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Abstract
In recent years, the number of software vulnerabilities
discovered has grown significantly. This creates a need
for prioritizing the response to new disclosures by assess-
ing which vulnerabilities are likely to be exploited and by
quickly ruling out the vulnerabilities that are not actually
exploited in the real world. We conduct a quantitative
and qualitative exploration of the vulnerability-related
information disseminated on Twitter. We then describe
the design of a Twitter-based exploit detector, and we in-
troduce a threat model specific to our problem. In addi-
tion to response prioritization, our detection techniques
have applications in risk modeling for cyber-insurance
and they highlight the value of information provided by
the victims of attacks.

1 Introduction
The number of software vulnerabilities discovered has
grown significantly in recent years. For example, 2014
marked the first appearance of a 5 digit CVE, as the CVE
database [46], which assigns unique identifiers to vulner-
abilities, has adopted a new format that no longer caps
the number of CVE IDs at 10,000 per year. Additionally,
many vulnerabilities are made public through a coordi-
nated disclosure process [18], which specifies a period
when information about the vulnerability is kept confi-
dential to allow vendors to create a patch. However, this
process results in multi-vendor disclosure schedules that
sometimes align, causing a flood of disclosures. For ex-
ample, 254 vulnerabilities were disclosed on 14 October
2014 across a wide range of vendors including Microsoft,
Adobe, and Oracle [16].

To cope with the growing rate of vulnerability discov-
ery, the security community must prioritize the effort to
respond to new disclosures by assessing the risk that the
vulnerabilities will be exploited. The existing scoring
systems that are recommended for this purpose, such as
FIRST’s Common Vulnerability Scoring System (CVSS)

[54], Microsoft’s exploitability index [21] and Adobe’s
priority ratings [19], err on the side of caution by mark-
ing many vulnerabilities as likely to be exploited [24].
The situation in the real world is more nuanced. While
the disclosure process often produces proof of concept
exploits, which are publicly available, recent empirical
studies reported that only a small fraction of vulnerabili-
ties are exploited in the real world, and this fraction has
decreased over time [22,47]. At the same time, some vul-
nerabilities attract significant attention and are quickly
exploited; for example, exploits for the Heartbleed bug
in OpenSSL were detected 21 hours after the vulnera-
bility’s public disclosure [41]. To provide an adequate
response on such a short time frame, the security com-
munity must quickly determine which vulnerabilities are
exploited in the real world, while minimizing false posi-
tive detections.

The security vendors, system administrators, and
hackers, who discuss vulnerabilities on social media sites
like Twitter, constitute rich sources of information, as the
participants in coordinated disclosures discuss technical
details about exploits and the victims of attacks share
their experiences. This paper explores the opportuni-
ties for early exploit detection using information avail-
able on Twitter. We characterize the exploit-related dis-
course on Twitter, the information posted before vulner-
ability disclosures, and the users who post this informa-
tion. We also reexamine a prior experiment on predicting
the development of proof-of-concept exploits [36] and
find a considerable performance gap. This illuminates
the threat landscape evolution over the past decade and
the current challenges for early exploit detection.

Building on these insights, we describe techniques
for detecting exploits that are active in the real world.
Our techniques utilize supervised machine learning and
ground truth about exploits from ExploitDB [3], OS-
VDB [9], Microsoft security advisories [21] and the
descriptions of Symantec’s anti-virus and intrusion-
protection signatures [23]. We collect an unsampled cor-
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pus of tweets that contain the keyword “CVE,” posted
between February 2014 and January 2015, and we ex-
tract features for training and testing a support vector
machine (SVM) classifier. We evaluate the false posi-
tive and false negative rates and we assess the detection
lead time compared to existing data sets. Because Twit-
ter is an open and free service, we introduce a threat
model, considering realistic adversaries that can poison
both the training and the testing data sets but that may be
resource-bound, and we conduct simulations to evaluate
the resilience of our detector to such attacks. Finally, we
discuss the implications of our results for building secu-
rity systems without secrets, the applications of early ex-
ploit detection and the value of sharing information about
successful attacks.

In summary, we make three contributions:

• We characterize the landscape of threats related to
information leaks about vulnerabilities before their
public disclosure, and we identify features that can
be extracted automatically from the Twitter dis-
course to detect exploits.

• To our knowledge, we describe the first technique
for early detection of real-world exploits using so-
cial media.

• We introduce a threat model specific to our problem
and we evaluate the robustness of our detector to
adversarial interference.

Roadmap. In Sections 2 and 3 we formulate the prob-
lem of exploit detection and we describe the design of
our detector, respectively. Section 4 provides an empir-
ical analysis of the exploit-related information dissemi-
nated on Twitter, Section 5 presents our detection results,
and Section 6 evaluates attacks against our exploit detec-
tors. Section 7 reviews the related work, and Section 8
discusses the implications of our results.

2 The problem of exploit detection
We consider a vulnerability to be a software bug that has
security implications and that has been assigned a unique
identifier in the CVE database [46]. An exploit is a piece
of code that can be used by an attacker to subvert the
functionality of the vulnerable software. While many re-
searchers have investigated the techniques for creating
exploits, the utilization patterns of these exploits provide
another interesting dimension to their security implica-
tions. We consider real-world exploits to be the exploits
that are being used in real attacks against hosts and net-
works worldwide. In contrast, proof-of-concept (PoC)
exploits are often developed as part of the vulnerability
disclosure process and are included in penetration test-
ing suites. We further distinguish between public PoC

exploits, for which the exploit code is publicly available,
and private PoC exploits, for which we can find reliable
information that the exploit was developed, but it was
not released to the public. A PoC exploit may also be a
real-world exploit if it is used in attacks.

The existence of a real-world or PoC exploit gives
urgency to fixing the corresponding vulnerability, and
this knowledge can be utilized for prioritizing remedi-
ation actions. We investigate the opportunities for early
detection of such exploits by using information that is
available publicly, but is not included in existing vul-
nerability databases such as the National Vulnerability
Database (NVD) [7] or the Open Sourced Vulnerabil-
ity Database (OSVDB) [9]. Specifically, we analyze the
Twitter stream, which exemplifies the information avail-
able from social media feeds. On Twitter, a community
of hackers, security vendors and system administrators
discuss security vulnerabilities. In some cases, the vic-
tims of attacks report new vulnerability exploits. In other
cases, information leaks from the coordinated disclosure
process [18] through which the security community pre-
pares the response to the impending public disclosure of
a vulnerability.

The vulnerability-related discourse on Twitter is in-
fluenced by trend-setting vulnerabilities, such as Heart-
bleed (CVE-2014-0160), Shellshock (CVE-2014-6271,
CVE-2014-7169, and CVE-2014-6277) or Drupalged-
don (CVE-2014-3704) [41]. Such vulnerabilities are
mentioned by many users who otherwise do not provide
actionable information on exploits, which introduces a
significant amount of noise in the information retrieved
from the Twitter stream. Additionally, adversaries may
inject fake information into the Twitter stream, in an at-
tempt to poison our detector. Our goals in this paper are
(i) to identify the good sources of information about ex-
ploits and (ii) to assess the opportunities for early detec-
tion of exploits in the presence of benign and adversarial
noise. Specifically, we investigate techniques for mini-
mizing false-positive detections—vulnerabilities that are
not actually exploited—which is critical for prioritizing
response actions.

Non-goals. We do not consider the detection of zero-
day attacks [32], which exploit vulnerabilities before
their public disclosure; instead, we focus on detecting the
use of exploits against known vulnerabilities. Because
our aim is to assess the value of publicly available infor-
mation for exploit detection, we do not evaluate the ben-
efits of incorporating commercial or private data feeds.
The design of a complete system for early exploit detec-
tion, which likely requires mechanisms beyond the realm
of Twitter analytics (e.g., for managing the reputation of
data sources to prevent poisoning attacks), is also out of
scope for this paper.
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2.1 Challenges
To put our contributions in context, we review the three
primary challenges for predicting exploits in the ab-
sence of adversarial interference: class imbalance, data
scarcity, and ground truth biases.

Class imbalance. We aim to train a classifier that pro-
duces binary predictions: each vulnerability is classified
as either exploited or not exploited. If there are signifi-
cantly more vulnerabilities in one class than in the other
class, this biases the output of supervised machine learn-
ing algorithms. Prior research on predicting the existence
of proof-of-concept exploits suggests that this bias is not
large, as over half of the vulnerabilities disclosed before
2007 had such exploits [36]. However, few vulnerabili-
ties are exploited in the real world and the exploitation ra-
tios tend to decrease over time [47]. In consequence, our
data set exhibits a severe class imbalance: we were able
to find evidence of real-world exploitation for only 1.3%
of vulnerabilities disclosed during our observation pe-
riod. This class imbalance represents a significant chal-
lenge for simultaneously reducing the false positive and
false negative detections.

Data scarcity. Prior research efforts on Twitter ana-
lytics have been able to extract information from mil-
lions of tweets, by focusing on popular topics like
movies [27], flu outbreaks [20, 26], or large-scale threats
like spam [56]. In contrast, only a small subset of Twit-
ter users discuss vulnerability exploits (approximately
32,000 users), and they do not always mention the CVE
numbers in their tweets, which prevents us from identi-
fying the vulnerability discussed. In consequence, 90%
of the CVE numbers disclosed during our observation
period appear in fewer than 50 tweets. Worse, when
considering the known real-world exploits, close to half
have fewer than 50 associated tweets. This data scarcity
compounds the challenge of class imbalance for reducing
false positives and false negatives.

Quality of ground truth. Prior work on Twitter ana-
lytics focused on predicting quantities for which good
predictors are already available (modulo a time lag): the
Hollywood Stock Exchange for movie box-office rev-
enues [27], CDC reports for flu trends [45] and Twitter’s
internal detectors for highjacked accounts, which trig-
ger account suspensions [56]. These predictors can be
used as ground truth for training high-performance clas-
sifiers. In contrast, there is no comprehensive data set of
vulnerabilities that are exploited in the real world. We
employ as ground truth the set of vulnerabilities men-
tioned in the descriptions of Symantec’s anti-virus and
intrusion-protection signatures, which is, reportedly, the
best available indicator for the exploits included in ex-
ploit kits [23, 47]. However, this dataset has coverage

biases, since Symantec does not cover all platforms and
products uniformly. For example, since Symantec does
not provide a security product for Linux, Linux kernel
vulnerabilities are less likely to appear in our ground
truth dataset than exploits targeting software that runs on
the Windows platform.

2.2 Threat model

Research in adversarial machine learning [28, 29], dis-
tinguishes between exploratory attacks, which poison the
testing data, and causative attacks, which poison both the
testing and the training data sets. Because Twitter is an
open and free service, causative adversaries are a realis-
tic threat to a system that accepts inputs from all Twitter
users. We assume that these adversaries cannot prevent
the victims of attacks from tweeting about their obser-
vations, but they can inject additional tweets in order to
compromise the performance of our classifier. To test
the ramifications of these causative attacks, we develop a
threat model with three types of adversaries.

Blabbering adversary. Our weakest adversary is not
aware of the statistical properties of the training features
or labels. This adversary simply sends tweets with ran-
dom CVEs and random security-related keywords.

Word copycat adversary. A stronger adversary is
aware of the features we use for training and has access
to our ground truth (which comes from public sources).
This adversary uses fraudulent accounts to manipulate
the word features and total tweet counts in the training
data. However, this adversary is resource constrained
and cannot manipulate any user statistics which would
require either more expensive or time intensive account
acquisition and setup (e.g., creation date, verification,
follower and friend counts). The copycat adversary crafts
tweets by randomly selecting pairs of non-exploited and
exploited vulnerabilities and then sending tweets, so that
the word feature distributions between these two classes
become nearly identical.

Full copycat adversary. Our strongest adversary has
full knowledge of our feature set. Additionally, this ad-
versary has sufficient time and economic resources to
purchase or create Twitter accounts with arbitrary user
statistics, with the exception of verification and the ac-
count creation date. Therefore, the full copycat adversary
can use a set of fraudulent Twitter accounts to fully ma-
nipulate almost all word and user-based features, which
creates scenarios where relatively benign CVEs and real-
world exploit CVEs appear to have nearly identical Twit-
ter traffic at an abstracted statistical level.
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Figure 1: Overview of the system architecture.

3 A Twitter-based exploit detector
We present the design of a Twitter-based exploit detector,
using supervised machine learning techniques. Our de-
tector extracts vulnerability-related information from the
Twitter stream, and augments it with additional sources
of data about vulnerabilities and exploits.

3.1 Data collection

Figure 1 illustrates the architecture of our exploit detec-
tor. Twitter is an online social networking service that
enables users to send and read short 140-character mes-
sages called “tweets”, which then become publicly avail-
able. For collecting tweets mentioning vulnerabilities,
the system monitors occurrences of the “CVE” keyword
using Twitter’s Streaming API [15]. The policy of the
Streaming API implies that a client receives all the tweets
matching a keyword as long as the result does not ex-
ceed 1% of the entire Twitter hose, when the tweets be-
come samples of the entire matching volume. Because
the CVE tweeting volume is not high enough to reach
1% of the hose (as the API signals rate limiting), we con-
clude that our collection contains all references to CVEs,
except during the periods of downtime for our infrastruc-
ture.

We collect data over a period of one year, from Febru-
ary 2014 to January 2015. Out of the 1.1 billion tweets
collected during this period, 287,717 contain explicit ref-
erences to CVE IDs. We identify 7,560 distinct CVEs.
After filtering out the vulnerabilities disclosed before the
start of our observation period, for which we have missed
many tweets, we are left with 5,865 CVEs.

To obtain context about the vulnerabilities discussed
on Twitter, we query the National Vulnerability Database
(NVD) [7] for the CVSS scores, the products affected
and additional references about these vulnerabilities.
Additionally, we crawl the Open Sourced Vulnerability
Database (OSVDB) [9] for a few additional attributes,

including the disclosure dates and categories of the vul-
nerabilities in our study.1 Our data collection infrastruc-
ture consists of Python scripts, and the data is stored us-
ing Hadoop Distributed File System. From the raw data
collected, we extract multiple features using Apache PIG
and Spark, which run on top of a local Hadoop cluster.

Ground truth. We use three sources of ground truth.
We identify the set of vulnerabilities exploited in the real
world by extracting the CVE IDs mentioned in the de-
scriptions of Symantec’s anti-virus (AV) signatures [12]
and intrusion-protection (IPS) signatures [13]. Prior
work has suggested that this approach produces the best
available indicator for the vulnerabilities targeted in ex-
ploits kits available on the black market [23, 47]. Con-
sidering only the vulnerabilities included in our study,
this data set contains 77 vulnerabilities targeting prod-
ucts from 31 different vendors. We extract the creation
date from the descriptions of AV signatures to estimate
the date when the exploits were discovered. Unfortu-
nately, the IPS signatures do not provide this informa-
tion, so we query Symantec’s Worldwide Intelligence
Network Environment (WINE) [40] for the dates when
these signatures were triggered in the wild. For each real-
world exploit, we use the earliest date across these data
sources as an estimate for the date when the exploit be-
came known to the security community.

However, as mentioned in Section 2.1, this ground
truth does not cover all platforms and products uni-
formly. Nevertheless, we expect that some software ven-
dors, which have well established procedures for coor-
dinated disclosure, systematically notify security com-
panies of impending vulnerability disclosures to allow
them to release detection signatures on the date of disclo-
sure. For example, the members of Microsoft’s MAPP
program [5] receive vulnerability information in advance
of the monthly publication of security advisories. This
practice provides defense-in-depth, as system adminis-
trators can react to vulnerability disclosures either by de-
ploying the software patches or by updating their AV or
IPS signatures. To identify which products are well cov-
ered in this data set, we group the exploits by the ven-
dor of the affected product. Out of the 77 real-world
exploits, 41 (53%) target products from Microsoft and
Adobe, while no other vendor accounts for more than
3% of exploits. This suggests that our ground truth pro-
vides the best coverage for vulnerabilities in Microsoft
and Adobe products.

We identify the set of vulnerabilities with public proof-
of-concept exploits by querying ExploitDB [3], a collab-
orative project that collects vulnerability exploits. We

1In the past, OSVDB was called the Open Source Vulnerability
Database and released full dumps of their database. Since 2012, OS-
VDB no longer provides public dumps and actively blocks attempts to
crawl the website for most of the information in the database.
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identify exploits for 387 vulnerabilities disclosed during
our observation period. We use the date when the ex-
ploits were added to ExploitDB as an indicator for when
the vulnerabilities were exploited.

We also identify the set of vulnerabilities in Mi-
crosoft’s products for which private proof-of-concept ex-
ploits have been developed by using the Exploitabil-
ity Index [21] included in Microsoft security advisories.
This index ranges from 0 to 3: 0 for vulnerabilities that
are known to be exploited in the real world at the time
of release for a security bulletin,2 and 1 for vulnerabil-
ities that allowed the development of exploits with con-
sistent behavior. Vulnerabilities with scores of 2 and 3
are considered less likely and unlikely to be exploited,
respectively. We therefore consider that the vulnerabili-
ties with an exploitability index of 0 or 1 have an private
PoC exploit, and we identify 218 such vulnerabilities. 22
of these 218 vulnerabilities are considered real-world ex-
ploits in our Symantec ground truth.

3.2 Vulnerability categories
To quantify how these vulnerabilities and exploits are
discussed on Twitter, we group them into 7 categories,
based on their utility for an attacker: Code Execution, In-
formation Disclosure, Denial of Service, Protection By-
pass, Script Injection, Session Hijacking and Spoofing.
Although heterogeneous and unstructured, the summary
field from NVD entries provides sufficient information
for assigning a category to most of the vulnerabilities in
the study, using regular expressions comprised of domain
vocabulary.

Table 2 and Section 4 show how these categories inter-
sect with POC and real-world exploits. Since vulnerabil-
ities may belong to several categories (a code execution
exploit could also be used in a denial of service), the reg-
ular expressions are applied in order. If a match is found
for one category, the subsequent categories would not be
matched.

Aditionally, the Unknown category contains vulnera-
bilities not matched by the regular expressions and those
whose summaries explicitly state that the consequences
are unknown or unspecified.

3.3 Classifier feature selection
The features considered in this study can be classified
in 4 categories: Twitter Text, Twitter Statistics, CVSS
Information and Database Information.

For the Twitter features, we started with a set of 1000
keywords and 12 additional features based on the dis-
tribution of tweets for the CVEs, e.g. the total number

2We do not use this score as an indicator for the existence of real-
world exploits because the 0 rating is available only since August 2014,
toward the end of our observation period.

Keyword MI Wild MI PoC Keyword MI Wild MI PoC

advisory 0.0007 0.0005 ok 0.0015 0.0002
beware 0.0007 0.0005 mcafee 0.0005 0.0002
sample 0.0007 0.0005 windows 0.0012 0.0011
exploit 0.0026 0.0016 w 0.0004 0.0002
go 0.0007 0.0005 microsoft 0.0007 0.0005
xp 0.0007 0.0005 info 0.0007 X
ie 0.0015 0.0005 rce 0.0007 X
poc 0.0004 0.0006 patch 0.0007 X
web 0.0015 0.0005 piyolog 0.0007 X
java 0.0007 0.0005 tested 0.0007 X
working 0.0007 0.0005 and X 0.0005
fix 0.0012 0.0002 rt X 0.0005
bug 0.0007 0.0005 eset X 0.0005
blog 0.0007 0.0005 for X 0.0005
pc 0.0007 0.0005 redhat X 0.0002
reading 0.0007 0.0005 kali X 0.0005
iis 0.0007 0.0005 0day X 0.0009
ssl 0.0005 0.0003 vs X 0.0005
post 0.0007 0.0005 linux X 0.0009
day 0.0015 0.0005 new X 0.0002
bash 0.0015 0.0009

Table 1: Mutual information provided by the reduced set
of keywords with respect to both sources of ground truth
data. The “X” marks in the table indicate that the respec-
tive words were excluded from the final feature set due
to MI below 0.0001 nats.

of tweets related to the CVE, the average age of the ac-
counts posting about the vulnerability and the number
of retweets associated to the vulnerability. For each of
these initial features, we compute the mutual information
(MI) of the set of feature values X and the class labels
Y ∈ {exploited,not exploited}:

MI(Y,X) = ∑
x∈X

∑
y∈Y

p(x,y) ln
(

p(x,y)
p(x)p(y)

)

Mutual information, expressed in nats, compares the fre-
quencies of values from the joint distribution p(x,y) (i.e.
values from X and Y that occur together) with the prod-
uct of the frequencies from the two distributions p(x) and
p(y). MI measures how much knowing X reduces uncer-
tainty about Y , and can single out useful features sug-
gesting that the vulnerability is exploited as well as fea-
tures suggesting it is not. We prune the initial feature set
by excluding all features with mutual information below
0.0001 nats. For numerical features, we estimate proba-
bility distributions using a resolution of 50 bins per fea-
ture. After this feature selection process, we are left with
38 word features for real-world exploits.

Here, rather than use a wrapper method for feature
selection, we use this mutual information-based filter
method in order to facilitate the combination of au-
tomatic feature selection with intuition-driven manual
pruning. For example, keywords that correspond to
trend-setting vulnerabilities from 2014, like Heartbleed
and Shellshock, exhibit a higher mutual information than
many other potential keywords despite their relation to
only a small subset of vulnerabilities. Yet, such highly
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specific keywords are undesirable for classification due
to their transitory utility. Therefore, in order to reduce
susceptibility to concept drift, we manually prune these
word features for our classifiers to generate a final set of
31 out of 38 word features (listed in Table 1 with addi-
tional keyword intuition described in Section 4.1).

In order to improve performance and increase classi-
fier robustness to potential Twitter-based adversaries act-
ing through account hijacking and Sybil attacks, we also
derive features from NVD and OSVDB. We consider
all 7 CVSS score components, as well as features that
proved useful for predicting proof-of-concept exploits in
prior work [36], such as the number of unique references,
the presence of the token BUGTRAQ in the NVD refer-
ences, the vulnerability category from OSVDB and our
own vulnerability categories (see Section 3.2). This gives
us 17 additional features. The inclusion of these non-
Twitter features is useful for boosting the classifier’s re-
silience to adversarial noise. Figure 2 illustrates the most
useful features for detecting real-world or PoC exploits,
along with the corresponding mutual information.

3.4 Classifier training and evaluation
We train linear support vector machine (SVM) classi-
fiers [35, 38, 39, 43] in a feature space with 67 dimen-
sions that results from our feature selection step (Sec-
tion 3.3). SVMs seek to determine the maximum margin
hyperplane to separate the classes of exploited and non-
exploited vulnerabilities. When a hyperplane cannot per-
fectly separate the positive and negative class samples
based on the feature vectors used in training, the basic
SVM cost function is modified to include a regulariza-
tion penalty, C, and non-negative slack variables, ξi. By
varying C, we explore the trade-off between false nega-
tives and false positives in our classifiers.

We train SVM classifiers using multiple rounds of
stratified random sampling. We perform sampling be-
cause of the large imbalance in the class sizes be-
tween vulnerabilities exploited and vulnerabilities not
exploited. Typically, our classifier training consists of 10
random training shuffles where 50% of the available data
is used for training and the remaining 50% is used for
testing. We use the scikit-learn Python package [49]
to train our classifiers.

An important caveat, though, is that our one year
of data limits our ability to evaluate concept drift. In
most cases, our cross-validation data is temporally in-
termixed with the training data, since restricting sets of
training and testing CVEs to temporally adjacent blocks
confounds performance losses due to concept drift with
performance losses due to small sample sizes. Further-
more, performance differences between the vulnerabil-
ity database features of our classifiers and those explored
in [36] emphasize the benefit of periodically repeating

Category # CVEs Real-World PoC Both
All Data / Good Coverage

Code Execution 1249/322 66/39 192/14 28/8
Info Disclosure 1918/59 4/0 69/5 4/0
Denial Of Service 657/17 0/0 16/1 0/0
Protection Bypass 204/34 0/0 3/0 0/0
Script Injection 683/14 0/0 40/0 0/0
Session Hijacking 167/1 0/0 25/0 0/0
Spoofing 55/4 0/0 0/0 0/0
Unknown 981/51 7/0 42/6 5/0

Total 5914/502 77/39 387/26 37/8

Table 2: CVEs Categories and exploits summary. The
first sub-column represents the whole dataset, while the
second sub-column is restricted to Adobe and Microsoft
vulnerabilities, for which our ground truth of real-world
exploits provides good coverage.

previous experiments from the security literature in or-
der to properly assess whether the results are subject to
long-term concept drift.

Performance metrics. When evaluating our classi-
fiers, we rely on two standard performance metrics: pre-
cision and recall.3 Recall is equivalent to the true pos-
itive rate: Recall = T P

T P+FN , where T P is the number of
true positive classifications and FN is the number of false
negatives. The denominator is the total number of posi-
tive samples in the testing data. Precision is defined as:
Precision = T P

T P+FP where FP is the total number of false
positives identified by the classifier. When optimizing
classifier performance based on these criteria, the rela-
tive importance of these quantities is dependent on the
intended applications of the classifier. If avoiding false
negatives is priority, then recall must be high. However,
if avoiding false positives is more critical, then precision
is the more important metric. Because we envision uti-
lizing our classifier as a tool for prioritizing the response
to vulnerability disclosures, we focus on improving the
precision rather than the recall.

4 Exploit-related information on Twitter

Table 2 breaks down the vulnerabilities in our study ac-
cording to the categories described in Section 3.2. 1249
vulnerabilities allowing code execution were disclosed
during our observation period. 66 have real-world ex-
ploits, and 192 have public proof-of-concept exploits;
the intersection of these two sets includes 28 exploits.
If we consider only Microsoft and Adobe vulnerabilities,
for which we expect that our ground truth has good cov-
erage (see Section 3.1), the table shows that 322 code-

3We choose precision and recall because Receiver Operating Char-
acteristic (ROC) curves can present an overly optimistic view of a clas-
sifier’s performance when dealing with skewed data sets [?].
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Figure 2: Mutual information between real world and public proof of concept exploits for CVSS, Twitter user statistics,
NVD, and OSVDB features. CVSS Information - 0: CVSS Score, 1: Access Complexity, 2: Access Vector, 3:
Authentication, 4: Availability Impact, 5: Confidentiality Impact, 6: Integrity Impact. Twitter Traffic - 7: Number
of tweets, 8/9: # users with minimum T followers/friends, 10/11: # retweets/replies, 12: # tweets favorited, 13/14/15:
Avg # hashtags/URLs/user mentions per tweet, 16: # verified accounts, 17: Avg age of accounts, 18: Avg # of tweets
per account. Database Information - 19: # references in NVD, 20: # sources in NVD, 21/22: BUGTRAQ/SECUNIA
in NVD sources, 23: allow in NVD summay, 24: NVD last modified date - NVD published date, 25: NVD last
modified date - OSVDB disclosed date, 26: Number of tokens in OSVDB title, 27: Current date - NVD last modified
date, 28: OSVDB in NVD sources, 29: code in NVD summay, 30: # OSVDB entries, 31: OSVDB Category, 32:
Regex Category, 33: First vendor in NVD, 34: # vendors in NVD, 35: # affected products in NVD.

execution vulnerabilities were disclosed, 39 have real-
world exploits, 14 have public PoC exploits and 8 have
both real-world and public PoC exploits.

Information disclosure is the largest category of vul-
nerabilities from NVD and it has a large number of
PoC exploits, but we find few of these vulnerabilities
in our ground truth of real-world exploits (one excep-
tion is Heartbleed). Instead, most of the real-world ex-
ploits focus on code execution vulnerabilities. However,
many proof-of-concept exploits for such vulnerabilities
do not seem to be utilized in real-world attacks. To un-
derstand the factors that drive the differences between
real-world and proof-of-concept exploits, we examine
the CVSS base metrics, which describe the character-
istics of each vulnerability. This analysis reveals that
most of the real-world exploits allow remote code execu-
tion, while some PoC exploits require local host or local
network access. Moreover, while some PoC vulnerabil-
ities require authentication before a successful exploit,
real-world exploits focus on vulnerabilities that do not
require bypassing authentication mechanisms. In fact,
this is the only type of exploit we found in the segment
of our ground truth that has good coverage, suggesting
that remote code-execution exploits with no authentica-
tion required are strongly favored by real-world attack-
ers. Our ground truth does not provide good coverage
of web exploits, which explains the lack of Script In-
jection, Session Highjacking and Spoofing exploits from
our real-world data set.

Surprisingly, we find that, among the remote execution
vulnerabilities for which our ground truth provides good
coverage, there are more real-world exploits than public

PoC exploits. This could be explained by the increas-
ing prevalence of obfuscated disclosures, as reflected in
NVD vulnerability summaries that mention the possibil-
ity of exploitation “via unspecified vectors” (for exam-
ple, CVE-2014-8439). Such disclosures make it more
difficult to create PoC exploits, as the technical informa-
tion required is not readily available, but they may not
thwart determined attackers who have gained experience
in hacking the product in question.

4.1 Exploit-related discourse on Twitter

The Twitter discourse is dominated by a few vulnerabil-
ities. Heartbleed (CVE-2014-0160) received the highest
attention, with more than 25,000 tweets (8,000 posted in
the first day after disclosure). 24 vulnerabilities received
more than 1,000 tweets. 16 of these vulnerabilities were
exploited: 11 in the real-world, 12 in public proofs of
concept and 8 in private proofs of concept. The median
number of tweets across all the vulnerabilities in our data
set is 14.

The terms that Twitter users employ when discussing
exploits also provide interesting insights. Surprisingly,
the distribution of the keyword “0day” exhibits a high
mutual information with public proof-of-concept ex-
ploits, but not with real-world exploits. This could be
explained by confusion over the definition of the term
zero-day vulnerability: many Twitter users understand
this to mean simply a new vulnerability, rather than a vul-
nerability that was exploited in real-world attacks before
its public disclosure [32]. Conversely, the distribution of
the keyword “patch” has high mutual information only
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with the real-world exploits, because a common reason
for posting tweets about vulnerabilities is to alert other
users and point them to advisories for updating vulner-
able software versions after exploits are detected in the
wild. Certain words like “exploit” or “advisory” are use-
ful for detecting both real-world and PoC exploits.

4.2 Information posted before disclosure
For the vulnerabilities in our data set, Figure 3 com-
pares the dates of the earliest tweets mentioning the
corresponding CVE numbers with the public disclosure
dates for these vulnerabilities. Using the disclosure date
recorded in OSVDB, we identify 47 vulnerabilities that
were mentioned in the Twitter stream before their pub-
lic disclosure. We investigate these cases manually to
determine the sources of this information. 11 of these
cases represent misspelled CVE IDs (e.g. users mention-
ing 6172 but talking about 6271 – Shellshock), and we
are unable to determine the root cause for 5 additional
cases owing to the lack of sufficient information. The re-
maining cases can be classified into 3 general categories
of information leaks:

Disagreements about the planned disclosure date.
The vendor of the vulnerable software sometimes posts
links to a security bulletin ahead of the public disclosure
date. These cases are typically benign, as the security
advisories provide instructions for patching the vulnera-
bility. A more dangerous situation occurs when the party
who discovers the vulnerability and the vendor disagree
about the disclosure schedule, resulting in the publica-
tion of vulnerability details a few days before a patch is
made available [6,14,16,17]. We have found 13 cases of
disagreements about the disclosure date.

Coordination of the response to vulnerabilities dis-
covered in open-source software. The developers of
open-source software sometimes coordinate their re-
sponse to new vulnerabilities through social media, e.g.
mailing lists, blogs and Twitter. An example for this be-
havior is a tweet about a wget patch for CVE-2014-4877
posted by the patch developer, followed by retweets and
advice to update the binaries. If the public discussion
starts before a patch is completed, then this is potentially
dangerous. However, in the 5 such cases we identified,
the patching recommendations were first posted on Twit-
ter and followed by an increased retweet volume.

Leaks from the coordinated disclosure process. In
some cases, the participants in the coordinated disclosure
process leak information before disclosure. For example,
security researchers may tweet about having confirmed

Figure 3: Comparison of the disclosure dates with the
dates when the first tweets are posted for all the vulner-
abilities in our dataset. Plotted in red is the identity line
where the two dates coincide.

that a vulnerability is exploitable, along with the soft-
ware affected. This is the most dangerous situation, as
attackers may then contact the researcher with offers to
purchase the exploit, before the vendor is able to release
a patch. We have identified 13 such cases.

4.3 Users with information-rich tweets
The tweets we have collected were posted by approxi-
mately 32,000 unique users, but the messages posted by
these users are not equally informative. Therefore, we
quantify utility on a per user basis by computing the ra-
tio of CVE tweets related to real-world exploits as well
as the fraction of unique real-world exploits that a given
user tweets about. We rank user utility based on the har-
monic mean of these two quantities. This ranking penal-
izes users that tweet about many CVEs indiscriminately
(e.g. a security news bot) as well as the thousands of
users that only tweet about the most popular vulnera-
bilities (e.g. Shellshock and Heartbleed). We create a
whitelist with the top 20% most informative users, and
we use this whitelist in our experiments in the follow-
ing sections as a means of isolating our classifier from
potential adversarial attacks. Top ranked whitelist users
include computer repair servicemen posting about the
latest viruses discovered in their shops and security re-
searchers and enthusiasts sharing information about the
latest blog and news postings related to vulnerabilities
and exploits.

Figure 4 provides an example of how the information
about vulnerabilities and exploits propagates on Twitter
amongst all users. The “Futex” bug, which enables unau-
thorized root access on Linux systems, was disclosed on
June 6 as CVE-2014-3153. After identifying users who
posted messages that had retweets counting for at least
1% of the total tweet counts for this vulnerability and ap-
plying a thresholding based on the number of retweets,
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Figure 4: Tweet volume for CVE-2014-3153 and tweets
from the most influential users. These influential tweets
shape the volume of Twitter posts about the vulnerability.
The 8 marks represent important events in the vulnerabil-
ity’s lifecycle: 1 - disclosure, 2 - Android exploit called
Towelroot is reported and exploitation attempts are de-
tected in the wild, 3,4,5 - new technical details emerge,
including the Towelroot code, 6 - new mobile phones
continue to be vulnerable to this exploit, 7 - advisory
about the vulnerability is posted, 8 - exploit is included
in ExploitDB.

we identify 20 influential tweets that shaped the vol-
ume of Twitter messages. These tweets correspond to
8 important milestones in the vulnerability’s lifecycle, as
marked in the figure.

While CVE-2014-3153 is known to be exploited in the
wild, it is not included in our ground truth for real-world
exploits, which does not cover the Linux platform. This
example illustrates that monitoring a subset of users can
yield most of the vulnerability- and exploit-related infor-
mation available on Twitter. However, over reliance on a
small number of user accounts, even with manual anal-
ysis, can increase susceptibility to data manipulation via
adversarial account hijacking.

5 Detection of proof-of-concept and real-
world exploits

To provide a baseline for our ability to classify exploits,
we first examine the performance of a classifier that uses
only the CVSS score, which is currently recommended
as the reference assessment method for software secu-
rity [50]. We use the total CVSS score and the ex-
ploitability subscore as a means of establishing baseline
classifier performances. The exploitability subscore is
calculated as a combination of the CVSS access vector,
access complexity, and authentication components. Both
the total score and exploitability subscore range from
0-10. By varying a threshold across the full range of
values for each score, we can generate putative labels

Figure 5: Precision and recall for classifying real world
exploits with CVSS score thresholds.

where vulnerabilities with scores above the threshold are
marked as “real-world exploits” and vulnerabilities be-
low the threshold are labeled as “not exploited”. Unsur-
prisingly, since CVSS is designed as a high recall sys-
tem which errs on the side of caution for vulnerability
severity, the maximum possible precision for this base-
line classifier is less than 9%. Figure 5 shows the recall
and precision values for both total CVSS score thresh-
olds and CVSS exploitability subscore thresholds.

Thus, this high recall, low precision vulnerability
score is not useful by itself for real-world exploit iden-
tification, and boosting precision is a key area for im-
provement.

Classifiers for real-world exploits. Classifiers for
real-world exploits have to deal with a severe class im-
balance: we have found evidence of real-world exploita-
tion for only 1.3% of the vulnerabilities disclosed dur-
ing our observation period. To improve the classifica-
tion precision, we train linear SVM classifiers on a com-
bination of CVSS metadata features, features extracted
from security-related tweets, and features extracted from
NVD and OSVDB (see Figure 2). We tune these clas-
sifiers by varying the regularization parameter C, and
we illustrate the precision and recall achieved. Values
shown are for cross-validation testing averaged across
10 stratified random shuffles. Figure 6a shows the av-
erage cross-validated precision and recall that are simul-
taneously acheivable with our Twitter-enhanced feature
set. These classifiers can achieve higher precision than
a baseline classifier that uses only the CVSS score, but
there is still a tradeoff between precision and recall. We
can tune the classifier with regularization to decrease the
number of false positives (increasing precision), but this
comes at the cost of a larger number of false negatives
(decreasing recall).

9
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(a) Real-world exploits. (b) Public proof-of-concept exploits. (c) Private proof-of-concept exploits for vulner-
abilities in Microsoft products.

Figure 6: Precision and recall of our classifiers.

This result partially reflects an additional challenge for
our classifier: the fact that our ground truth is imperfect,
as Symantec does not have products for all the platforms
that are targeted in attacks. If our Twitter-based classifier
predicts that a vulnerability is exploited and the exploit
exists, but is absent from the Symantec signatures, we
will count this instance as a false positive, penalizing the
reported precision. To assess the magnitude of this prob-
lem, we restrict the training and evaluation of the clas-
sifier to the 477 vulnerabilities in Microsoft and Adobe
products, which are likely to have a good coverage in our
ground truth for real-world exploits (see Section 3.1). 41
of these 477 vulnerabilities are identified as real-world
exploits in our ground truth. For comparison, we include
the performance of this classifier in Figure 6a. Improv-
ing the quality of the ground truth allows us to bolster
the values of precision and recall which are simultane-
ously achievable, while still enabling classification pre-
cision an order of magnitude larger than a baseline CVSS
score-based classifier. Additionally, while restricting the
training of our classifier to a whitelist made up of the top
20% most informative Twitter users (as described in Sec-
tion 4.3) does not enhance classifier performance, it does
allow us to achieve a precision comparable to the previ-
ous experiments (Figure 6a). This is helpful for prevent-
ing an adversary from poisoning our classifier, as dis-
cussed in Section 6.

These results illustrate the current potential and limi-
tations for predicting real-world exploits using publicly-
available information. Further improvements in the
classification performance may be achieved through a
broader effort for sharing information about exploits ac-
tive in the wild, in order to assemble a high-coverage
ground truth for training of classifiers.

Classifiers for proof-of-concept exploits. We explore
two classification problems: predicting public proof-of-

concept exploits, for which the exploit code is publicly
available, and predicting private proof-of-concept ex-
ploits, for which we can find reliable information that
the exploit was developed, but it was not released to the
public. We consider these problems separately, as they
have different security implications and the Twitter users
are likely to discuss them in distinct ways.

First, we train a classifier to predict the availability
of exploits in ExploitDB [3], the largest archive of pub-
lic exploits. This is similar to the experiment reported
by Bozorgi et al. in [36], except that our feature set is
slightly different—in particular, we extract word features
from Twitter messages, rather than from the textual de-
scriptions of the vulnerabilities. However, we include the
most useful features for predicting proof-of-concept ex-
ploits, as reported in [36]. Additionally, Bozorgi et al.
determined the availability of proof-of-concept exploits
using information from OSVDB [9], which is typically
populated using references to ExploitDB but may also
include vulnerabilities for which the exploit is rumored
or private (approximately 17% of their exploit data set).
After training a classifier with the information extracted
about the vulnerabilities disclosed between 1991–2007,
they achieved a precision of 87.5%.

Surprisingly, we are not able to reproduce their per-
formance results, as seen in Figure 6b, when analyz-
ing the vulnerabilities that appear in ExploitDB in 2014.
The figure also illustrates the performance of a classi-
fier trained with exclusion threshold for CVEs that lack
sufficient quantities of tweets. These volume thresholds
improve performance, but not dramatically.4 In part, this
is due to our smaller data set compared to [36], made up
of vulnerabilities disclosed during one year rather than
a 16-year period. Moreover, our ground truth for public
proof-of-concept exploits also exhibits a high class im-

4In this case, we do not restrict the exploits to specific vendors, as
ExploitDB will incorporate any exploit submitted.
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balance: only 6.2% of the vulnerabilities disclosed dur-
ing our observation period have exploits available in Ex-
ploitDB. This is in stark contrast to the prior work, where
more than half of vulnerabilities had proof of concept ex-
ploits.

This result provides an interesting insight into the evo-
lution of the threat landscape: today, proof-of-concept
exploits are less centralized than in 2007, and ExploitDB
does not have total coverage of public proof-of-concept
exploits. We have found several tweets with links to
PoC exploits, published on blogs or mailing lists, that
were missing from ExploitDB (we further analyze these
instances in Section 4). This suggests that information
about public exploits is increasingly dispersed among
social media sources, rather than being included in a
centralized database like ExploitDB,5 which represents
a hurdle for prioritizing the response to vulnerability dis-
closures.

To address this concern, we explore the potential for
predicting the existence of private proof-of-concept ex-
ploits by considering only the vulnerabilities disclosed in
Microsoft products and by using Microsoft’s Exploitabil-
ity Index to derive our ground truth. Figure 6c illustrates
the performance of a classifier trained with a conserva-
tive ground truth in which we treat vulnerabilities with
scores of 1 or less as exploits. This classifier achieves
precision and recall higher than 80%, even when only
relying on database feature subsets. Unlike in our prior
experiments, for the Microsoft Exploitability Index the
classes are more balanced: 67% of the vulnerabilities
(218 out of 327) are labeled as having a private proof-of-
concept exploit. However, only 8% of the Microsoft vul-
nerabilities in our dataset are contained within our real-
world exploit ground truth. Thus, by using a conservative
ground truth that labels many vulnerabilities as exploits
we can achieve high precision and recall, but this classi-
fier performance does not readily translate to real-world
exploit prediction.

Contribution of various feature groups to the clas-
sifier performance. To understand how our features
contribute to the performance of our classifiers, in Fig-
ure 7 we compare the precision and recall of our real-
world exploit classifier when using different subgroups
of features. In particular, incorporating Twitter data into
the classifiers allows for improving the precision be-
yond the levels of precision achievable with data that
is currently available publicly in vulnerability databases.
Both user features and word features generated based on
tweets are capable of bolstering classifier precision in
comparison to CVSS and features extracted from NVD

5Indeed, OSVDB no longer seems to provide the exploitation avail-
ability flag.

Figure 7: Precision and recall for classification of real
world exploits with different feature subsets. Twitter fea-
tures allow higher-precision classification of real-world
exploits.

and OSVDB. Consequently, the analysis of social media
streams like Twitter is useful for boosting identification
of exploits active in the real-world.

5.1 Early detection of exploits

In this section we ask the question: How soon can we
detect exploits active in the real world by monitoring the
Twitter stream? Without rapid detecton capabilities that
leverage the real-time data availability inherent to social
media platforms, a Twiter-based vulnerability classifier
has little practical value. While the first tweets about
a vulnerability precede the creation of IPS or AV sig-
natures by a median time of 10 days, these first tweets
are typically not informative enough to determine that
the vulnerability is likely exploited. We therefore sim-
ulate a scenario where our classifier for real-world ex-
ploits is used in an online manner, in order to identify
the dates when the output of the classifier changes from
“not exploited” to “exploited” for each vulnerability in
our ground truth.

We draw 10 stratified random samples, each with 50%
coverage of “exploited” and “not exploited” vulnerabil-
ities, and we train a separate linear SVM classifier with
each one of these samples (C = 0.0003). We start testing
each of our 10 classifiers with a feature set that does not
include features extracted from tweets, to simulate the
activation of the online classifier. We then continue to
test the ensemble of classifiers incrementally, by adding
one tweet at a time to the testing set. We update the ag-
gregated prediction using a moving average with a win-
dow of 1000 tweets. Figure 8a highlights the tradeoff
between precision and early detection for a range of ag-
gregated SVM prediction thresholds. Notably, though,
large precision sacrifices do not necessarily lead to large
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gains for the speed of detection. Therefore, we choose an
aggregated prediction threshold of 0.95, which achieves
45% precision and a median lead prediction time of two
days before the first Symantec AV or WINE IPS signa-
ture dates. Figure 8b shows how our classifier detection
lags behind first tweet appearances. The solid blue line
shows the cumulative distribution function (CDF) for the
number of days difference between the first tweet appear-
ance for a CVE and the first Symantec AV or IPS attack
signature. The green dashed line shows the CDF for the
day difference between 45% precision classification and
the signature creation. Negative day differences indicate
that Twitter events occur before the creation of the attack
signature. In approximately 20% of cases, early detec-
tion is impossible because the first tweet for a CVE oc-
curs after an attack signature has been created. For the
remaining vulnerabilities, Twitter data provides valuable
insights into the likelihood of exploitation.

Figure 8c illustrates early detection for the case of
Heartbleed (CVE-2014-1060). The green line indicates
the first appearance of the vulnerability in ExploitDB,
and the red line indicates the date when a Symantec at-
tack signature was published. The dashed black line
represents the earliest time when our online classifier is
able to detect this vulnerability as a real-world exploit at
45% precision. Our Twitter-based classifier provides an
“exploited” output 3 hours after the first tweet appears
related to this CVE on April 7, 2014. Heartbleed ex-
ploit traffic was detected 21 hours after the vulnerabil-
ity’s public disclosure [41]. Heartbleed appeared in Ex-
ploitDB on the day after disclosure (April 8, 2014), and
Symantec published the creation of an attack signature
on April 9, 2014. Additionally, by accepting lower lev-
els of precision, our Twitter-based classifiers can achieve
even faster exploit detection. For example, with classi-
fier precision set to approximately 25%, Heartbleed can
be detected as an exploit within 10 minutes of its first
appearance on Twitter.

6 Attacks against the exploit detectors

The public nature of Twitter data necessitates consider-
ing classification problems not only in an ideal environ-
ment, but also in an environment where adversaries may
seek to poison the classifiers. In causative adversarial
machine learning (AML) attacks, the adversaries make
efforts to have a direct influence by corrupting and alter-
ing the training data [28, 29, 31].

With Twitter data, learning the statistics of the train-
ing data is as simple as collecting tweets with either the
REST or Streaming APIs. Features that are likely to be
used in classification can then be extracted and evaluated
using criteria such as correlation, entropy, or mutual in-
formation, when ground truth data is publicly available.

In this regard, the most conservative assumption for se-
curity is that an adversary has complete knowledge of a
Twitter-based classifier’s training data as well as knowl-
edge of the feature set.

When we assume an adversary works to create both
false negatives and false positives (an availability AML
security violation), practical implementation of a ba-
sic causative AML attack on Twitter data is relatively
straightforward. Because of the popularity of spam on
Twitter, websites such as buyaccs.com cheaply sell
large volumes of fraudulent Twitter accounts. For ex-
ample, on February 16, 2015 on buyaccs.com, the base-
line price for 1000 AOL email-based Twitter accounts
was $17 with approximately 15,000 accounts available
for purchase. This makes it relatively cheap (less than
$300 as a base cost) to conduct an attack in which a
large number of users tweet fraudulent messages contain-
ing CVEs and keywords, which are likely to be used in
a Twitter-based classifier as features. Such an attacker
has two main limitations. The first limitation is that,
while the attacker can add an extremely large number of
tweets to the Twitter stream via a large number of differ-
ent accounts, the attacker has no straightforward mech-
anism for removing legitimate, potentially informative
tweets from the dataset. The second limitation is that
additional costs must be incurred if an attacker’s fraud-
ulent accounts are to avoid identification. Cheap Twitter
accounts purchased in bulk have low friend counts and
low follower counts. A user profile-based preprocess-
ing stage of analysis could easily eliminate such accounts
from the dataset if an adversary attempts to attack a Twit-
ter classification scheme in such a rudimentary manner.
Therefore, to help make fraudulent accounts seem more
legitimate and less readily detectable, an adversary must
also establish realistic user statistics for these accounts.

Here, we analyze the robustness of our Twitter-based
classifiers when facing three distinct causative attack
strategies. The first attack strategy is to launch a
causative attack without any knowledge of the training
data or ground truth. This blabbering adversary essen-
tially amounts to injecting noise into the system. The
second attack strategy corresponds to the word-copycat
adversary, who does not create a sophisticated network
between the fraudulent accounts and only manipulates
word features and the total tweet count for each CVE.
This attacker sends malicious tweets, so that the word
statistics for tweets about non-exploited and exploited
CVEs appear identical at a user-naive level of abstrac-
tion. The third, most powerful adversary we consider is
the full-copycat adversary. This adversary manipulates
the user statistics (friend, follower, and status counts)
of a large number of fraudulent accounts as well as the
text content of these CVE-related tweets to launch a
more sophisticated Sybil attack. The only user statis-
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(a) Tradeoff between classification speed and
precision.

(b) CDFs for day differences between first
tweet for a CVE, first classification, and attack
signature creation date.

(c) Heartbleed detection timeline between
April 7th and April 10th, 2014.

Figure 8: Early detection of real-world vulnerability exploits.

tics which we assume this full copycat adversary can-
not arbitrarily manipulate are account verification status
and account creation date, since modifying these features
would require account hijacking. The goal of this adver-
sary is for non-exploited and exploited CVEs to appear
as statistically identical as possible on Twitter at a user-
anonymized level of abstraction.

For all strategies, we assume that the attacker has pur-
chased a large number of fraudulent accounts. Fewer
than 1,000 out of the more than 32,000 Twitter users in
our CVE tweet dataset send more than 20 CVE-related
tweets in a year, and only 75 accounts send 200 or more
CVE-related tweets. Therefore, if an attacker wishes
to avoid tweet volume-based blacklisting, then each ac-
count cannot send a high number of CVE-related tweets.
Consequently, if the attacker sets a volume threshold of
20-50 CVE tweets per account, then 15,000 purchased
accounts would enable the attacker to send 300,000-
750,000 adversarial tweets.

The blabbering adversary, even when sending 1 mil-
lion fraudulent tweets, is not able to force the preci-
sion of our exploit detector below 50%. This suggests
that Twitter-based classifiers can be relatively robust to
this type of random noise-based attack (black circles in
Fig. 9). When dealing with the word-copycat adversary
(green squares in Fig. 9), performance asymptotically
degrades to 30% precision. The full-copycat adversary
can cause the precision to drop to approximately 20% by
sending over 300,000 tweets from fraudulent accounts.
The full-copycat adversary represents a practical upper
bound for the precision loss that a realistic attacker can
inflict on our system. Here, performance remains above
baseline levels even for our strongest Sybil attacker due
to our use of non-Twitter features to increase classifier
robustness. Nevertheless, in order to recover perfor-

Figure 9: Average linear SVM precision when training
and testing data are poisoned by the three types of adver-
saries from our threat model.

mance, implementing a Twitter-based vulnerability clas-
sifier in a realistic setting is likely to require curation of
whitelists and blacklists for informative and adversarial
users. As shown in figure 6a, restricting the classifier to
only consider the top 20% of users with the most relevant
tweets about real-world exploits causes no performance
degradation and fortifies the classifier against low tier ad-
versarial threats.

7 Related work

Previous work by Allodi et al. has highlighted multiple
deficiencies in CVSS version 2 as a metric for predict-
ing whether or not a vulnerability will be exploited in the
wild [24], specifically because predicting the small frac-
tion of vulnerabilities exploited in the wild is not one of
the design goals of CVSS. By analyzing vulnerabilities
in exploit kits, work by Allodi et al. has also established
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that Symantec threat signatures are an effective source
of information for determining which vulnerabilities are
exploited in the real world, even if the coverage is not
complete for all systems [23].

The closest work to our own is Bozorgi et al., who
applied linear support vector machines to vulnerability
and exploit metadata in order predict the development of
proof-of-concept exploits [36]. However, the existence
of a POC exploit does not necessarily mean that an ex-
ploit will be leveraged for attacks in the wild, and real
world attacks occur in only of a small fraction of the
cases for which a vulnerability has a proof of concept ex-
ploit. [25, 47]. In contrast, we aim to detect exploits that
are active in the real world. Hence, our analysis expands
on this prior work [36] by focusing classifier training on
real world exploit data rather than POC exploit data and
by targeting social media data as a key source of features
for distinguishing real world exploits from vulnerabili-
ties that are not exploited in the real world.

In prior analysis of Twitter data, success has been
found in a wide variety of applications including earth-
quake detection [53], epidemiology [26, 37], and the
stock market [34, 58]. In the security domain, much
attention has been focused on detecting Twitter spam
accounts [57] and detecting malicious uses of Twitter
aimed at gaining political influence [30, 52, 55]. The
goals of these works is distinct from our task of predict-
ing whether or not vulnerabilities are exploited in the
wild. Nevertheless, a practical implementation of our
vulnerability classification methodology would require
the detection of fraudulent tweets and spam accounts to
prevent poisoning attacks.

8 Discussion

Security in Twitter analytics. Twitter data is publicly
available, and new users are free to join and start send-
ing messages. In consequence, we cannot obfuscate or
hide the features we use in our machine learning system.
Even if we had not disclosed the features we found most
useful for our problem, an adversary can collect Twit-
ter data, as well as the data sets we use for ground truth
(which are also public), and determine the most informa-
tion rich features within the training data in the the same
way we do. Our exploit detector is an example of a se-
curity system without secrets, where the integrity of the
system does not depend on the secrecy of its design or
of the features it uses for learning. Instead, the security
properties of our system derive from the fact that the ad-
versary can inject new messages in the Twitter stream,
but cannot remove any messages sent by the other users.
Our threat model and our experimental results provide
practical bounds for the damage the adversary can inflict
on such a system. This damage can be reduced further

by incorporating techniques for identifying adversarial
Twitter accounts, for example by assigning a reputation
score to each account [44, 48, 51].

Applications of early exploit detection. Our results
suggest that, the information contained in security-
related tweets is an important source for timely security-
related information. Twitter-based classifiers can be em-
ployed to guide the prioritization of response actions af-
ter vulnerability disclosures, especially for organizations
with strict policies for testing patches prior to enterprise-
wide deployment, which makes patching a resource-
intensive effort. Another potential application is model-
ing the risk associated with vulnerabilities, for example
by combining the likelihood of real-world exploitation,
produced by our system, with additional metrics for vul-
nerability assessment, such as the CVSS severity scores
or the odds that the vulnerable software is exploitable
given its deployment context (e.g. whether it is attached
to a publicly-accessible network). Such models are key
for the emerging area of cyber-insurance [33], and they
would benefit from an evidence-based approach for esti-
mating the likelihood of real-world exploitation.

Implications for information sharing efforts. Our re-
sults highlight the current challenges for the early detec-
tion of exploits, in particular the fact that the existing
sources of information for exploits active in the wild do
not cover all the platforms that are targeted by attackers.
The discussions on security-related mailing lists, such as
Bugtraq [10], Full Disclosure [4] and oss-security [8],
focus on disclosing vulnerabilities and publishing ex-
ploits, rather than on reporting attacks in the wild. This
makes it difficult for security researchers to assemble
a high-quality ground truth for training supervised ma-
chine learning algorithms. At the same time, we illustrate
the potential of this approach. In particular,our whitelist
identifies 4,335 users who post information-rich mes-
sages about exploits. We also show that the classification
performance can be improved significantly by utilizing
a ground truth with better coverage. We therefore en-
courage the victims of attacks to share relevant technical
information, perhaps through recent information-sharing
platforms such as Facebook’s ThreatExchange [42] or
the Defense Industrial Base voluntary information shar-
ing program [1].

9 Conclusions
We conduct a quantitative and qualitative exploration
of information available on Twitter that provides early
warnings for the existence of real-world exploits. Among
the products for which we have reliable ground truth,
we identify more vulnerabilities that are exploited in
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the real-world than vulnerabilities for which proof-of-
concept exploits are available publicly. We also iden-
tify a group of 4,335 users who post information-rich
messages about real-world exploits. We review several
unique challenges for the exploit detection problem, in-
cluding the skewed nature of vulnerability datasets, the
frequent scarcity of data available at initial disclosure
times and the low coverage of real world exploits in the
ground truth data sets that are publicly available. We
characterize the threat of information leaks from the co-
ordinated disclosure process, and we identify features
that are useful for detecting exploits.

Based on these insights, we design and evaluate a
detector for real-world exploits utilizing features ex-
tracted from Twitter data (e.g., specific words, number of
retweets and replies, information about the users posting
these messages). Our system has fewer false positives
than a CVSS-based detector, boosting the detection pre-
cision by one order of magnitude, and can detect exploits
a median of 2 days ahead of existing data sets. We also
introduce a threat model with three types of adversaries
seeking to poison our exploit detector, and, through sim-
ulation, we present practical bounds for the damage they
can inflict on a Twitter-based exploit detector.
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