
When to Localize?
A Risk-Constrained Reinforcement Learning Approach

Chak Lam Shek∗, Kasra Torshizi∗, Troi Williams, and Pratap Tokekar

Abstract— In a standard navigation pipeline, a robot localizes
at every time step to lower navigational errors. However, in
some scenarios, a robot needs to selectively localize when it is
expensive to obtain observations. For example, an underwater
robot surfacing to localize too often hinders it from searching
for critical items underwater, such as black boxes from crashed
aircraft. On the other hand, if the robot never localizes,
poor state estimates cause failure to find the items due to
inadvertently leaving the search area or entering hazardous,
restricted areas. Motivated by these scenarios, we investigate
approaches to help a robot determine “when to localize?” We
formulate this as a bi-criteria optimization problem: minimize
the number of localization actions while ensuring the probabil-
ity of failure (due to collision or not reaching a desired goal)
remains bounded. In recent work, we showed how to formulate
this active localization problem as a constrained Partially
Observable Markov Decision Process (POMDP), which was
solved using an online POMDP solver. However, this approach
is too slow and requires full knowledge of the robot transition
and observation models. In this paper, we present RISKRL,
a constrained Reinforcement Learning (RL) framework that
overcomes these limitations. RISKRL uses particle filtering
and recurrent Soft Actor-Critic network to learn a policy
that minimizes the number of localizations while ensuring
the probability of failure constraint is met. Our numerical
experiments show that RISKRL learns a robust policy that
outperforms the baseline by at least 13% while also generalizing
to unseen environments.

I. INTRODUCTION

In robotics, self-localization is crucial because it enhances
navigation accuracy, and situational awareness, and enables
complex tasks. Typically, an autonomous robot perceives its
environment and self-localizes, plans its subsequent actions,
acts upon its plan phases, and repeats the cycle. However,
sometimes, a robot may want to localize seldom when it
is not advantageous. For example, underwater robots need
to surface to localize in underwater rescue and recovery
missions. Surfacing to localize too often may hinder an
underwater robot from searching for critical underwater
items such as black boxes from crashed aircraft. On the other
hand, if the robot never localizes, it will accumulate large
amounts of drift [1], which may prevent it from finding the
items due to inadvertently leaving the search area or entering
hazardous, restricted areas. Therefore, in such scenarios,
robots must balance prolonged actions that achieve mission

∗C. Shek and K. Torshizi contributed equally and are listed alphabetically.
This research was funded in part by the National Science Foundation

(NSF) Eddie Bernice Johnson INCLUDES initiative, Re-Imagining STEM
Equity Utilizing Postdoc Pathways (RISE UPP), award #2217329. All
authors are at the University of Maryland, College Park, MD 20742, USA.
{cshek1,ktorsh,troiw,tokekar}@umd.edu

Initial
State

Goal
State

Localize
here?

Predicted
collision

Fig. 1: Motivating example. Consider a robot that may want
to seldom localize (e.g., due to resource constraints) while
traveling along a path (black dashed line). Despite obstacles
(rocks and water), the autonomous robot can execute a series
of open-loop motions for some period. However, as the
dead reckoning uncertainty (gold and red ellipses) grows,
the probability of failure (such as collision) may become
too large. As such the robot must localize at some point to
avoid failures. Thus, our question is: When should the robot
localize to reduce failure probabilities?

objectives (such as searching for critical items underwater)
with localizing to improve navigation accuracy.

We explored such scenarios in our recent work [2]. Our
central question was: how can a robot plan and act for long
horizons safely and only localize when necessary? (Figure 1
discusses a general scenario to this question). We emphasize
that such a question is not trivial because we have two
competing objectives. The first objective is localize often to
maximize mission safety and performance, where we can
ensure the vehicle remains within the search area and out
of hazardous zones. On the other hand, the second objective
is to localize infrequently to minimize the number of times
the vehicle must deviate from its mission, which in turn can
reduce mission time. These two objectives are challenging
to optimize via one objective, as shown with our POMCP
baseline in [2]. Therefore, we addressed the question by
formulating it as a constrained Partially Observable Markov
Decision-making Process (POMDP), where our objective
was to minimize the number of localization actions while
not exceeding a given probability of failure due to colli-
sions. Then we employed CC-POMCP [3], a cost-constrained
POMDP solver, to find policies that determine when the
robot should move along a given path or localize.



Although our prior approach produced policies that
reached the goal and outperformed baselines, the approach
had limitations. First, CC-POMCP was computationally ex-
pensive, requiring over 20 minutes of inference to navigate a
path of 55 waypoints1. Second, CC-POMCP requires a well-
defined model of the environment, including the robot’s tran-
sition (motion) and observation models. Requiring such mod-
els may be problematic in unknown or dynamic real-world
environments where it may be challenging to obtain accurate
models. Finally, in our prior experiments, CC-POMCP failed
to reach the goal when we increased the amount of transition
noise, which limited successful experiments to low transition
noises.

We propose a novel approach termed RISKRL that em-
ploys constrained Reinforcement Learning (RL) [4] and
Particle Filters (PF) to overcome these limitations. Our new
approach has multiple advantages over our prior work. First,
although our new approach has a longer, single training
time, it infers quicker during deployment, enabling real-time
planning. The second was reducing the need for accurate
transition and observation models of the environment. Like
cost-constrained POMDPs in our prior work [2], constrained
RL allows us to separate the value function and risk. In this
formulation, the risk is modeled as a probability constraint,
allowing us to design policies that minimize the failure prob-
ability while ensuring the robot remains within acceptable
risk levels. This formulation provides greater control over
the failure rate by explicitly incorporating risk constraints
into the decision-making process. Furthermore, we use a PF
to maintain the robot’s belief as the robot executes noisy
motion commands and receives noisy measurements from the
environment. We also use the PF to compute the observation
for the RL robot.

We perform numerical experiments to compare RISKRL
with several baselines, including standard RL (BASERL),
CC-POMCP, and heuristic policies. Our main finding is that
when deployed in the environment that the robot is trained
in RISKRL outperforms the BASERL and CC-POMCP base-
lines by at least 13% in terms of the success rate while also
being the only algorithm that satisfies the risk constraint.
While environment-specific heuristics can match the per-
formance, we find that RISKRL also generalizes to unseen
environments, which the heuristics cannot.

II. RELATED WORK

This paper explores minimizing localization actions while
not exceeding pre-defined failure probabilities. In the follow-
ing subsections, we position our method within the active
localization and constrained RL literature.

A. Active Localization

Active perception [5], [6] encompasses various ap-
proaches, including active localization [7], [8], active map-
ping [9]–[11], and active SLAM [9]. These approaches focus
on finding optimal robot trajectories and observations to

1We obtained these run times from performing the experiments on a
computing cluster.

achieve mission goals. Of these approaches, our current
approach falls under active localization. Typically, active
localization methods address where a robot moves and looks
to localize itself [12]–[15] or a target [16], [17]. Thus,
these active localization approaches generally differ from
our problem because we seek to determine when a robot
localizes. However, one exception is our prior work [2],
which proposes a preceding approach to the one in this paper.
This approach improves upon [2], where we now model the
probability of failure in terms of risk, reduce the inference
time significantly, and relax the need for well-defined noise
models.

B. Constrained Reinforcement Learning

Model-free reinforcement learning promises a more scal-
able and general approach to solving the active localiza-
tion problem since it requires less domain knowledge [18],
[19]. However, many prior works applying RL to solving
POMDPs, even without constraints, have gotten poorer re-
sults compared to more specialized methods [20]. A recent
architecture [21] utilizing a Soft-Actor Critic (SAC) with
two separate recurrent networks for both the actor and value
functions has shown promise to surpass more specialized
methods in select examples. Since recurrent networks also
act on the history of observations, they can handle partial
observability. Our RISKRL approach is based on this twin
recurrent network SAC architecture [21]. However, unlike
[21] we also seek to deal with risk constraints.

There is a separate line of work on constrained RL in
the fully observable setting [22]. Constrained RL extends
model-free RL by incorporating real-world limitations, such
as safety, budget, or resource constraints, into the learning
process [22]. The primary challenge in constrained RL is bal-
ancing the trade-off between maximizing cumulative rewards
and satisfying these secondary constraints. A commonly
used approach to tackle this problem is the primal-dual
optimization method [23], which iteratively adjusts both the
policy and constraint parameters. Various techniques are used
to simplify and solve these problems, such as transforming
the constraints into convex functions [24] or employing
stochastic approximation methods to handle probabilistic
constraints [4]. However, these prior works on constrained
RL have only focused on the fully observable setting. In
this paper, we build on these two lines of work and present
RISKRL, which handles both partial observability as well as
chance constraints.

III. PROBLEM STATEMENT

This paper solves the same active localization problem as
in our prior work [2]. That is, a robot aims to selectively
localize while navigating along a path to a pre-defined goal.
When the robot believes it is opportune to localize, it uses its
sensors to obtain noisy observations of its pose to mitigate
failures such as collisions. Thus, we aim to generate a move-
localize policy that 1) minimizes localization events and
2) avoids exceeding a failure probability threshold ĉ. For



Fig. 2: This flowchart depicts a decision-making process
for a robot interacting with an environment. It integrates a
particle filter for state estimation and reinforcement learning
components (actor-critic architecture) for decision-making.

the reader’s convenience, we include the original objective
function from [2]:

π∗ = argmin
π∈Π

Nactions∑
t=0

at = {localize}

s.t. Pr(failure|x1:Npoints
, a1:Nactions

, b(s0)) ≤ ĉ,

(1)

where Nactions is the total number of actions, a1:Nactions is
the sequence of move and localize actions, and b(s0) is the
initial belief at the start of the path. Finally, Π denotes the
set of all possible action sequences over Nactions timesteps.

IV. RISKRL ACTIVE LOCALIZATION ALGORITHM

In this section, we present our RISKRL algorithm for
solving the active localization problem given in Equation 1.
Within the context of RISKRL, the following subsections
discuss our active localization framework (that is, the PF,
low-level planner, and high-level RL planner) in Section IV-
A and provide detailed descriptions of the RL algorithm in
the remaining subsections.

A. Overview

Algorithm 1 RISKRL Active Localization Algorithm

Initialize RL planner state st, initial PF belief b(s0), path
x1:Npoints

while not in a terminal state do
RL planner uses st to select at (move/localize)
if at = move then

Low-level planner computes motion command ut

Low-level planner truncates path x2:Npoints

Robot executes ut

PF propagates belief b(st) using ut

end if
if at = localize then

Robot receives observation ostate
PF updates belief b(st) using ostate
Low-level planner replans hazard-free path to goal

end if
Robot receives reward rt
PF computes oplanner for the next time step

end while

We now discuss our RISKRL active localization frame-
work, which is depicted in Figure 2 and described in Algo-
rithm 1. Our framework comprises three main components:
an RL high-level planner, a PF, and a low-level planner. The
high-level planner chooses which action (move or localize)
the agent performs given an input state st. Next, we use the
PF to maintain a belief of the agent’s state whenever the
agent selects either action and computes a state vector for
the RL planner. Finally, a low-level planner determines how
the agent should move (that is, move forward, turn left, or
turn right) if move is chosen or recomputes hazard-free paths
if localize is chosen.

B. High-Level Policy

The output from the PF is fed as input to the high-level
policy. The goal of the high-level policy is to choose between
two actions: ARLP = {move, localize}. If the policy chooses
to move, then we execute the next action given by the low-
level planner without taking an observation. As described
earlier, we use a constrained RL policy that minimizes
the number of localization actions while ensuring the risk
constraint is met.

The state input st given to the RL policy is derived from
the output of the PF. Specifically, st is a 2D vector containing
the collision probability and the Manhattan distance from the
robot to the goal. We compute the collision probability by
counting the number of particles in collision at the current
time step. We chose this observation representation so that
our agent generalizes to unseen environments.

The reward rt = −1 if the robot chooses the localize
action and 0 otherwise. We can use standard RL to mini-
mize the number of localization actions by maximizing this
reward function. However, naive optimization will violate
the constraints in (1). The constraint probability is difficult
to estimate because it requires interaction with the environ-
ment and varies based on the policy being used, making
it challenging to establish a clear relationship between the
policy and the constraint. We follow the relaxation approach
outlined in [4], converting the probabilistic constraint in a
Chance-Constrained POMDP into a cumulative constraint.
Specifically, we reformulate the optimization problem as
follows. Our goal is to maximize the expected cumulative
reward V (θ), defined by:

max
θ∈Rd

V (θ) ≜ E

[ ∞∑
t=0

γtr(st, at) | πθ

]
(2)

where θ denotes the parameters of the policy πθ, and V (θ)
represents the expected reward over time. We then impose a
cumulative constraint:

Uθ :

T∑
t=0

γt(1− Pr(failure | x1:N , a1:t, b(s0))) ≥ c (3)

Here, Uθ is the accumulated discounted probability of failure,
and c = (1−ĉγT (1−γ))

(1−γ) represents the risk-adjusted thresh-
old. This formulation simplifies the original problem by
approximating the probabilistic constraint, thus allowing the



constraint to be evaluated based on the data generated from
the rollout trajectory.

To incorporate the approximation of the probabilistic con-
straint into the reward function, we adjust the reward to
account for the constraint violation. The new reward function
is formulated as follows:

r̂(st, at) = r(st, at) + λ (I(st /∈ failure)− c(1− γ)) , (4)

where r̂(st, at) represents the adjusted reward function that
is −1 if the action is localize and 0 otherwise, λ is a penalty
coefficient, I(st /∈ failure) is an indicator function that is
1 if the state st is not in the failure set and 0 otherwise,
and c(1− γ) is the threshold term derived from the relaxed
constraint. The difference between the indicator function’s
value and the threshold can estimate the probability that the
constraints are satisfied.

The algorithm [4] shown below employs the primal-dual
method to optimize the expected reward while satisfying
constraints. The primal component focuses on maximizing
the reward function as defined in Equation (4), while the
dual component adjusts the λ values to control the risk levels
associated with these constraints. It iteratively updates the
policy parameters and dual variables by simulating trajec-
tories and estimating gradients. The policy can be updated
by computing the policy gradient defined by the following
equation:

∇θL(θk, λk) = r̂(st, at)∇θ log πθk(a0|s0) (5)

where ∇θ log πθk(a0|s0) is the gradient of the log-
probability of the policy πθk selecting action a0 given state
s0.

Algorithm 2 Primal-Dual Optimization [4]

Initialize θ0, λ0, T , ηθ, ηλ, δ, ϵ
while not converged do

Rollout a trajectory with the policy πθk(s)
Estimate primal gradient ∇θL(θk, λk)
Estimate dual gradient U(θk)− c
Update primal variable: θk+1 = θk + ηθ∇θL(θk, λk)
Update dual variable: λk+1 = λk − ηλ(U(θk)− c)

end while

C. Handling Partial Observability

The previous section described how we can optimize
the policy using the primal-dual approach. This section
presents the specific architecture we use for the actual policy.
Stemming from [21], we use a Soft Actor-Critic Model
as it generally tends to have better sample efficiency. To
deal with partial observability, Recurrent Neural Networks
(RNN) have been known to mitigate the effects of a noisy
observation by making decisions based on the past trajectory
instead of just the current observation (or fixed sequence of
observations) [25] [26]. We implement an LSTM module to
help stabilize training [27]. Initial training results showed
that a deterministic actor would more often converge to a
uniform policy (only moving or only localizing), therefore

we decided to optimize the results with a stochastic actor.
All of our embeddings are obtained with a one-layer MLP.
Figure 3 provides an illustrative diagram of the architecture.

V. EXPERIMENTAL EVALUATION

In this section, we report our findings from numerical
experiments comparing RISKRL with several baselines and
evaluating the robustness and generalization capabilities of
RISKRL. The training and testing environment are motivated
by an underwater scenario introduced in our prior work [2].
In the scenarios, a robot is tasked with navigating through
complex underwater environments, which include obstacles
such as rocks and coral formations. The robot must perform
localization and path planning while accounting for the
unique challenges posed by water currents and variable
visibility. Our experimental code is located on GitHub2.

A. Setup

Baselines. We compare RISKRL with four types of base-
lines. The first type is two static policies (SP): (M2x,L),
and (M3x,L), where for example, (M2x,L) is a fixed
repeating sequence of two move actions followed by a
localize action. The second type is a threshold planner (TP)
that localizes the robot whenever the probability of failure
(computed using the PF output) exceeds a threshold. The
third type is an implementation of CC-POMCP, a cost-aware,
online policy planner from our prior work [2]. Finally, the
last type is a standard, risk-unaware RL policy (BASERL). In
the latter, we penalize every time the robot chooses a localize
action (−1) and when it collides (−256). This baseline is
used to assess the advantage of employing risk-aware RL.

Environments. Figure 4 shows our environmental setup.
We assume the robot knows the map, the start state, and the
goal region. We set the initial belief to the start state. In all
of our experiments, we set the transition noise such that the
robot has an 80% chance of going in the direction it is facing,
a 10% chance of drifting to the left, and a 10% chance of
drifting to the right. Other than the results in Section V-E, we
assume no observation noise when localizing to focus more
on the effect of transition noise. Figure 4 visually represents
our environments.

Training Process. We trained each of the planners on the
train environment, allotting 8 hours for BASERL and 12
hours for RISKRL to reach 200 episodes. The parameters
of the BASERL robot and the proposed RISKRL robot are
defined in Table I.

The following subsections compare the performance of
our baselines and the proposed algorithm. Our experiments
ran until the robot reached the goal or failure region. The
results were based on 100 runs for each algorithm in each
environment (except CC-POMCP, which we only ran 75
times in the train environment since it takes around 30X
more time to get through a trajectory compared to the rest
of the planners). All bars depict the mean values in Figures
7a and 7b.

2https://github.com/raaslab/when-to-localize-riskrl

https://github.com/raaslab/when-to-localize-riskrl


Fig. 3: A diagram of the RL architecture used to train the models

Fig. 4: This figure shows the three Minigrid environments used in our evaluations. The red triangles represent the robots,
the green squares represent the goal, and the orange squares represent the failure states. We trained the RL robots using the
train environment. All environments are in a 32x32 grid.

Planner rgoal rmove rlocal rfail # Particles ℓr γ α τ DQN Layers Policy Layers Obs Emb. Size
BASERL 0 0 -1 -256 100 0.00012 0.95 0.25 0.005 [64, 64] [64, 64] 32
RISKRL ” ” ” 0 ” 0.0001 0.9 0.5 ” [128, 128] [128, 128] 32

TABLE I: RL Parameters. ℓr is the learning rate, γ is the discount factor, α is the target entropy, and τ is the soft update
parameter

Fig. 5: A qualitative example of robot navigation: blue) true
path, red) estimated path and localization points.

B. Qualitative Example

In Figure 5, we present a qualitative example demonstrat-
ing the robot’s behavior in a noisy and uncertain environ-
ment, characterized by (80%, 10%, 10%) transition noise
and 32% observation noise, with a risk threshold set at

40%. The results show that the robot consistently applies
localization in the Start Area and Middle Tunnel to mitigate
the risk of early failure. Additionally, the robot increases the
frequency of localization within the Middle Tunnel, where
the risk of failure is higher, and noise can cause deviations
from the intended path. Since the area after the Middle
Tunnel is a safe zone, the robot does not perform localization
there. Finally, the robot localizes upon reaching the goal to
ensure precise positioning for successful task completion.
This adaptive behavior highlights the robot’s strategy to
navigate effectively under challenging conditions.

C. Comparing with Baseline

We compared all algorithms in terms of the number of
localization actions and success rates (that is, reaching the
goal). The SP, TP, and CC-POMCP results represent the av-
erage performance of each policy type. We found that we can
categorize the algorithms into two main groups: (M2xL),
(M3xL), and RISKRL tend to have higher success rates but
also localize more often while TP, BASERL, and CC-POMCP
tend to localize less but suffer from lower success rates.
Our results showcase the strengths of the RISKRL planner.
In our experiments, we set c = 0.4 for general training



and the policy successfully achieves this threshold. The
success rate in the testing environments is also anticipated
to be lower than the risk threshold, but not by a significant
margin. Although, the RISKRL planner performs comparably
worse to (M3xL) in the train environment as they both
have a success rate of 93% with (M3xL) needing fewer
localizations, the RISKRL planner generalized very well
to the test-complex and test-simple environments.
In the test-complex environment, our RISKRL planner
used a similar amount of localizations to (M3xL) while
having a 13% higher success rate. In the test-simple
environment, our RISKRL planner achieved a 99% success
rate, albeit with more localizations than (M3xL). One of
the main strengths of RISKRL is that it can keep consis-
tently high success rates, on par if not better than (M2xL)
while having constantly lower number of localizations than
(M2xL) and even on par number of localizations than
(M3xL) in the test-complex environment.

We found that BASERL ends up performing slightly better
than the TP for both metrics in train and test-simple.
However, when looking at the test-complex environ-
ment, BASERLwas able to somewhat generalize to the
environment and achieve a 35% success rate. In contrast,
TP was only able to achieve a 21% success rate.

Compared to CC-POMCP, our results indicate that our
BASERL model performs very similarly with a slightly
higher success rate but also a slightly higher number of
localizations in the train environment. While every other
planner can compute the next action nearly instantly, it takes
CC-POMCP around 20 minutes to get through a trajectory.

(a) (b)

Fig. 6: (a) Training Graph showing Number of Localizations
(b) Training Graph showing Success Rate. Refers to train
environment. For RISKRL, c was set to 0.4.

(a) (b)

Fig. 7: (a) Number of Localizations in each environment (b)
Success Rate in each environment.

D. Analysis of RL Policies

Fig. 8: Probability of localization based on the robot’s
estimated location.

Figure 8 showcases each of the RL planners’ decision-
making based on their estimated localization. In general,
we see that BASERL concentrates its localizations in fewer
locations that are either close to obstacles or around a turn.
On the other hand, RISKRL is much more uniform where it
is willing to localize at more locations along the path with
higher concentrations around obstacles.

E. Effect of Transition and Observation Noise

Varying Transition Noise. Figures 9a and 9b illustrate the
number of localizations and success rates for RISKRL as we
vary the transition noise. In all the experiments, the allowable
probability of failure was set to c = 0.4. Not surprisingly,
the number of localization increases as the transition noise
increases. But more crucially, we observe that RISKRL can
respect this constraint even when the transition noise is very
high, reaffirming the correctness of the algorithm.

Varying Observation Noise. In the previous results, we
had no observation noise when the robot chose to obtain a



(a) (b)

Fig. 9: (a) Number of Localizations vs. Transition Noise
Levels. (b) Success Rate vs. Transition Noise Levels. The
results show training performance in train.

(a) (b)

Fig. 10: (a) Number of Localizations vs. Different Observa-
tion Noise Levels. (b) Success Rate vs. Different Observation
Noise Levels

measurement. Here, we study the effect of the observation
noise level on the performance of RISKRL. Figures 10a and
10b demonstrate that observation noise does not impact the
robot’s performance using our algorithm. This experiment
draws the observation from the 3× 3 region around the true
position with a truncated Gaussian distribution. The value
shown in the figures is at the center of the 3×3 region. The
results indicate that, despite increasing observation noise,
the success rates remain relatively consistent across differ-
ent levels. A similar trend is observed for the number of
localizations, suggesting that our algorithm maintains robust
performance in the presence of observation noise.

(a) (b)

Fig. 11: (a) Number of Localizations vs. Different Threshold
Levels. (b) Success Rate vs. Different Threshold Levels

F. Effect of Risk Constraint

Figures 11a and 11b depict the number of localizations
and success rates under varying levels of the risk threshold.
The results demonstrate that both metrics are influenced by

changes in the risk threshold. As the threshold increases,
the robot adopts more conservative movement strategies to
minimize risk, resulting in a higher frequency of localization
and fewer failures. Conversely, with a lower risk threshold,
the robot engages in more aggressive actions, leading to
increased uncertainty and a higher likelihood of failure. Con-
sequently, the success rate diminishes as the risk constraint
becomes more lenient.

VI. CONCLUSION

We developed a novel active localization approach termed
RISKRL, which combines a chance-constrained planner with
a particle filter (PF). Our approach aims to minimize lo-
calization actions while not exceeding failure probabilities.
The chance-constrained planner determines when the robot
moves or localizes and was implemented using constrained
reinforcement learning (RL). The PF maintains the robot’s
belief by processing noisy 2D pose observations from the en-
vironment and motion commands. We also use the PF’s belief
to compute the observation for our RL planner. The current
approach succeeds our prior work [2], which employed an
algorithm that has a slower inference time and requires
well-defined transition and observation noise models, making
it unusable in real-time, real-world scenarios. Our results
revealed three key findings. First, RISKRL consistently out-
performed the baseline by at least 13%, while maintaining
a similar number of localizations. This demonstrates the
robot’s ability to optimize the timing of localization actions,
achieving higher rewards. Second, the robot dynamically
adjusts the frequency of localizations, showcasing its adapt-
ability to varying scenarios and environmental conditions.
Finally, through bi-criteria optimization, RISKRL effectively
controls risk levels while maximizing performance, ensuring
the robot operates safely. Notably, RISKRL demonstrates
zero-shot transfer capabilities, handling new environments
without retraining, underscoring its potential for real-world
deployment.

We believe that our models hold the potential for further
optimization to achieve improved results. One promising
direction is the implementation of Evolving Rewards [28] to
identify a more effective set of reward values. Additionally,
we aim to extend the current formulation to encompass both
continuous state and action spaces, with the expectation that
this will facilitate deployment in real-world scenarios.

REFERENCES

[1] A. A. Pereira, J. Binney, G. A. Hollinger, and G. S. Sukhatme,
“Risk-aware path planning for autonomous underwater vehicles using
predictive ocean models,” Journal of Field Robotics, vol. 30, no. 5,
pp. 741–762, 2013.

[2] T. Williams, K. Torshizi, and P. Tokekar, “When to Localize?: A
POMDP Approach,” in 2024 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), 2024.

[3] J. Lee, G.-h. Kim, P. Poupart, and K.-E. Kim, “Monte-
Carlo Tree Search for Constrained POMDPs,” in Advances in
Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds., vol. 31. Curran Associates, Inc., 2018. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2018/file/
54c3d58c5efcf59ddeb7486b7061ea5a-Paper.pdf

https://proceedings.neurips.cc/paper_files/paper/2018/file/54c3d58c5efcf59ddeb7486b7061ea5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/54c3d58c5efcf59ddeb7486b7061ea5a-Paper.pdf


[4] S. Paternain, M. Calvo-Fullana, L. F. O. Chamon, and A. Ribeiro,
“Safe policies for reinforcement learning via primal-dual methods,”
IEEE Transactions on Automatic Control, vol. 68, no. 3, pp. 1321–
1336, 2023.

[5] C. Cowan and P. Kovesi, “Automatic sensor placement from vision task
requirements,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 10, no. 3, pp. 407–416, 1988.

[6] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active per-
ception,” Autonomous Robots, vol. 42, pp. 177–196, 2018.

[7] W. Burgard, D. Fox, and S. Thrun, “Active mobile robot localization,”
in Proceedings of the Fifteenth International Joint Conference on
Artifical Intelligence - Volume 2, ser. IJCAI’97. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1997, p. 1346–1352.

[8] G. Borghi and V. Caglioti, “Minimum uncertainty explorations in the
self-localization of mobile robots,” IEEE Transactions on Robotics and
Automation, vol. 14, no. 6, pp. 902–911, 1998.

[9] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman,
L. Carlone, and J. A. Castellanos, “A Survey on Active Simultaneous
Localization and Mapping: State of the Art and New Frontiers,” IEEE
Transactions on Robotics, vol. 39, no. 3, pp. 1686–1705, 2023.

[10] T. Sasaki, K. Otsu, R. Thakker, S. Haesaert, and A.-a. Agha-
mohammadi, “Where to Map? Iterative Rover-Copter Path Planning
for Mars Exploration,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2123–2130, 2020.

[11] H. Dhami, V. D. Sharma, and P. Tokekar, “Pred-NBV: Prediction-
Guided Next-Best-View Planning for 3D Object Reconstruction,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2023, pp. 7149–7154.

[12] C. Mostegel, A. Wendel, and H. Bischof, “Active monocular local-
ization: Towards autonomous monocular exploration for multirotor
MAVs,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 3848–3855.

[13] K. Otsu, A.-A. Agha-Mohammadi, and M. Paton, “Where to Look?
Predictive Perception With Applications to Planetary Exploration,”
IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 635–642,
2018.

[14] S. K. Gottipati, K. Seo, D. Bhatt, V. Mai, K. Murthy, and L. Paull,
“Deep Active Localization,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 4394–4401, 2019.

[15] J. Strader, K. Otsu, and A.-a. Agha-mohammadi, “Perception-aware
autonomous mast motion planning for planetary exploration rovers,”
Journal of Field Robotics, vol. 37, no. 5, pp. 812–829, 2020. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21925

[16] R. Tallamraju, N. Saini, E. Bonetto, M. Pabst, Y. T. Liu, M. J. Black,
and A. Ahmad, “AirCapRL: Autonomous Aerial Human Motion
Capture Using Deep Reinforcement Learning,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6678–6685, 2020.

[17] T. Williams, P.-L. Chen, S. Bhogavilli, V. Sanjay, and P. Tokekar,
“Where Am I Now? Dynamically Finding Optimal Sensor States to
Minimize Localization Uncertainty for a Perception-Denied Rover,”
in 2023 International Symposium on Multi-Robot and Multi-Agent
Systems (MRS), 2023, pp. 207–213.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods
for deep reinforcement learning,” 2016. [Online]. Available: https:
//arxiv.org/abs/1602.01783

[20] L. Meng, R. Gorbet, and D. Kulić, “Memory-based deep reinforcement
learning for pomdps,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021, pp. 5619–5626.

[21] T. Ni, B. Eysenbach, and R. Salakhutdinov, “Recurrent model-free
rl can be a strong baseline for many pomdps,” 2022. [Online].
Available: https://arxiv.org/abs/2110.05038

[22] S. Amani, C. Thrampoulidis, and L. Yang, “Safe reinforcement
learning with linear function approximation,” in Proceedings of the
38th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, M. Meila and T. Zhang, Eds., vol.
139. PMLR, 18–24 Jul 2021, pp. 243–253. [Online]. Available:
https://proceedings.mlr.press/v139/amani21a.html

[23] Q. Liang, F. Que, and E. Modiano, “Accelerated primal-dual
policy optimization for safe reinforcement learning,” 2018. [Online].
Available: https://arxiv.org/abs/1802.06480

[24] M. Yu, Z. Yang, M. Kolar, and Z. Wang, “Convergent policy
optimization for safe reinforcement learning,” 2019. [Online].
Available: https://arxiv.org/abs/1910.12156

[25] J. N. Knight and C. Anderson, “Stable reinforcement learning with
recurrent neural networks,” Control Theory and Technology, vol. 16,
no. 1, pp. 65–80, 2008.

[26] J. Ho, J. Xu, L. Sha, and Z. Qu, “Toward a brain-inspired system: Deep
recurrent reinforcement learning for a simulated self-driving agent,”
Frontiers in Neuroscience, vol. 11, pp. 153–162, 2017.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[28] A. Faust, A. Francis, and D. Mehta, “Evolving rewards to
automate reinforcement learning,” in 6th ICML Workshop on
Automated Machine Learning, 2019. [Online]. Available: https:
//arxiv.org/abs/1905.07628

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21925
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/2110.05038
https://proceedings.mlr.press/v139/amani21a.html
https://arxiv.org/abs/1802.06480
https://arxiv.org/abs/1910.12156
https://arxiv.org/abs/1905.07628
https://arxiv.org/abs/1905.07628

