for this study, we ran all the
test cases in Otter to determine their line coverage. Then,
without sacrificing total line coverage, we selected 70 test
cases from the original suite for our study. Next, we created
43 new test cases to improve overall line coverage. The final
analysis was done using these 113 test cases.

Finally, the last group of rows in Figure 3 counts the con-
figuration options. We give the total number of analyzed

5

vsftpd ngIRCd grep
Coverage

Line 62% 73% 75%
Block 63% 66% 63%
Edge 56% 61% 58%

Condition 49% 57% 52%
Examined opts/tot

Line, Block, Edge 22/30 13/13 17/18
Condition 24/30 13/13 17/18
Paths

Line, Block, Edge 30,304 53,205 625,181
Condition 136,320 95,637 764,201

Average # Paths
Line, Block, Edge 474 375 5,533

Condition 2,130 674 6,763

Figure 4: Summary of symbolic evaluation.

configuration options, i.e., those that we treated as sym-
bolic, and also break them down by type (boolean or in-
teger). We also list the number of configuration options we
left as concrete. Our decision to leave some options concrete
was primarily driven by two criteria: whether the option was
likely to expose meaningful behaviors, and our desire to limit
total analysis effort. This approach allowed us to run Otter
numerous times on each program, to explore different sce-
narios, and to experiment with different kinds of analysis
techniques. We used default values for the concrete config-
uration options, except the one used to force single-process
mode in vsftpd. Grep includes a three-valued string option
to control which functions execute the search; for simplicity,
we introduced a three-valued integer configuration option
and set the string based on this value.

5. DATA AND ANALYSIS
We ran our test suites in Otter, with symbolic configura-

tion options as discussed above. We then performed sub-
stantial analysis on the results to explore the configuration
space of each subject program. To do this we used the Skoll
system, developed and housed at UMD [14]. Skoll allows
users to define configurable QA tasks and run them across
large virtual computing grids. For this work we used around
40 client machines. The final results reported in this section
required about two weeks of elapsed time.

Figure 4 summarizes Otter’s runs. The first group of rows
shows the total coverage achieved by the test suites, i.e., the
maximum coverage achievable for these test suites consider-
ing all possible configurations, except those options and val-
ues we left concrete. We manually inspected the uncovered
lines and found that approximately another 10% of vsftpd
and ngIRCd and 2% of grep comprises code for handling
low-level errors. Also, another 11% of vsftpd (in addition
to the three files we removed) is unreachable in one-process
mode. If we adjust for the error handling and unreachable
code, our test suites’ line coverage exceeds 80% for all sub-
ject programs. Covering the remaining code would in many
cases have required adding new mocked libraries, adding fur-
ther symbolic configuration options, etc. Overall, however,
based on our analysis of these systems, we believe that the
test cases are reasonably comprehensive and are sufficient
to expose much of the configurable behavior of the subject
programs.

The next group of rows shows the number of configura-

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

 0 20 40 60 80 100 120 140

N
o.

 o
f p

at
hs

 (n
or

m
al

iz
ed

)

Test cases

ngIRCd L/B/E
 C

vsftpd L/B/E
 C

grep L/B/E
 C

Figure 5: Number of paths per test case
(L/B/E=line/block/edge, C=condition).

tion options that appear in at least one path condition (i.e.,
were constrained in at least one path and thus distinguish
different execution paths) versus the total number of op-
tions set symbolic. In grep, the one unused option was only
“used” when being printed, which did not affect any exe-
cution path. In vsftpd, there were 6 unused options total.
One case was similar to grep—a configuration option spec-
ified a port number, which is ignored by our mock system.
Three other options could have been covered with additional
tests; the remaining two options cannot be touched without
changing the settings of some of the configurations options
we left concrete.

Notice that Otter constrains two more options with con-
dition coverage than under the other metrics. This occurs
because, as discussed in Section 3.2, we expand logical oper-
ators into sequences of conditionals under condition cover-
age. For example, under line, block, and edge coverage, the
condition if (x||1) would be treated as a single branch that
Otter would treat as always true. But under condition cov-
erage, the conditional would be expanded, and Otter would
see if (x) first, causing it to branch on x.

The last group of rows in Figure 4 shows the number of ex-
ecution paths explored by Otter and that number averaged
across all test cases for each program. While Otter found
many thousands of paths, recall that these are actually all
possible paths for these test suites under any settings of the
symbolic configuration options. Had we instead naively run
each test case under all possible configuration option com-
binations, it would have required 1.4 × 1011 executions for
vsftpd, 3.7× 107 for ngIRCd, and 1.5× 1012 for grep.

Notice also that expanding logical operators under con-
dition coverage can result in many more paths. This effect
is most pronounced for vsftpd, which more than quadruples
the number of paths because it contains many logical ex-
pressions that test multiple configuration options at once.
For example, if (x||y||z) would yield at most two paths before
expansion, but four paths after.

Figure 5 plots the number of paths executed by each test
case for each program, both with unexpanded logical oper-
ators (L/B/E) and expanded (C). The x-axis is sorted from
the fewest to the most paths, and the y-axis is the percent-
age of paths relative to the highest number of paths seen in
any test case for the expanded (C) version of the program.

One interesting feature of Figure 5 is that, for vsftpd
and grep, the numbers of paths of different test cases ap-

6

t=1 t=2 t=3 t=4 t=5 t=6 t=7
vsftpd

Line 7 4 3 16 5 6 2
Block 7 4 3 16 6 6 2
Edge 9 4 4 27 7 7 2

Condition 9 4 4 32 14 9 2
ngIRCd

Line 11 17 31 113 144 111 -
Block 15 22 31 118 147 111 -
Edge 17 26 35 118 159 111 -

Condition 17 30 35 124 174 111 -
grep
Line 13 27 36 7 5 - -

Block 14 34 37 7 5 - -
Edge 23 37 45 11 7 - -

Condition 23 45 49 16 9 2 -

Figure 6: Number of interactions at each interaction
strength.

pear to cluster into a handful of groups (indicated by the
plateaus in the graph). This suggests that within a group,
the test cases branch on the configuration options in essen-
tially the same manner (most likely because the programs
employ common segments of code to test the configuration
options). In ngIRCd, this clustering also appears but is less
pronounced.

Finally, recall from Figure 3 that grep, despite still having
many fewer paths than configurations, stands out as having
a much larger number of paths than the other programs. We
believe this is due to grep’s design. In runs of grep with valid
inputs, most of grep’s code is executed. Therefore many of
its configuration options will typically be used, resulting in
significant branching in Otter. In contrast, many of vsftpd
and ngIRCd’s options are not necessarily used in every run.
This can be seen clearly in Figure 5: only a handful of vsftpd
and ngIRCd’s tests exercise more than 25% of the paths,
while only a handful of grep’s tests exercise fewer than 25%.

5.1 Interaction Strength
Next, we used our guaranteed coverage analysis to explore

which configuration option interactions (Section 3.1) are ac-
tually required to achieve the line, block, edge, and con-
dition coverage reported in Figure 4. First, we computed
Cov(true), which we call guaranteed 0-way coverage. These
are coverage elements that are guaranteed to be covered for
any choice of options. Here when we refer to t-way coverage,
t is the interaction strength. Then for every possible option
setting x = v, we computed Cov(x = v). The union of these
sets is the guaranteed 1-way coverage, and it captures what
coverage elements will definitely be covered by 1-way inter-
actions. Next, we computed Cov(x1 = v1 ∧ x2 = v2) for all
possible pairs of option settings, which is guaranteed 2-way
coverage. Similarly, we continue to increase the number of
options in the interactions until Cov(x1 = v1∧ x2 = v2∧ ...)
reaches the maximum possible coverage.

For boolean options, the possible settings are clearly 0
and 1. For integer-valued options, we solved the path condi-
tions discovered by Otter to find possible concrete settings.
For example, if the path condition was x>=0, then the solver
might choose x = 0 as a possible concrete setting. Because
there are multiple path conditions, we sometimes found that
different concrete settings were generated by the solver for
the same options. In these cases we used our judgement and

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0 1 2 3 4 5 6 7

C
ov

er
ag

e
(n

or
m

al
iz

ed
)

Interaction strength

ngIRCd
vsftpd

grep

Figure 7: Guaranteed coverage versus interaction
strength.

code examination to select appropriate values.
Figure 6 shows the number of interactions at each interac-

tion strength. The first thing to notice is that the maximum
interaction strength is always seven or less. This is signif-
icantly lower than the number of options in each program.
We also see that the number of interactions is quite small
relative to total number of interactions that are theoretically
possible. For example, grep has 14 boolean options, which
by themselves lead to (14 choose 2) × 4 = 728 possible 2-
way interactions just with those options alone, yet we see at
most 45 2-way interactions for grep.

Also notice that there is not much variation across differ-
ent coverage criteria—they have remarkably similar numbers
of interactions. We investigated further, and we found that
the majority of interactions are actually identical across all
four criteria. This is an encouraging finding, because it indi-
cates that many interactions are insensitive to the particular
coverage criterion.

For ngIRCd, there are significantly more interactions at
higher strength than for the other subject programs. This is
because almost all of ngIRCd’s integer options can take on
many different values across our test suite, magnifying the
number of interactions.

Finally, we can see that the number of interactions peak
around t = 4 for vsftpd, t = 4 or 5 for ngIRCd, and t = 2
or 3 for grep. We believe this corresponds to the number of
enabling options in these programs, discussed more in the
next subsection.

5.2 Guaranteed Coverage
Figure 7 presents the interaction data in terms of coverage.

The x-axis is the t-way interaction strength and the y-axis is
the percentage of the maximum possible coverage. Note that
higher-level guaranteed coverage always includes the lower
level, e.g., if a line is covered no matter what the settings
are (0-way), then it is certainly covered under particular
settings (1-way or higher). As it turns out, the trend lines
for all four coverage criteria are essentially the same for a
given program, and so the plot shows a region enclosing
each set of data points. In ngIRCd, the only program with
some slightly noticeable variation, line coverage corresponds
to the upper boundary of the region, and edge, block, and
condition coverage to the lower boundary. This commonality
across coverage criteria echoes the same trend we saw in
Figure 6.

7

Config # 1 2 3 4 5 6 7 8 9 10
vsftpd

Line 2,521 18 8 1 1 - - - - -
Block 2,853 25 9 1 1 - - - - -
Edge 2,731 50 17 6 1 1 1 - - -

Condition 1,132 71 14 9 2 1 1 1 1 -
ngIRCd

Line 3,148 30 6 6 1 1 1 - - -
Block 4,401 50 8 7 4 1 1 - - -
Edge 4,390 62 14 8 6 2 2 2 - -

Condition 1,881 27 23 6 4 1 1 1 - -
grep
Line 2,218 171 34 20 5 5 3 2 2 -

Block 2,838 231 46 28 5 5 3 1 - -
Edge 3,140 366 51 44 18 9 6 6 4 -

Condition 1,810 231 45 25 11 8 7 6 5 1

Figure 8: Additional coverage achieved by each con-
figuration in the minimal covering sets.

One thing to notice in this figure is that the right-most
portion of each region adds little to the overall coverage.
For these programs and test suites then, high-strength in-
teractions are not needed to cover most of the code. We
can also see from this plot that vsftpd gains coverage slowly
but then spikes with 3-way interactions, and grep has a sim-
ilar spike with 1-way interactions. This suggests the pres-
ence of enabling options, which must be set a certain way
for the program to exhibit large parts of its behavior. For
example, for vsftpd (in single-process mode), the enabling
options must ensure local logins and SSL support are turned
off, and anonymous logins are turned on. For grep, either
grep or egrep mode must be enabled to reach most of grep’s
code; fgrep mode touches little code. ngIRCd also has en-
abling options that account for the increasing coverage up
to interaction strength three, but the effects of these options
are less pronounced.

These enabling options also show up in Figure 6. For
example, in that figure we can see that most of vsftpd’s
interactions are strength t = 4 or greater, i.e., they generally
involve the three enabling options plus additional options.

5.3 Minimal Covering Configuration Sets
Our results so far show that low-strength interactions can

cover most of the code. Next, we investigated how inter-
actions can be packed together to form complete configura-
tions, which assign values to all the configuration options.
For example, the 1-way interactions a=0 and b=0 are con-
sistent and can be packed into the same configuration, but
a=0 and a=1 are contradictory and must go in different con-
figurations.

We developed a greedy algorithm that packs options to-
gether, aiming to find a minimal set of configurations that
achieves the same coverage as the full set of runs. We begin
with the empty list of configurations. At each step of the
algorithm, we pick the interaction that (if we also include
the coverage of all subsets of that interaction) guarantees
the most as-yet-uncovered lines. Then, we scan through the
list to find a configuration that is consistent with our pick.
We merge the interaction with the first such configuration
we find in the list, or append the interaction to the list as a
new configuration if it is inconsistent with all existing con-
figurations. This algorithm will always eventually terminate
with all lines covered, though it is not guaranteed to find

PredefChannelsOnly=0

MaxConnectionsIP={0,100}

MaxConnectionsIP=2

PongTimeout={20,3600}

MaxNickLength={5,6,8,9,10,100}

ListenIPv4=1

(a) ngIRCd

ssl_enable=0
anonymous_enable=1

local_enable=0

anon_mkdir_
write_enable=1write_enable=1

setproctitle_enable=1

anon_other_write_enable=1

listen=1

run_as_launching_user=0

ascii_download_enable=1

{dual_log_enable=1,
dirmessage_
enable=1,

mdtm_write=1}

(b) vsftpd

match_words=1 match_icase=1

match_icase=0

matcher="fgrep"

matcher={"grep","egrep"}

(c) grep

Figure 9: Interactions needed for 95% line coverage.
ngIRCd and vsftpd include some approximations.

the actual minimum set.
Figure 8 summarizes the results of our algorithm. The col-

umn labeled 1 shows how many lines, blocks, edges, or condi-
tions are covered by the first configuration in the list. Then
column n (for n > 1) shows the additional coverage achieved
by the nth configuration over configurations 1..(n− 1). No-
tice that minimal covering sets range in size from 5 to 10,
which is much smaller than the number of possible config-
urations. This suggests that when we abstract in terms of
coverage, in fact the configuration space looks more like a
union of disjoint interactions (that can be efficiently packed
together) rather than a monolithic cross-product.

We can also see that each subject program follows the
same general trend, with most coverage achieved by just the
first configuration in the set. The last several configurations
in the set very often add only a single additional coverage
element. This last finding hints that not every interaction
offers the same level of coverage; we explore this issue in
detail next.

5.4 Configuration Space Analysis
To help visualize interactions and to better understand

why the minimal covering sets are so small, we mapped the
interactions of each subject program, which are shown in
Figure 9. These graphs show interactions based on line cov-
erage. Because the full set of interactions is too large to
display easily, we show only those interactions needed to

8

guarantee 95% of the maximum possible coverage.2 In these
graphs, a node represents one or more option settings; we
merged nodes with common neighbors, listing all settings
the node represents. 1-way interactions are shaded nodes,
2-way interactions are solid edges, and 3-way interactions
are cliques of similarly patterned edges. In Figure 9(a), the
box denotes a “super node” containing several options, each
of which interacts with all three options outside the box. In
Figure 9(b), the box instead represents a 4-way interaction.
The ngIRCd options are all prefixed with Conf , and similarly
the vsftpd options are prefixed with tunable . We omitted
these prefixes from the graph, however, to save space.

To unclutter the presentation and to highlight interesting
interaction patterns, we made some additional simplifica-
tions. For ngIRCd, we merged two values for PongTimeout

that had similar but not identical neighbor sets, and simi-
larly for MaxNickLength. For vsftpd, we merged the options
in the center node of Figure 9(b) even though they have
slightly different neighbors.

The main feature we see in ngIRCd’s graph is the super
node in the middle, which contains ngIRCd’s enabling op-
tions. We can even see their progression: setting ListenIPv4=1

is the first crucial step that lets ngIRCd accept clients, and
it forms a 1-way interaction. Next, setting PongTimeout

high enough avoids early termination of client connections,
and therefore this option forms a 2-way interaction with
ListenIPv4=1. The last enabling option, MaxNickLength, forms
a 3-way interaction with the previous two. In the full ngIRCd
graph, the full set of these enabling options are similarly
connected to most of the nodes in the graph.

Next, considering vsftpd’s graph, we clearly see that all
of the interactions involve the enabling options, which ap-
pear in the center, shaded node. There are many inter-
actions involving just one additional option setting, such
as the three options in the node at the right middle posi-
tion. These options control the availability of some features,
e.g., dirmessage enable enables the display of certain messages.
Moreover, notice that we can combine all the settings in the
nodes of Figure 9(b) into one configuration. This helps il-
lustrate why the minimal covering set of configurations for
vsftpd is so small, and why the initial configuration is able
to cover so much: one configuration can enable a range of
features (writing files, logging, etc.) all at once.

For vsftpd, the full graph of interactions is very much like
the image shown here, with a few additional, higher-strength
interactions that include the three enabling options, plus a
few low-strength interactions, including the other settings
for the enabling options, which each guarantee a few addi-
tional lines.

Finally, in grep’s graph, notice how few configuration op-
tions contributed to 95% of the coverage. These high-coverage
interactions of grep have very low interaction strength; there
are no interactions with strength higher than two, and four
out of the five nodes have 1-way interactions. Also, all val-
ues of the matcher option appear in this graph, making this
the most important option for grep in terms of coverage.
The full configuration space graph of grep contains many
more interactions and, interestingly, the important matcher
option only takes part in a few interactions in the full graph.

While each program exhibits somewhat different configu-
ration space behavior, we can see that when abstracted in

2The diagrams of the full set of interactions are presented
in the appendix.

terms of line coverage, many options either do not interact
or interact at low strength, and thus we can combine them
together into larger configurations. This supports our claim
that configuration spaces are considerably smaller than com-
binatorics might suggest.

5.5 Threats to Validity
Like any empirical study, our observations and conclusions

are limited by potential threats to validity. For example, in
this work we used 3 subject programs. Each is widely used,
but small in comparison to some industrial applications. In
order to keep our analyses tractable, we focused on sets of
configuration options that we determined to be important.
The size of these sets was substantial, but did not include
every possible configuration option. The program behaviors
we studied included four structural coverage criteria for this
study. Other program behaviors such as data flows or fault
detection might lead to different results. Our test suites
taken together have reasonable, but not complete, coverage.
Individually the test cases tend to be focused on specific
functionality, rather than combining multiple activities in a
single test case. In that sense they are more like a typical
regression suite than a customer acceptance suite. We intend
to address each of these issues in future work.

6. RELATED WORK

Symbolic Evaluation. In the mid 1970’s, King was one of
the first to propose symbolic evaluation as an aid to pro-
gram testing [10]. Theorem provers at that time, however,
were fairly simple, limiting the approach’s practical poten-
tial. Recent years have seen remarkable advances in Sat-
isfiability Modulo Theory and SAT solvers, which has en-
abled symbolic evaluation to scale to more practical prob-
lems. Some recent symbolic evaluators include DART [8, 9],
CUTE [15], SPLAT [16], EXE [3], and KLEE [2]. There are
important technical differences between these systems, e.g.,
DART uses concolic execution, which mixes concrete and
symbolic evaluation, and KLEE uses pure symbolic evalua-
tion. However, at a high level, the basic idea is the same:
the programmer marks values as symbolic, and the eval-
uator explores all possible program paths reachable under
arbitrary assignments to those symbolic values. As we men-
tioned earlier, Otter is closest in implementation terms to
KLEE.

Software Engineering for Configurable Systems. Researchers
and practitioners have developed several strategies to cope
with the problem of testing configurable systems. One pop-
ular approach is combinatorial testing [4, 1, 12, 5], which,
given an interaction strength t, computes a covering array,
a small set of configurations such that all possible t-way
combinations of option settings appear in at least one con-
figuration. The subject program is then tested under each
configuration in the covering array, which will have very few
configurations compared to the full configuration space of
the program.

Several studies to date suggest that even low interaction
strength (2- or 3-way) covering array testing can yield good
line coverage while higher strengths may be needed for edge
or path coverage or fault detection [1, 6, 11]. However, as
far as we are aware, all of these studies have taken a black

9

box approach to understanding covering array performance.
Thus it is unclear exactly how well and why covering arrays
work. On the one hand, a t-way covering array contains all
possible t-way interactions, but not all combinations of op-
tions may be needed for a given program or test suite. On
the other hand, a t-way covering array must contain many
combinations of more than t options, making it difficult to
tell whether t-way interactions, or larger ones, are responsi-
ble for a given covering array’s coverage. Our work attempts
to better understand what specific configuration space char-
acteristics control system behavior.

7. CONCLUSIONS AND FUTURE WORK
We have presented an initial experiment using symbolic

evaluation to study the interactions among configuration op-
tions for three software systems. Keeping existing threats to
validity in mind, we drew several conclusions. All of these
conclusions are specific to our programs, test suites, and con-
figuration spaces; further work is clearly needed to establish
more general trends.

First, we found that we could achieve maximum coverage
without executing anything near all the possible configura-
tions. Most coverage was accounted for by lower-strength
interactions, across all of line, basic block, edge, and condi-
tion coverage. Second, if we packed interactions into config-
urations greedily, it took only five to ten configurations to
achieve this maximal coverage. Third, we also found that in
fact it only took one configuration to get the vast majority
of the maximum coverage. Finally, by mapping the interac-
tions we gained some insight into why the minimal covering
sets are so small. We observed that many options either did
not interact or interacted at low strength, and it is often pos-
sible to combine different interactions together into a single
configuration. Taken together, our results strongly suggest
our main hypothesis—that in practical systems, configura-
tion spaces are significantly smaller than combinatorics sug-
gest, and they can be understood from the composition of a
small number of interactions.

Based on this work, we plan to pursue several research
directions. First, we will extend our studies to better un-
derstand how configurability affects software development.
Some initial issues we will tackle include increasing the num-
ber and types of options and repeating our study on more
and larger subject systems. Second, we plan to enhance our
symbolic evaluator to improve performance, which should
enable larger scale studies. One potential approach is to use
path pruning heuristics to reduce the search space, although
we would no longer have complete information. Finally, we
will explore potential applications of our approach and re-
sults. For example, we may be able to use symbolic evalu-
ation to discretize integer-valued configuration options and
to identify enabling options. As our results show that dif-
ferent test cases depend on different configuration options,
we will investigate how this information can be used to sup-
port a variety of software tasks, such as test prioritization,
configuration-aware regression testing, and impact analysis.

8. REFERENCES
[1] R. Brownlie, J. Prowse, and M. S. Phadke. Robust

testing of AT&T PMX/StarMAIL using OATS.
AT&T Technical Journal, 71(3):41–7, 1992.

[2] C. Cadar, D. Dunbar, and D. R. Engler. KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI, pages
209–224, 2008.

[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: automatically generating
inputs of death. In CCS, pages 322–335, 2006.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing
based on combinatorial design. TSE, 23(7):437–44,
1997.

[5] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and
C. J. Colbourn. Constructing test suites for
interaction testing. In ICSE, pages 38–48, 2003.

[6] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. M.
ws, and A. Iannino. Applying design of experiments to
software testing. In ICSE, pages 205–215, 1997.

[7] V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In CAV, July 2007.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART:
directed automated random testing. In PLDI, pages
213–223, 2005.

[9] P. Godefroid, M. Y. Levin, and D. A. Molnar.
Automated whitebox fuzz testing. In NDSS. Internet
Society, 2008.

[10] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, 1976.

[11] D. Kuhn and M. Reilly. An investigation of the
applicability of design of experiments to software
testing. In NASA Goddard/IEEE Software
Engineering Workshop, pages 91–95, 2002.

[12] R. Mandl. Orthogonal Latin squares: an application of
experiment design to compiler testing. Commun.
ACM, 28(10):1054–1058, 1985.

[13] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In
International Conference on Compiler Construction,
pages 213–228, 2002.

[14] A. Porter, C. Yilmaz, A. M. Memon, D. C. Schmidt,
and B. Natarajan. Skoll: A process and infrastructure
for distributed continuous quality assurance. TSE,
33(8):510–525, August, 2007.

[15] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In FSE-13, pages 263–272,
2005.

[16] R.-G. Xu, P. Godefroid, and R. Majumdar. Testing for
buffer overflows with length abstraction. In ISSTA,
pages 27–38, 2008.

10

APPENDIX
The figures below depict the entire set of interactions due
to line coverage for each of our subject programs: ngIRCd,
grep, and vsftpd. In these graphs, a node is shaded if it
guarantees coverage on its own, black edges represent inter-
actions involving just two nodes, and interactions involving
more than two nodes are cliques of similarly patterned and
similarly colored edges. Nodes represent one or more option
settings; we merged nodes with common neighbors, listing
all settings the node represents. The ngIRCd options are
all prefixed with Conf , and similarly the vsftpd options are
prefixed with tunable ; we omit these prefixes to save space.

In each of our programs, there were some settings that
were involved in many interactions. In ngIRCd, this is
ListenIPv4=1; in vsftpd, it is a 3-way interaction among
ssl enable=0, local enable=0, and anonymous enable=1; and in
grep, it is a 2-way interaction between match words=0 and
match lines=0. For vsftpd and grep, we grouped this key
interaction into a single node. Then, to help keep the graphs
legible, we omitted the edges incident on these key nodes for
interactions involving more than one other node. Instead, in
Figure 10, interactions involving the key node are marked by
thin edges while others are marked by thick edges; Figures 11
and 12 have the roles of thick and thin edges reversed.

ngIRCd is depicted differently than grep and vsftpd; many
of ngIRCd’s option settings have nearly identical neighbors
as some other settings, so most options are depicted as a
single node which contains all of the possible values for that
option. When multiple values of an option interact with the

same other settings, a single edge is used to represent all such
interactions, with the set of values for these interactions en-
closed together in a subnode of the option’s node. For exam-
ple, the thin black edge connecting the MaxNickLength node
to the values 20 and 3600 of PongTimeout represents 10 differ-
ent 3-way interactions: the interaction among ListenIPv4=1

(indicated by the line being thin), each of the 5 values of
MaxNickLength, and each of PongTimeout=20 and
PongTimeout=3600. (The colors of the subnodes of
MaxNickLength are only to help distinguish the subnodes one
from another.)

Two options, UID and ListenIPv4, are not depicted with a
single node containing all the values because both options’
settings have very few edges in the graph, so this would not
have helped keep the graph sparse.

While the graphs are intended to give a rough sense of
what options interact and how, they are difficult to decipher,
even with our attempts to keep them tidy. Therefore, we also
list the interactions themselves in Figures 13 through 16.

Finally, in Figure 17, we list the entire set of options we
set symbolic during our tests. For the non-boolean options,
some had constraints on what values they could take, ei-
ther implicitly in the program, or imposed by us (in an at-
tempt to maximize coverage while keeping symbolic evalu-
ation practical); the figure lists their possible values. The
remaining options were integer-valued options on which we
put no constraints during symbolic evaluation. For these un-
constrained options, we manually selected the values to use
in the guaranteed coverage calculations and in Figures 10
through 12, as described in section 5.1.

11

ListenIPv4=1

{ListenIPv4=0,
OperCanMode={0,1},
OperServerMode={0,1},

UID=0}

ConnectRetry={5,60}

GID=0UID=4096

MaxNickLength

0 5

10{8,9,100}6

PongTimeout

1

20 3600

MaxConnectionsIP

1 {0,2,100}

PredefChannelsOnly
0 1

NoDNS

0 1

PingTimeout

1 {120,3600}

MaxJoins={1,2,100}

Figure 10: All line-coverage interactions for ngIRCd. Thin-edge cliques implicitly include ListenIPv4=1.

match_words=1

match_icase={0,1}

matcher="fgrep"

matcher={"grep","egrep"}

count_matches=1

done_on_match=0
done_on_match=1

list_files=1

list_files=-1

match_lines=1

no_filenames=0out_after=0

{out_after=1,out_byte=1}

out_before=0

out_before=1

out_file=1

out_invert=0

out_invert=1

out_line=1

match_lines=0

match_words=0

out_quiet=0

out_quiet=1

suppress_errors=0

with_filenames=1

Figure 11: All line-coverage interactions for grep.
Thick-edge cliques implicitly include match words=0,match lines=0.

12

run_as_launching_user=1

anon_mkdir_write_enable=1ssl_enable=0

local_enable=0

anonymous_enable=1

write_enable=1

setproctitle_enable=1

anon_other_write_enable=1

listen=1

run_as_launching_user=0

ascii_download_enable=1

mdtm_write=1

dual_log_enable=1

connect_timeout=1

{tunable_accept_timeout=1,
tunable_port_promiscuous=0,

tunable_dirmessage_enable={0,1},
tunable_delay_successful_login=1,
tunable_data_connection_timeout=1,
tunable_tilde_user_enable={0,1},
tunable_dual_log_enable=0}

local_enable=1

ssl_enable=1

anonymous_enable=0

listen=0

lock_upload_files=1

trans_chunk_size={2048,4096}

Figure 12: All line-coverage interactions for vsftpd.
Thick-edge cliques implicitly include ssl enable=0,local enable=0,anonymous enable=1.

13

{ListenIPv4=0,OperCanMode={0,1},OperServerMode={0,1},UID=0}
ListenIPv4=1
NoDNS=0
NoDNS=1
PredefChannelsOnly=0
PredefChannelsOnly=1
GID=0:UID=4096
ListenIPv4=1:NoDNS=0
ListenIPv4=1:PongTimeout=1
ListenIPv4=1:PongTimeout=20
ListenIPv4=1:PongTimeout=3600
MaxNickLength=0:PongTimeout=20
MaxNickLength=0:PongTimeout=3600
MaxNickLength=5:PongTimeout=20
MaxNickLength=5:PongTimeout=3600
MaxNickLength=6:PongTimeout=20
MaxNickLength=6:PongTimeout=3600
MaxNickLength={8,9,100}:PongTimeout=20
MaxNickLength={8,9,100}:PongTimeout=3600
ListenIPv4=1:ConnectRetry={5,60}:PongTimeout=1
ListenIPv4=1:MaxConnectionsIP={0,2,100}:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP={0,2,100}:PongTimeout=3600
ListenIPv4=1:MaxConnectionsIP=1:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP=1:PongTimeout=3600
ListenIPv4=1:MaxNickLength=0:PongTimeout=20
ListenIPv4=1:MaxNickLength=0:PongTimeout=3600
ListenIPv4=1:MaxNickLength=10:PongTimeout=20
ListenIPv4=1:MaxNickLength=10:PongTimeout=3600
ListenIPv4=1:MaxNickLength=5:PongTimeout=20
ListenIPv4=1:MaxNickLength=5:PongTimeout=3600
ListenIPv4=1:MaxNickLength=6:PongTimeout=20
ListenIPv4=1:MaxNickLength=6:PongTimeout=3600
ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=20
ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=3600
ListenIPv4=1:NoDNS=0:PongTimeout=1
ListenIPv4=1:NoDNS=0:PongTimeout=20
ListenIPv4=1:NoDNS=0:PongTimeout=3600
ListenIPv4=1:NoDNS=1:PongTimeout=20
ListenIPv4=1:NoDNS=1:PongTimeout=3600
ListenIPv4=1:PingTimeout=1:PongTimeout=20
ListenIPv4=1:PingTimeout=1:PongTimeout=3600
ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=0:PongTimeout=20
ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=0:PongTimeout=3600
ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=10:PongTimeout=20
ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=10:PongTimeout=3600
ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=5:PongTimeout=20
ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=5:PongTimeout=3600
ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength={8,9,100}:PongTimeout=20
ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength={8,9,100}:PongTimeout=3600
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=3600
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=5:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=5:PongTimeout=3600
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=3600
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600
ListenIPv4=1:MaxConnectionsIP={0,2,100}:PingTimeout=1:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=10:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=6:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength={8,9,100}:PongTimeout=20
ListenIPv4=1:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20
ListenIPv4=1:MaxNickLength=10:PingTimeout=1:PongTimeout=20
ListenIPv4=1:MaxNickLength=10:PingTimeout=1:PongTimeout=3600
ListenIPv4=1:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=1
ListenIPv4=1:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=1
ListenIPv4=1:MaxNickLength=5:PingTimeout=1:PongTimeout=20
ListenIPv4=1:MaxNickLength=5:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength=5:PongTimeout=20:PredefChannelsOnly=1
ListenIPv4=1:MaxNickLength=5:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength=5:PongTimeout=3600:PredefChannelsOnly=1
ListenIPv4=1:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20
ListenIPv4=1:MaxNickLength=6:PingTimeout=1:PongTimeout=20
ListenIPv4=1:MaxNickLength=6:PingTimeout=1:PongTimeout=3600

Figure 13: ngIRCd interactions

14

ListenIPv4=1:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=1
ListenIPv4=1:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=1
ListenIPv4=1:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20
ListenIPv4=1:MaxNickLength={8,9,100}:PingTimeout=1:PongTimeout=20
ListenIPv4=1:MaxNickLength={8,9,100}:PingTimeout=1:PongTimeout=3600
ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=1
ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=1
ListenIPv4=1:ConnectRetry={5,60}:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=20
ListenIPv4=1:ConnectRetry={5,60}:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=3600
ListenIPv4=1:ConnectRetry={5,60}:MaxConnectionsIP={0,2,100}:PingTimeout=1:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=1
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=1
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=1
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=5:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=5:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxJoins={1,2,100}:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxJoins={1,2,100}:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxJoins={1,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=1
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=1
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=1
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=10:PingTimeout=1:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=5:PingTimeout=1:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=6:PingTimeout=1:PongTimeout=20:PredefChannelsOnly=0
ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength={8,9,100}:PingTimeout=1:PongTimeout=20:PredefChannelsOnly=0

Figure 14: ngIRCd interactions, continued

15

count matches=1
done on match=0
matcher={“grep”,“egrep”}
matcher=“fgrep”
match icase={0,1}
no filenames=0
out invert=0
out invert=1
out line=1
suppress errors=0
with filenames=1
count matches=1:no filenames=0
count matches=1:out file=1
count matches=1:with filenames=1
done on match=1:out invert=0
matcher={“grep”,“egrep”}:match icase={0,1}
matcher={“grep”,“egrep”}:match lines=0
matcher={“grep”,“egrep”}:match lines=1
matcher={“grep”,“egrep”}:match words=0
matcher={“grep”,“egrep”}:match words=1
matcher=“fgrep”:match icase={0,1}
matcher=“fgrep”:match lines=0
matcher=“fgrep”:match lines=1
list files=-1:out invert=0
list files=1:out invert=0
list files=-1:out invert=1
list files=1:out invert=1
match lines=0:match words=0
out invert=0:out quiet=0
out invert=1:out quiet=0
done on match=0:out before=1:out invert=0
done on match=0:out before=1:out quiet=1
done on match=0:out invert=0:out line=1
done on match=0:out line=1:out quiet=1
match lines=0:match words=0:matcher={“grep”,“egrep”}
matcher={“grep”,“egrep”}:match lines=0:match words=1
match lines=0:match words=0:matcher=“fgrep”
matcher=“fgrep”:match lines=0:match words=1
match lines=0:match words=0:list files=1
match lines=0:match words=0:out invert=1
match lines=0:match words=0:out quiet=0
match lines=1:out before=1:out invert=0
match lines=1:out before=1:out quiet=1
match lines=1:out invert=0:out line=1
match lines=1:out line=1:out quiet=1
match words=1:out before=1:out invert=0
match words=1:out before=1:out quiet=1
match words=1:out invert=0:out line=1
match words=1:out line=1:out quiet=1
no filenames=0:out invert=1:out quiet=0
{out after=1,out byte=1}:out invert=0:out quiet=0
{out after=1,out byte=1}:out invert=1:out quiet=0
out before=1:out invert=0:out quiet=0
out before=1:out invert=1:out quiet=0
out before=1:out invert=1:out quiet=1
out file=1:out invert=0:out quiet=0
out file=1:out invert=1:out quiet=0
out invert=0:out line=1:out quiet=0
out invert=0:out quiet=0:with filenames=1
out invert=1:out line=1:out quiet=0
out invert=1:out line=1:out quiet=1
out invert=1:out quiet=0:with filenames=1
match lines=0:match words=0:done on match=1:out invert=0
match lines=0:match words=0:{out after=1,out byte=1}:out quiet=0
match lines=0:match words=0:out before=1:out quiet=0
match lines=0:match words=0:out file=1:out quiet=0
match lines=0:match words=0:out line=1:out quiet=0
match lines=0:match words=0:out quiet=0:with filenames=1
match lines=0:match words=0:done on match=0:out before=0:out line=1
match lines=0:match words=0:out after=0:out before=1:out quiet=0
match lines=0:match words=0:out before=0:out invert=1:out line=1
match lines=0:match words=0:out before=1:out invert=0:out quiet=0
match lines=0:match words=0:out before=1:out invert=1:out quiet=0

Figure 15: grep interactions

16

anonymous enable=0
connect timeout=1
local enable=1
run as launching user=0
setproctitle enable=1
ssl enable=0
ssl enable=1
listen=0:ssl enable=0
listen=1:ssl enable=0
local enable=0:ssl enable=0
local enable=1:ssl enable=0
anonymous enable=0:local enable=0:ssl enable=0
anonymous enable=1:local enable=0:ssl enable=0
listen=1:setproctitle enable=1:ssl enable=0
anonymous enable=1:local enable=0:ssl enable=0:{accept timeout=1,data connection timeout=1,delay successful login=1,

dirmessage enable={0,1},dual log enable=0,port promiscuous=0,tilde user enable={0,1}}
anonymous enable=1:local enable=0:ssl enable=0:connect timeout=1
anonymous enable=1:local enable=0:ssl enable=0:dual log enable=1
anonymous enable=1:local enable=0:ssl enable=0:listen=1
anonymous enable=1:local enable=0:ssl enable=0:mdtm write=1
anonymous enable=1:local enable=0:ssl enable=0:run as launching user=0
anonymous enable=1:local enable=0:ssl enable=0:run as launching user=1
anonymous enable=1:local enable=0:ssl enable=0:setproctitle enable=1
anonymous enable=1:local enable=0:ssl enable=0:anon mkdir write enable=1:write enable=1
anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:write enable=1
anonymous enable=1:local enable=0:ssl enable=0:ascii download enable=1:run as launching user=0
anonymous enable=1:local enable=0:ssl enable=0:dual log enable=1:run as launching user=0
anonymous enable=1:local enable=0:ssl enable=0:lock upload files=1:run as launching user=0
anonymous enable=1:local enable=0:ssl enable=0:anon mkdir write enable=1:dual log enable=1:write enable=1
anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:dual log enable=1:write enable=1
anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:mdtm write=1:write enable=1
anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:run as launching user=0:write enable=1
anonymous enable=1:local enable=0:ssl enable=0:ascii download enable=1:run as launching user=0:trans chunk size={2048,4096}
anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:mdtm write=1:run as launching user=0:write enable=1
anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:mdtm write=1:run as launching user=1:write enable=1

Figure 16: vsftpd interactions

Name vsftpd ngIRCd grep

Booleans
anon mkdir write enable ListenIPv4 count matches
anon other write enable NoDNS done on match
anon upload enable OperCanMode filename mask*
anonymous enable OperServerMode match icase
ascii download enable PredefChannelsOnly match lines
ascii upload enable* match words
delete failed uploads* no filenames
dirmessage enable out byte
dual log enable out file
listen out invert
local enable out line
lock upload files out quiet
mdtm write suppress errors
pasv addr resolve* with filenames
port promiscuous
run as launching user
setproctitle enable
ssl enable
tilde user enable
write enable

Other
accept timeout ConnectRetry ∈ {5,60} list files ∈ {-1,0,1}
chown upload mode* GID matcher ∈ {“grep”,“egrep”,“fgrep”}
connect timeout MaxConnectionsIP out after ∈ {0,1}
data connection timeout MaxJoins out before ∈ {0,1}
delay successful login MaxNickLength
ftp data port* PingTimeout ∈ {1,20,3600}
listen port* PongTimeout ∈ {1,20,3600}
max clients UID
max per ip
trans chunk size

Figure 17: Symbolic configuration options. Asterisks indicate options that never led to branching during
symbolic evaluation.

17

