Where to show Demos in Your Prompt: A Positional Bias of In-Context Learning

Kwesi Cobbina and Tianyi Zhou

University of Maryland, College Park kcobbina@umd.edu, tianyi.david.zhou@gmail.com

Abstract

In-context learning (ICL) is a critical emerging capability of large language models (LLMs), enabling few-shot learning during inference by including a few demonstrations (demos) in the prompt. However, it has been found that ICL's performance can be sensitive to the choices of demos and their order. This paper investigates an unexplored new positional bias of ICL for the first time: we observe that the predictions and accuracy can drift drastically when the positions of demos, system prompt, and user message in LLM input are varied. This bias, we refer to as DEMOS' POSITION IN PROMPT bias (DPP bias). We design a systematic evaluation pipeline to study this type of positional bias across classification, QA, summarization, and reasoning tasks. We introduce two metrics, ACCURACY-CHANGE and PREDICTION-CHANGE, to quantify net gains and output volatility induced by demos' position change. Extensive experiments on ten LLMs from four open-source model families (QWEN, LLAMA3, MISTRAL, COHERE) verify that the bias significantly affects their accuracy and predictions: placing demos at the start of prompt yields the most stable and accurate outputs with gains of up to +6 points. In contrast, placing demos at the end of the user message flips over 30% of predictions without improving correctness in QA tasks. Smaller models are most affected by this sensitivity, though even large models do remain marginally affected on complex tasks.

1 Introduction

The rapid evolution of large language models (LLMs) has redefined the boundaries of machine learning, enabling unprecedented few-shot and zero-shot generalization across tasks like classification, question answering, and summarization (Brown et al., 2020; Radford et al., 2019). Central to this paradigm shift is in-context learning (ICL), where models dynamically adapt to new tasks by

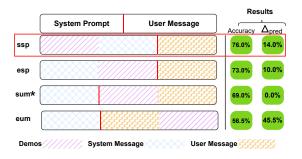


Figure 1: Four configurations of demos' position in prompt (DPP) from §3: ssp (Start of System Prompt), esp (End of System Prompt), sum (Start of User Message, default), and eum (End of User Message). Their results with QWEN-1.5B on AG news datasets are reported on the right: Their accuracies vary drastically and the percentage of changed predictions (compared to default sum) can be up to 45.5%.

processing demos embedded directly in the input prompt. Recent work has exposed critical vulnerabilities: minor perturbations to demo ordering or demo count (Lu et al., 2022) can degrade performance unpredictably. This brittleness not only undermines reproducibility but also challenges assumptions about LLMs' capacity for systematic reasoning, raising urgent questions about whether current models truly learn from context or merely exploit superficial patterns.

We discover a **novel positional bias** in *in-context learning* (ICL): DPP bias, in which moving an *un-changed* block of demos from the start of a prompt to the end can swing task accuracy by **up to 20 percents** and flip almost half of a model's predictions (see Fig. 1). This phenomenon, purely spatial, independent of demo content, challenges the widespread assumption that large language models learn robustly from any properly formatted context.

Despite growing awareness of prompt sensitivity, the role of demo positioning where demos are placed relative to instructions, queries, or other contextual elements remains underexplored. Prior studies have focused primarily on demo selection (Liu et al., 2022), or template phrasing (Cho et al.,

2024; Voronov et al., 2024), leaving a gap in understanding how spatial arrangements modulate ICL efficacy. This paper addresses this gap through a systematic investigation of positional effects across eight tasks spanning classification, reasoning, and generation. By conducting controlled studies on models like LLAMA-3 (1B, 3B, 8B, 70B) and MIXTRAL_8X7B, we demonstrate that strategic placement (e.g., clustering critical demos near task instructions) can yield performance swings, even when demo content remains identical.

Our work makes five complementary contributions. 1. We first uncover and quantify a previously unreported positional bias (DPP bias) in in-context learning, showing that simply relocating an identical demo block within the prompt can shift accuracy by up to 50 percentage points while flipping nearly half of a model's predictions. 2. Building on this insight, we design a controlled evaluation pipeline that isolates four canonical demo placements, at the start or end of the system prompt and at the start or end of the user message, so that any performance change is attributable purely to position. 3. To capture both net performance shifts and output volatility, we introduce two task-agnostic metrics, accuracy-change and prediction-change. Using this framework, 4. we conduct the first largescale empirical study of positional effects across eight tasks and ten state-of-the-art LLMs, revealing a consistent primacy bias that becomes less severe as model size grows. 5. Finally, we translate these findings into practical guidelines.

2 Related Work

In this section, we review existing literature on positional biases in in-context learning (ICL). We organize the discussion into three subsections: internal demo-order bias, mechanistic hypothesis, and the role level gap spatial placement.

2.1 Internal Demonstration-Order Bias

Prompt-order sensitivity is a well-established phenomenon in in-context learning (ICL). Lu et al. (2022) demonstrated that merely permuting the order of demonstrations can lead to accuracy fluctuations of approximately ±15% in reasoning tasks, such as arithmetic and commonsense question-answering. Similarly, Min et al. (2022) found that large language models (LLMs) frequently exploit superficial lexical overlaps between demonstrations and queries rather than learning robust semantic

mappings. Zhao et al. (2021) further showed that demonstration order significantly impacts few-shot outcomes and this was also supported by Wang et al. (2023) who found that ChatGPT predominantly favors earlier listed labels in classification tasks, while Wei et al. (2022b) indicated that reasoning gains from Chain-of-Thought (CoT) rationales heavily depend on their positioning within prompts. These studies underscore the fragility of ICL to superficial prompt characteristics, motivating further exploration into position-related biases. Our study departs from these works by holding the internal order fixed and relocating the entire demoblock to different prompt regions.

2.2 Mechanistic Hypothesis

Recent research attributes positional bias in transformer-based models to intrinsic architectural tendencies, notably primacy bias and induction heads. Olsson et al. (2022) and Chan et al. (2022) highlight that transformers disproportionately emphasize early tokens due to induction head mechanisms, causing initial context to steer subsequent predictions significantly. Similarly, Xiao et al. (2024) note sequential processing biases towards earlier context, which impact performance when crucial information appears later in the sequence. Additionally, Liu et al. (2023) observed that tokens in the middle positions of sequences receive less attention, leading to performance degradation. Bietti et al. (2023) further supports this by linking primacy bias to underlying transformer memory mechanisms. While these hypotheses illuminate why order matters, empirical work on how they interact with prompt roles (system vs. user) is scarce. We provide the first role-aware stress test of these mechanisms.

2.3 Spatial Placement (Role-Level) Gap

While prior ICL research extensively explores the selection of demonstrations, relatively little attention has been paid to their precise spatial placement within prompts. Studies such as Cho et al. (2024), Reynolds and McDonell (2021), and Webson and Pavlick (2022) prioritize choosing semantically relevant demonstrations and designing tailored prompt templates but overlook how the exact location of demonstration blocks, particularly relative to system and user roles, might independently affect model outcomes. Beck et al. (2024) introduce the metrics of "sensitivity" (output flip rate) and "performance" (accuracy

delta) when swapping sociodemographic personas in prompts—metrics formally equivalent to our **Prediction-** Δ and **Accuracy-** Δ . However, their experiments hold the prompt's structural layout constant and only vary *which* persona is inserted, not *where* the block appears. Our study addresses this gap by explicitly varying demonstration placement across prompt roles, highlighting an overlooked but critical dimension of prompt structuring for achieving reliable ICL performance.

3 Methodology

We present a systematic framework to investigate how the position of in-context demos within a prompt affects model performance. Our approach formalizes the problem of DPP bias, defines the range of demonstration placements considered, and outlines an evaluation pipeline for measuring performance variations.

3.1 Problem Formulation

We focus on the classical in-context learning scenario, where an LLM is given a small set of demonstrations along with a query, all concatenated into a single prompt. Formally, let \mathcal{T} be a set of tasks (e.g. sentiment classification, QA, etc.), and for each task $\tau \in \mathcal{T}$, let D_{τ} be a set of N demonstrations and Q_{τ} a set of evaluation queries. For a given query $q \in Q_{\tau}$, we construct a prompt P that combines some or all examples from D_{τ} with q. Crucially, our study keeps the content of P(the instruction, the examples in D_{τ} , and the query q) fixed, and manipulates only the structural position of the demonstration block within the prompt. We define positional bias (or spatial confounder effect) as any change in the model's performance on the query set Q_{τ} that arises solely from where the demonstrations appear in P, rather than which demonstrations are provided. Essentially isolating how the different structural positions affect the model output.

3.2 Demo Positions: Definitions

In many recent instruction tuned LLMs, a prompt can include a system prompt, which is then followed by the user message (chat-style format). We leverage this structure to define four distinct canonical demonstration positions where a block of k demos can be inserted in the prompt. These four configurations, illustrated in Figure 1 are defined as followed:

- Start of System Prompt (ssp): The demos block is placed at the very beginning of the system message, before any instructional content.
- End of System Prompt (*esp*): The demos block is placed at the end of the system message, after any general instructions but still before the user's query.
- Start of User Message (*sum*): The demos block is inserted at the beginning of the user message, before the actual query text.
- End of User Message (*eum*): The demonstration block is appended at the very end of the user message, after the query.

Figure 1 provides a schematic diagram of these four positions. It shows whether the demos reside in the system vs. user section of the prompt and whether they appear at the start or end. Intuitively, *ssp* and *esp* represent placing demonstrations before the user's question, whereas *sum* and *eum* place them before and after the user's question respectively.

3.3 Evaluation Metrics

We report the task-specific metrics recommended by prior work: **Accuracy** for multiple-choice (MCQ) problems, \mathbf{F}_1 and **Exact Match** for extractive question answering (QA), and **ROUGE**–L and **BERTScore** for summarization. Aside from the suggested metrics, to understand the per question by position transitions, we also report other metrics:

Accuracy Change. Accuracy Change Δ_{metric} directly quantifies how adding demonstrations at a given position influences the model's overall task performance relative to zero-shot. Formally,

$$\Delta_{\text{Smetric}} = \text{Metric}_{\text{position}} - \text{Metric}_{\text{zero-shot}} \quad (1)$$

A positive $\Delta_{\text{\$metric}}^{1}$ indicates that placing demos in that location helps the model make more correct predictions, while a negative value means the demonstrations actually degrade performance. By isolating the net gain or loss in accuracy, this metric cleanly attributes performance differences to spatial placement of the same content, enabling fair comparison across positions, models, and tasks.

¹metric = Accuracy, Exact Match, ROUGE-L

Prediction Change. Prediction Change Δ_{pred} measures the volatility of individual model outputs induced by demonstration placement. It is defined as

$$\Delta_{\text{pred}} = \frac{\#answerflips}{\#Q}$$
 (2)

where $\#\mathcal{Q}$ is the total number of evaluation queries, and #answer flips counts all instances whose predicted outputs flips when going from the default ICL position(sum) to the other in-context positions. High Δ_{pred} reveals that demonstration placement strongly perturbs the model's decision boundary, even if net metric gains are small.

Datasets with free-form answers. For free-form outputs, we treat two answers as a *prediction flip* when their faithfulness to the gold answer y diverges meaningfully. Concretely, we compute ROUGE-L scores for answers generated from the sum and esp positions and declare a flip if

$$|ROUGE-L(y_{sum}, y)-ROUGE-L(y_{esp}, y)| > 0.05.$$

The same 0.05 threshold is used for XSUM and CNN/DailyMail throughout our experiments.

Remarks We propose a systematic framework to investigate how the structural position of in-context demonstrations affects LLM performance. Our study isolates positional effects by controlling for prompt content while varying the location of a fixed demonstration block. We define four canonical positions within a prompt, *ssp*, *esp*, *sum*, and *eum*, which differ in whether demos are placed within the system or user section, and whether they precede or follow the query. These positions are visualized in Figure 1.

4 Empirical Results

We evaluate how demonstration position affects model performance both in terms of net accuracy change relative to zero-shot, and in terms of answer volatility (prediction flips)

4.1 Positional Bias across Tasks

A consistent and pronounced pattern emerges across our benchmark datasets: demonstrations positioned at the beginning of prompts (ssp or esp) reliably outperform placements later in the prompt (eum) and frequently surpass the default ICL position (sum). Throughout our experiments, we set the number of demos to five. We keep the demos

in the demos block and identical across these conditions, so that any performance differences can be attributed purely to positional effects. (Any additional prompt formatting details and exact templates used for each position are provided in the Appendix. §A.2 & §A.3)

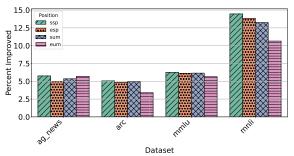


Figure 2: Accuracy change (comparing to zero-shot) of the four DPPs across four datasets, averaged over all models. The ssp achieves the greatest improvement over zero-shot across all four datasets (note the winner may vary for different models as shown in Fig. 8-10).

Classification and QA Tasks. Across MNLI, AG NEWS, ARC, and MMLU, placing demonstrations at ssp yields the most consistent accuracy improvements (Figure 2; Figure 3). Notably, MMLU shows a +18% gain in accuracy over the zero-shot baseline under ssp. For QA tasks like SQUAD, ssp similarly outperforms later placements, while eum consistently underperforms.

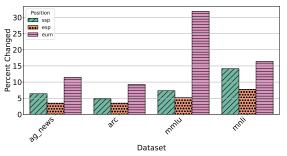


Figure 3: **Prediction change (comparing to sum) ratios of the three DPPs (excluding sum) across four datasets.** The eum position shows the largest variability on the mmlu dataset.

Arithmetic Tasks. Arithmetic reasoning exhibits scale-sensitive trends. When evaluated, models with smaller parameter sizes (1.5B - 8B) are consistent in preferring demos being placed in the *ssp*, *esp* positions. For LLAMA3 3B, moving demos from ssp to eum causes a drop in improved prediction rate: GSM8K falls from 42.0% to 11%, and SQUAD from 41.0% to 26.5%. Conversely, LLAMA3 70B benefits from eum, improving from 21.5% to 88% on GSM8K, suggesting that model capacity modulates the effect of position.

Generative Summarization. Performance volatil-

ity is most severe in generation tasks. On LLAMA3 3B, XSUM sees a drop from 82.5% to 27.5% improved predictions when shifting from ssp to eum, while CNN/DAILYMAIL drops from 49% to a mere 1%. These effects percist even in large models, albeit with reduced severity.

4.2 Scaling Law of Performance Robustness

To better understand how positional robustness varies with model scale, Figure 4 summarizes the percentage of changed predictions and the accuracy deltas as we analyze the percentage of changed and improved predictions across the four prompt positions. Across all tasks, we observe that larger models generally exhibit reduced prediction volatility (% changed) and enhanced performance stability, but the degree of robustness is task-dependent and not uniformly monotonic with size.

Stability Trends Across Tasks. On classification tasks such as AG News, MNLI, and ARC, larger models (e.g., QWEN 72B, LLAMA3 70B) exhibit reduced sensitivity to prompt position changes, especially for early-positioned demonstrations (ssp, esp). For example, on MNLI, the percentage of predictions that change when moving from sum to ssp drops below 10% for LLAMA3 70B, compared to over 20% for LLAMA3 3B. Meanwhile, accuracy improvements over zero-shot are consistently higher for early positions but show greater spread across mid-sized models (e.g., 7B-32B). This indicates that while small models benefit from positional tuning, they are also more fragile to changes. On question answering tasks like SQuAD and GSM8K, the pattern is more nuanced. For GSM8K, the change rate remains above 90% across nearly all models and positions, indicating high sensitivity to demonstration placement. However, the percentage improvement fluctuates non-monotonically: models like MISTRAL 8x7B under-perform with ssp placement relative to both smaller and larger models, and LLAMA3 70B shows a complete collapse in improvement under ssp, contrasting its robustness on other tasks. This suggests arithmetic reasoning requires specialized inductive biases that do not scale uniformly with size.

In **summarization tasks** such as XSUM and CNN/DAILYMAIL, the percentage of prediction changes is consistently near 100% for the eum position, even in the largest models. This reflects that downstream text generation is highly susceptible to positional shifts. Notably, larger models like

QWEN-72B still exhibit drops in % *improved* when moving from ssp to eum, albeit less drastically than smaller counterparts. On *CNN/DailyMail*, eum improves only 1% of predictions for LLAMA3-3B, compared to 49% under ssp, while LLAMA3-70B narrows that gap considerably.

4.3 Analysis of DPP induced Transitions

While accuracy-based evaluations reveal global trends in positional effectiveness, they can obscure local instability in model behavior. To uncover finer-grained effects, we visualize the answer transitions between correct and incorrect predictions using Sankey diagrams.

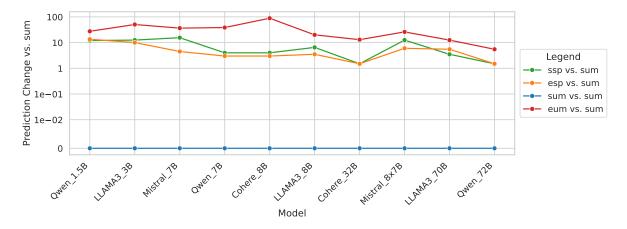
Volatility Patterns Across Tasks. Across the eight evaluated tasks, we observe a recurring pattern: later-positioned demos (eum) cause significantly more answer flips than earlier positions (ssp, esp). This suggests that placing demonstrations after the query can inject instability into model decision-making, especially in models with fewer inductive biases or weaker context modeling capabilities.

In Figure 5, we see this volatility concretely for LLAMA3 3B on *MMLU*, where moving from ssp to eum causes a large number of transitions from correct to incorrect answers. Similar patterns are seen on:

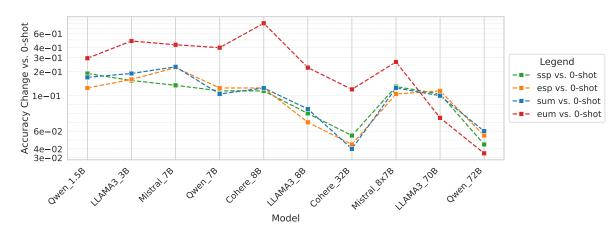
- AG News: Smaller models like QWEN 1.5B exhibit over 40% incorrect-to-correct transitions under ssp, which plummet under eum.
- CNN/DailyMail: MISTRAL 8X7B shows one
 of the most volatile behaviors, with many correct answers flipping to incorrect under latepositioned demos (Fig. 6).
- *GSM8K*: Predictions by models like QWEN 72B and LLAMA3 70B still flip a lot across positions, despite their scales (Fig. 7).

Together, these transition plots reveal that the same input content, when moved across prompt sections can yield drastically different outputs. The effect persists across models and tasks, underlining that prompt formatting is not merely stylistic, but functionally consequential. This volatility is especially concerning in high-stakes domains like QA or summarization, where reliability is paramount.

Scale-Driven Shifts in Optimal Position. Importantly, the position yielding the best improvement is not consistent across model sizes. On *ARC*, ssp



(a) Prediction change (vs. sum) of the four DPPs on MMLU: it declines as model scale increases.



(b) Accuracy change (improvement over zero-shot) of the four DPPs on MMLU: it declines as model scale increases.

Figure 4: **Scaling behavior of DPPs on MMLU.** (a) Prediction-level shifts relative to sum, and (b) accuracy shifts relative to zero-shot, both across 10 model sizes (1.5B–72B). Both metrics reveal a weak scaling law: as the model scale increases, the variations caused by DPPs in accuracy and prediction from baselines gradually decline.

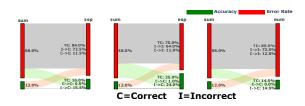


Figure 5: Correct-Incorrect Transition from the default baseline DPP "sum" to ssp, esp, and eum when applied to LLAMA3-3B model on XSUM benchmark. Green and red bars denote the accuracy and error rate, respectively. Left and right bars are associated with the baseline and a specific DPP. We also report the percentage of examples that change from Incorrect—Correct (I -> C) and Correct—Incorrect (C -> I).

dominates for smaller models (QWEN 1.5B to MISTRAL 7B), whereas eum unexpectedly overtakes ssp in QWEN 72B albeit marginally. Similarly, on *AG News*, while ssp yields the best result for LLAMA3 3B, esp becomes the strongest position in LLAMA3 70B.

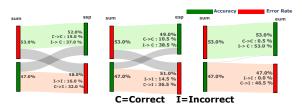


Figure 6: **Correct-Incorrect Transition** on CNN/ DAILLYMAIL for MISTRAL-8X7B. The high transition ratios between incorrect and correct samples indicate the sensitivity to the change of DPP.

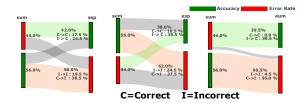


Figure 7: **Correct-Incorrect Transition** on GSM8K for QWEN-72B. Even for the largest model evaluated in this paper, >50% predictions are changed when using different DPP.

4.4 Winning DPP is Task and Model Specific

While general trends suggest that early demonstration positions (ssp, esp) often outperform later ones (sum, eum), our analysis reveals that this preference is not consistent across all models or tasks. To understand this heterogeneity, we conduct a win–tie–loss analysis across tasks, identifying which demo position performs best for each task–model pair.

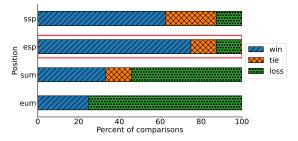


Figure 8: Win-loss-tie of each DPP vs. zero-shot on QWEN 1.5B (averaged over all the eight benchmarks).

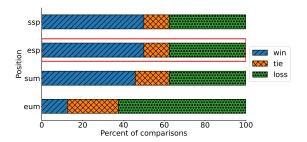


Figure 9: Win-loss-tie of each DPP vs. zero-shot on COHERE 8B (averaged over all the eight benchmarks).

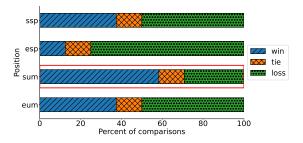


Figure 10: Win–loss–tie of each DPP vs. zero-shot on LLAMA3 70B (averaged over all the eight benchmarks).

Figures 8, 9, and 10 illustrate this breakdown for three representative models at different scales: QWEN-1.5B, COHERE-8B, and LLAMA3-70B. These win–loss–tie plots display, for each position, the number of tasks where it yielded the best performance (win), tied for the best (tie), or was outperformed by the zero-shot baseline (loss).

QWEN 1.5B (Figure 8): As the smallest model in our suite, QWEN 1.5B strongly prefers placing demos at the esp and ssp position. It wins on most

tasks with esp and ssp, rarely losing. This suggests that smaller models are especially sensitive to how demonstrations are front-loaded in the prompt, likely due to limitations in long-range context integration.

COHERE 8B (Figure 9): At 8B parameters, Cohere shows moderate flexibility. While ssp still wins most often, sum begin to win on some tasks, particularly XSUM and SQUAD indicating that as model capacity grows, preferences start to shift depending on task format and type (classification vs. QA vs. generation).

LLAMA3 70B (Figure 10): In contrast to smaller models, LLAMA3 70B shows a consistent preference for placing demonstrations at the sum position, that is, at the start of the user message. Across multiple tasks, sum outperforms all other configurations, including ssp and esp, which dominate in earlier models. This suggests that larger models like LLAMA3 70B may benefit from having demonstrations placed in closer proximity to the query, perhaps due to their greater ability to retain relevant context across longer input sequences.

Emergent Observation: No Universally Best Position. Our results demonstrate that early positions dominate on average but exceptions emerge for arithmetic tasks. Instead, the optimal position varies by both model architecture and task category. For example, in generative summarization tasks, later positions (sum, eum) occasionally outperform early ones, whereas in classification and reasoning tasks, early positions (ssp, esp) are generally more reliable.

For completeness, we provide win-loss-tie plots for all remaining models and also task specific plots in the §A.8 (Figures 11–17). Collectively, they confirm the absence of a universally optimal position and highlight the need for model-specific prompt tuning.

4.5 Statistical Test of Performance Difference between zero-shot vs. ICL with each DPP

Position	0-shot Accuracy	ICL Accuracy	p-value	Effect Size
ssp	0.3364	0.6885	0.0022**	1.7193
esp	0.3364	0.6950	0.0022**	1.7000
sum	0.3364	0.6869	0.0022**	1.7254
eum	0.3364	0.4519	0.1659	0.4140

Table 1: Comparing zero-shot vs. the four DPPs on MMLU dataset (averaged over all models) via one-sided Wilcoxon signed-rank test. **—statistical significance at 1%.

To quantify the reliability of performance differences across demonstration positions, we conduct a paired statistical analysis comparing each of the four DPPs to the zero-shot baseline. (See Table 1)

For each dataset and DPP, we form paired samples across the available models. We then perform a one-sided Wilcoxon signed-rank test to assess whether the positional condition of the ICL improves over baseline. Specifically, we test the null hypothesis H_0 : the median difference between the DPP and the baseline is zero, against the alternative hypothesis H_1 : the median difference is greater than zero, indicating that the DPP outperforms the baseline. The effect sizes are calculated as the standardized mean difference of paired differences. In addition, we apply a multiple comparisons correction (using the FDR Benjamini-Hochberg procedure at $\alpha = 0.05$) to account for the fact that multiple hypotheses are tested simultaneously. This analysis provides statistical rigor to our evaluation, helping us determine not just whether differences exist, but whether they are consistently positive across models. By quantifying both the statistical significance and effect size, we can better assess the reliability and practical importance of each DPP.

Pos1	Pos2	Δ	W	r	p (FDR)
SSP	ESP	-0.023	9	-0.465	0.428
SSP	SUM	-0.026	14.5	-0.511	0.413
SSP	EUM	+0.182	0	0.905	0.023*
ESP	SUM	-0.003	17.5	-0.193	1.000
ESP	EUM	+0.205	3	1.002	0.042*
SUM	EUM	+0.209	0	1.038	0.023*

Table 2: Pairwise Wilcoxon-signed-rank tests among DPP positions on MMLU (10 models). Δ =mean accuracy difference (Pos1 – Pos2), W=Wilcoxon statistic, r=effect size, p=FDR-corrected. *p < .05.

In Table 1, the three DPPs (SSP, ESP, SUM) each yield dramatic and highly significant improvements over zero-shot on MMLU, increasing accuracy from 0.3364 to approximately 0.69 (Wilcoxon $W \leq 2$, $r \approx 1.7$, FDR-corrected p < .01), whereas EUM only raises accuracy to 0.4519 (W = 10, r = 0.414, p = 0.1659), a non-significant gain. The deeper pairwise analysis in Table 2 confirms that EUM is significantly worse than each of the other DPPs, SSP vs. EUM ($\Delta = +0.182$, W = 0, r = 0.905, p = 0.023), ESP vs. EUM ($\Delta = +0.205$, W = 3, W = 1.002, W = 0.043), and SUM vs. EUM (Z = +0.209), Z = 0.023. In contrast, all

tests among SSP, ESP, and SUM produce trivial mean differences ($|\Delta| < 0.03$) and non-significant p-values (p > 0.4). Together, these results demonstrate that while placing demonstrations before the user query consistently delivers robust few-shot gains, embedding them at the end of the user message severely degrades performance.

5 Discussion

5.1 Why Does DPP Bias Arise?

We hypothesise that DPP bias has two complementary roots. (i) Architectural: Causal-decoder LLMs are trained with autoregressive masking, so earlier tokens exert disproportionate influence on the hidden state that conditions all subsequent predictions. Although the system, demonstration, and user segments are logically exchangeable, the underlying optimisation objective is not. Mechanisticinterpretability work on "induction heads" (Olsson et al., 2022), for instance, has shown that attention weights concentrate on early and sink tokens—behaviour consonant with the empirical trends we observe for DPP. (ii) Data: Instructiontuning corpora themselves exhibit positional regularities (e.g., demonstrations in fixed slots), thereby imprinting a distributional prior into the model. Domain-specific training sets may amplify or attenuate this effect, explaining why the optimal demo position varies across tasks and models.

5.2 Mitigating DPP Bias

We outline two directions for future work aimed at reducing this positional pathology.

Test-time calibration. Given the task- and model-specific nature of the bias, we propose a retrieval-based calibration: for each unseen instance, find its k nearest neighbours in an annotated reference set (using an external embedding model), then majority-vote over their labelled best positions to select the demo slot for the query instance. This lightweight procedure incurs no fine-tuning cost and adapts dynamically to input distribution shifts.

Post-training on randomly permuted contexts. Alternatively, one can train an *unbiased* in-context learning corpus by randomly permuting the demonstration positions in every training example. Finetuning (or continued pre-training) on this new dataset should encourage position-invariant representations, counteracting the structural preference induced by standard instruction-tuning pipelines.

6 Conclusion

This paper introduces and systematically investigates a previously overlooked dimension of incontext learning (ICL): the effects of the positional placement of demonstrations within LLM prompts. Through a large-scale evaluation spanning ten open-source models, eight NLP tasks, and four canonical prompt positions, we uncover a consistent DPP bias, where demos placed earlier in the prompt (ssp, esp) yield higher accuracy and greater prediction stability than those placed later (sum, eum). These findings persist across both classification and generative tasks and are particularly pronounced in smaller models.

Our analysis reveals that not only does performance vary substantially by position, but late-placed demonstrations (especially eum) can induce significant prediction volatility flipping model outputs without improving correctness. We further show that positional sensitivity is modulated by both task and model scale: while larger models demonstrate greater robustness, they still exhibit non-trivial instability and shifting optimal positions across tasks.

We introduce novel diagnostic tools, ACCURACY-CHANGE and PREDICTION-CHANGE to quantify these effects and uncover hidden volatility that standard accuracy metrics obscure. Our win–tie–loss analyses reinforce the key insight: **no single demonstration position is universally optimal**. Effective prompt design must therefore be both *model-aware* and *task-sensitive*.

These findings have broad implications for prompting strategies in practice. We recommend that users of instruction-tuned LLMs explicitly evaluate demonstration placement rather than relying on default or ad hoc formats. Furthermore, positional robustness should be considered a core axis in both prompt optimization and instruction finetuning pipelines.

Future Work. Our study opens up several avenues for follow-up research. First, deeper interpretability work could investigate *why* certain positions are privileged, whether due to attention initialization, decoder primacy, instruction tuning templates or training corpus conventions. Second, extending this analysis to few-shot chain-of-thought prompts and real-world instruction datasets (e.g., HELM, BIG-Bench) could help generalize these insights. Finally, developing automated demo-placement optimization routines that adapt position jointly with

content could offer a principled pathway toward more robust ICL systems.

7 Ethics Statement

Our work focuses on the technical aspects of prompt design and does not directly engage with potentially sensitive content or private data. However, the following ethical considerations are relevant:

- Misuse of Prompt Engineering: Enhanced control over LLM behavior through strategic demonstration placement could be exploited to generate deceptive or harmful content more effectively. We encourage researchers to incorporate content filtering and moderation frameworks when deploying these methods.
- Bias and Fairness: If demonstrations carry implicit biases (e.g., skewed label distributions or stereotypical examples), placing them early in the prompt may amplify such biases in model outputs. Practitioners should carefully curate demonstration sets and validate outputs for unintended bias.

We believe that increasing awareness of spatial effects in prompts will ultimately aid in designing safer, more reliable LLM-based systems while mitigating misuse and bias.

8 Limitations

While our experiments reveal robust trends in how demonstration placement impacts LLM performance, several limitations remain:

- Model Diversity: We evaluated only a small subset of model sizes and architectures (e.g., 7B, 13B). Larger-scale models or different architectures (e.g., those fine-tuned on dialogue) may exhibit different sensitivity patterns.
- Task Coverage: Though we tested multiple tasks (classification, QA, summarization, reasoning), certain tasks with more complex structures (e.g., multi-hop retrieval or dialogic contexts) were not explored in depth.
- Focus on English: Our results primarily focus on English data. Cross-lingual variations in grammar, morphology, and script may lead to different positional biases and should be investigated further.

• Automated Evaluation Metrics: We relied on standard metrics (accuracy, F1, ROUGE) to quantify performance. These are imperfect proxies for true utility, especially for generative tasks. It's conceivable that a prompt layout yields a higher ROUGE but lower factuality, for example. We assume the metrics correlate with better quality in our tasks, which is generally accepted, but caution that "better metric" doesn't always mean strictly better output in all aspects.

Addressing these limitations will be crucial for fully understanding the impact of demonstration placement across diverse LLMs, languages, and application domains. We hope our findings will catalyze more research into robust, spatially aware prompting techniques.

References

- Tilman Beck, Hendrik Schuff, Anne Lauscher, and Iryna Gurevych. 2024. Sensitivity, performance, robustness: Deconstructing the effect of sociodemographic prompting. In *Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 2589–2615, St. Julian's, Malta. Association for Computational Linguistics.
- Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. 2023. Birth of a transformer: A memory viewpoint. *Preprint*, arXiv:2306.00802.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc.
- Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aaditya Singh, Pierre H. Richemond, Jay McClelland, and Felix Hill. 2022. Data distributional properties drive emergent in-context learning in transformers. *Preprint*, arXiv:2205.05055.
- Ikhyun Cho, Gaeul Kwon, and Julia Hockenmaier. 2024. Tutor-ICL: Guiding large language models for improved in-context learning performance. In *Findings*

- of the Association for Computational Linguistics: EMNLP 2024, pages 9496–9506, Miami, Florida, USA. Association for Computational Linguistics.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv:1803.05457v1*.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*.
- John Dang, Shivalika Singh, Daniel D'souza, Arash Ahmadian, Alejandro Salamanca, Madeline Smith, Aidan Peppin, Sungjin Hong, Manoj Govindassamy, Terrence Zhao, Sandra Kublik, Meor Amer, Viraat Aryabumi, Jon Ander Campos, Yi-Chern Tan, Tom Kocmi, Florian Strub, Nathan Grinsztajn, Yannis Flet-Berliac, Acyr Locatelli, Hangyu Lin, Dwarak Talupuru, Bharat Venkitesh, David Cairuz, Bowen Yang, Tim Chung, Wei-Yin Ko, Sylvie Shang Shi, Amir Shukayev, Sammie Bae, Aleksandra Piktus, Roman Castagné, Felipe Cruz-Salinas, Eddie Kim, Lucas Crawhall-Stein, Adrien Morisot, Sudip Roy, Phil Blunsom, Ivan Zhang, Aidan Gomez, Nick Frosst, Marzieh Fadaee, Beyza Ermis, Ahmet Üstün, and Sara Hooker. 2024. Aya expanse: Combining research breakthroughs for a new multilingual frontier. Preprint, arXiv:2412.04261.
- Tri Dao. 2024. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *International Conference on Learning Representations (ICLR)*.
- Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multiplication for transformers at scale. *arXiv preprint arXiv:2208.07339*.
- Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yuxian Gu, and Furu Wei. 2022. Structured prompting: Scaling in-context learning to 1,000 examples. *Preprint*, arXiv:2212.06713.
- Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob Steinhardt. 2021a. Aligning ai with shared human values. *Proceedings of the International Conference on Learning Representations (ICLR)*.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 2021b. Measuring massive multitask language understanding. *Proceedings of the International Conference on Learning Representations (ICLR)*.
- Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching machines to read and comprehend. In *NIPS*, pages 1693–1701.

- Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, L'elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral 7b. *ArXiv*, abs/2310.06825.
- Albert Qiaochu Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2024. Mixtral of experts. *ArXiv*, abs/2401.04088.
- Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Taeuk Kim, Kang Min Yoo, and Sang goo Lee. 2022. Self-generated in-context learning: Leveraging autoregressive language models as a demonstration generator. *Preprint*, arXiv:2206.08082.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*.
- Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. 2024. Awq: Activation-aware weight quantization for llm compression and acceleration. In *MLSys*.
- Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. 2022. What makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages 100–114, Dublin, Ireland and Online. Association for Computational Linguistics.
- Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. 2023. Lost in the middle: How language models use long contexts. *Preprint*, arXiv:2307.03172.
- Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, Yong Huang, and Wei Lu. 2024. Let's learn step by step: Enhancing in-context learning ability with curriculum learning. *Preprint*, arXiv:2402.10738.
- Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. 2022. Fantastically ordered prompts and where to find them: Overcoming fewshot prompt order sensitivity. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages

- 8086–8098, Dublin, Ireland. Association for Computational Linguistics.
- Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the role of demonstrations: What makes in-context learning work? In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages 11048–11064, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
- Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don't give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. *ArXiv*, abs/1808.08745.
- Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. 2022. Incontext learning and induction heads. *Preprint*, arXiv:2209.11895.
- Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 2383–2392, Austin, Texas. Association for Computational Linguistics.
- Laria Reynolds and Kyle McDonell. 2021. Prompt programming for large language models: Beyond the few-shot paradigm. *Preprint*, arXiv:2102.07350.
- Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer-generator networks. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1073–1083, Vancouver, Canada. Association for Computational Linguistics.
- The Llama 3 Team. 2024. The llama 3 herd of models. *Preprint*, arXiv:2407.21783.
- Anton Voronov, Lena Wolf, and Max Ryabinin. 2024. Mind your format: Towards consistent evaluation of in-context learning improvements. In *Findings of the Association for Computational Linguistics: ACL 2024*, pages 6287–6310, Bangkok, Thailand. Association for Computational Linguistics.
- Yiwei Wang, Yujun Cai, Muhao Chen, Yuxuan Liang, and Bryan Hooi. 2023. Primacy effect of ChatGPT. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 108–115, Singapore. Association for Computational Linguistics.

Albert Webson and Ellie Pavlick. 2022. Do prompt-based models really understand the meaning of their prompts? In *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 2300–2344, Seattle, United States. Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and Denny Zhou. 2022a. Chain-of-thought prompting elicits reasoning in large language models. In *Advances in Neural Information Processing Systems*, volume 35, pages 24824–24837. Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022b. Chain-of-thought prompting elicits reasoning in large language models. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA. Curran Associates Inc.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pages 1112–1122. Association for Computational Linguistics.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. 2024. Efficient streaming language models with attention sinks. *Preprint*, arXiv:2309.17453.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. 2025. Qwen3 technical report. Preprint, arXiv:2505.09388.

Jinghan Yang, Shuming Ma, and Furu Wei. 2024. Autoicl: In-context learning without human supervision. *Preprint*, arXiv:2311.09263.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. In *NIPS*.

Ziqiang Zhang, Long Zhou, Chengyi Wang, Sanyuan Chen, Yu Wu, Shujie Liu, Zhuo Chen, Yanqing Liu,

Huaming Wang, Jinyu Li, Lei He, Sheng Zhao, and Furu Wei. 2023. Speak foreign languages with your own voice: Cross-lingual neural codec language modeling. *Preprint*, arXiv:2303.03926.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate before use: Improving few-shot performance of language models. *Preprint*, arXiv:2102.09690.

A Appendix

A.1 Foundations of In-Context Learning

The ability of large language models (LLMs) to adapt to novel tasks through in-context learning (ICL)—learning from demonstrations embedded directly in the input prompt—has emerged as a hallmark of their generalization capabilities (Brown et al., 2020). Early studies underscored the remarkable ability of LLMs to generalize from minimal context, a capability that was later extended to zeroshot settings (Radford et al., 2019). Unlike traditional fine-tuning, ICL requires no gradient updates, enabling rapid task adaptation in zero- and few-shot settings (Wei et al., 2022a). Recent works, such as Zhang et al., synthesize the evolution of ICL, framing it as both a practical tool for task-specific adaptation and a window into understanding emergent behaviors in LLMs. However, these works Kim et al., 2022; Lu et al., 2022; Yang et al., 2024; Liu et al., 2024 highlight a critical unresolved challenge: the brittleness of ICL to seemingly minor variations in prompt structure, including the ordering (Lu et al., 2022; Liu et al., 2024) and formatting (Kim et al., 2022; Hao et al., 2022; Yang et al., 2024) of demonstrations, as well as the selection of the demonstrations.

A.2 Prompting LLMs

Prompt Format and Instruction-Tuning. The model families in our study (QWEN, MISTRAL, LLAMA3, and COHERE) are instruction-tuned using chat-style templates that explicitly separate prompt segments into system instructions, user messages, and assistant responses. These templates are commonly implemented using structured tags (e.g., <|system|>, role delimiters) that guide the model's internal parsing of the prompt.² As a result, demonstration position within these fields (whether they appear in the system prompt versus the user message) interacts with the model's learned formatting biases. Our experiments quantify this interaction and reveal a systematic spatial preference that emerges from instruction-tuned behavior.

Model Instantiation. We wrap each LLM in a unified *ChatModel* interface, parameterized by model type (e.g., LLAMA3_8B,

LLAMA3_70B) and decoding settings. This abstraction ensures consistent usage across tasks. We set the temperature to 0 for deterministic decoding. For multiple-choice tasks, we cap max_new_tokens at 50, and for generative tasks, at 500

Question Processing. For each query q_i , we:

- 1. Assemble the prompt: combine the chosen prompt template, the formatted demonstrations (possibly shuffled or ablated), and q_i .
- 2. Check length: as some demonstrations \mathcal{D}_{τ} might exceed the model defined token limits, we estimate the token length to ensure we do not exceed model limits (e.g., 8192 tokens).
- 3. Generate response: feed the prompt into f_{θ} via streaming token-by-token output.

A.3 Final System Prompts

• AG News

You are a text classification assistant. You will receive a news article and must classify it into one of the following categories: World, Sports, Business, or Sci/Tech. Respond with only the category name. Do not provide any explanations in your response. Provide your answer as a json object with the key 'Answer'.

• MNLI

You are a multi-genre natural language inference system. When given two sentences (premise and hypothesis), determine whether the relationship is entailment, neutral, or contradiction. Handle diverse domains including fiction, government reports, telephone speech, and more. Do not provide any explanations in your response. Provide your answer as a json object with the key 'Answer'.

²See Hugging Face's chat template documentation: https://huggingface.co/docs/transformers/main/chat_templating, and instruction-tuning frameworks such as LLaMA Factory: https://github.com/hiyouga/LLaMA-Factory

• ARC

You are a science-focused tutor who provides detailed reasoning for multiple-choice questions at the middle-school and high-school level. You excel at scientific reasoning and can clarify your thought process if asked. When given a question with several possible answers, identify the most scientifically accurate choice. Do not provide any explanations in your response. Provide your answer as a json object with the key 'Answer'.

• MMLU

You are an expert tutor with broad interdisciplinary knowledge. You can answer college-level and advanced high-school multiple-choice questions across numerous subjects, from mathematics and science to humanities and law. When given a question and multiple options, select the best option based on your expertise. Do not provide any explanations in your response. Provide your answer as a json object with the key 'Answer'.

• CNN/Dailymail

You are a summarization expert for news articles. Given a full news story, produce a concise summary capturing the main points. Avoid adding personal commentary or speculative details. Stick to the facts from the article. Do not provide any explanations in your response. Provide your answer as a json object with the key 'Answer'.

• XSUM

"You are a summarization expert for news articles. Given a full news story, produce a concise summary capturing the main points. Avoid adding personal commentary or speculative details. Stick to the facts from the article. Do not provide any explanations in your response. Provide your answer as a json object with the key 'Answer'.

• SQuAD

You are a reading comprehension assistant. Given a passage (context) and a question, you identify the most accurate answer from the passage. You only rely on the provided text and avoid adding extraneous information. Do not provide any explanations in your response. Provide your answer as a json object with the key 'Answer'.

• GSM8K

You are a math tutor specializing in gradeschool arithmetic and algebra word problems. Explain your reasoning step by step (if requested) and provide the final numeric or short answer. Emphasize clarity and correctness in each step. Provide your answer as a json object with the key 'Answer'.

DPP templates

1. *ssp*

<system>

Use the demos below as examples on how to answer the question

<DEMOS_PLACEHOLDER>

<SYSTEM_PLACEHOLDER>

<end of system>

<user>

<QUESTION_PLACEHOLDER>

<end_of_user>

2. *esp*

<system>

<SYSTEM_PLACEHOLDER>

Use the demos below as examples on how to answer the question

<DEMOS_PLACEHOLDER>

<end of system>

<user>

<QUESTION_PLACEHOLDER>

<end_of_user>

3. *sum*

<svstem>

<SYSTEM_PLACEHOLDER>

<end_of_system>

<user>

Use the demos below as examples on how to answer the question <DEMOS_PLACEHOLDER> <QUESTION_PLACEHOLDER> <end of user>

4. *eum*

<svstem>

<SYSTEM_PLACEHOLDER>

<end_of_system>

<user>

Answer this question <OUESTION PLACEHOLDER>

Use the demos below as examples on how to answer the question <DEMOS_PLACEHOLDER>

<end_of_user>

A.4 Terms of use

We adhere to the terms of usage provided by the model/dataset authors.

Licenses and Citations for Model Families

- Qwen (Yang et al., 2025) : https: //choosealicense.com/licenses/ apache-2.0/
- Cohere (Dang et al., 2024) : https://docs.cohere.com/docs/c4ai-acceptable-use-policy; https://cohere.com/c4ai-cc-by-nc-license
- Mistral (Jiang et al., 2024, 2023): https://mistral.ai/terms-of-service/; https://choosealicense.com/licenses/apache-2.0/
- LLAMA (Team, 2024) : ai.meta. com/llama/use-policy ; https: //huggingface.co/meta-llama/ Meta-Llama-3-8B/blob/main/LICENSE

Licenses and Citations for datasets

- AG News (Zhang et al., 2015) : http://groups.di.unipi.it/~gulli/ AG_corpus_of_news_articles.html
- MNLI (Williams et al., 2018) : https://www.anc.org/OANC/license.txt; https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md; https://spdx.org/licenses/CC-BY-SA-3.0; https://spdx.org/licenses/CC-BY-3.0
- ARC (Clark et al., 2018): https: //huggingface.co/datasets/ choosealicense/licenses/blob/main/ markdown/cc-by-sa-4.0.md
- MMLU (Hendrycks et al., 2021a,b) : https://github.com/hendrycks/test/blob/master/LICENSE
- CNN/Dailymail (Hermann et al., 2015; See et al., 2017): https://huggingface.co/ datasets/choosealicense/licenses/ resolve/main/markdown/apache-2.0.md
- XSUM (Narayan et al., 2018) https://github.com/EdinburghNLP/ XSum?tab=MIT-1-ov-file
- SQuAD (Rajpurkar et al., 2016) : https://huggingface.co/datasets/choosealicense/licenses/resolve/main/markdown/cc-by-sa-4.0.md
- GSM8K (Cobbe et al., 2021) https://huggingface.co/datasets/ choosealicense/licenses/resolve/ main/markdown/mit.md

A.5 Experiment Details

We discuss below the experiment details of our work. We detail the model sizes and hyperparameters as well as the computational resorces used.

A.5.1 Model Size and Budget

The model sized we use are between 1.5B parameters to 72B parameters:

- Llama 3: 3B, 8B and 70B (4-bit BnB)
- **Mistral**: 7B (4-bit BnB) and Mixture-of-Experts 8×7B (4-bit AWQ)
- **Qwen**: 1.5B, 7B and 72B (4-bit BnB)

• Cohere: 8B and 32B (4-bit BnB)

All checkpoints are served with vLLM(Kwon et al., 2023) and loaded in 4-bit weight-only quantization (bitsandbytes (Dettmers et al., 2022) or AWQ (Lin et al., 2024)) with Flash-Attention v2(Dao, 2024) and a 1 000-token context window.³

Compute budget. Inference is performed on a cluster of A100 80 GB and RTX A4000 16 GB GPUs via vLLM 0.4.0; tensor parallelism is disabled (1 GPU / model). A single 8-task \times 5-demo sweep for a 70 B model requires \approx 1 GPU-hour (temperature 0, no sampling).

A.5.2 Experimental Setup And Hyperparameters

- Prompt structures. We cycle through four canonical demo slots (ssp, esp, sum, eum; see §3). Demo counts k∈ {1,2,3,4,5} are enumerated; ablations drop one demo at a time.
- **Generation parameters.** Unless stated otherwise we use temperature = 0.0, top_p = 1.0, num_beams = 1. max_new_tokens is task-dependent: 50 for classification/QA, 500 for open-ended generation (*CNN/DailyMail, XSum, GSM8K, Squad*).
- **Seed and reproducibility.** All experiments use seed=42; we fix NumPy, Python and PyTorch RNGs before each run.

A.5.3 Answer Extraction

To robustly map an LLM's free-form output to our discrete labels, we implement the following multistep pipeline:

- 1. Normalize whitespace and strip punctuation.
- 2. Attempt to parse JSON-like substrings and extract the "answer" field.
- 3. Apply multiple-choice heuristics (letter match or exact option-text match).
- 4. Scan for "Answer:" or "Solution:" prefixes.
- 5. Fallback to returning the cleaned string, then perform an exact or fuzzy match against the label set (otherwise assign "other").

This ensures that even messy or verbose outputs get reliably converted into our evaluation labels.

A.5.4 Evaluation Metrics

Additional Transition Metrics:

Improved (%) – the percentage of examples that switch from an *incorrect* baseline prediction to a *correct* one $(I \rightarrow C)$.

Regressed (%) – the percentage that switch from *correct* to *incorrect* ($C \rightarrow I$).

Net Δ_{pred} – *Improved* minus *Regressed*; a positive value indicates a net gain in prediction accuracy while a negative value indicates overall degradation.

³The Mixture-of-Experts model is served with AWQ because vLLM currently lacks bitsandbytes support for 8-expert routing.

Task family	Metrics reported
Classification (MNLI, ARC, MMLU, AG News)	Accuracy
Extractive QA (SQuAD, GSM8K)	Exact Match, F ₁
Summarisation (CNN/DailyMail, XSum)	ROUGE-1/2/L, BERTScore (P/R/F ₁)
Auxiliary readability metrics for all tasks: Coleman–Liau, Flesch-Kincaid, Gunning-Fog	

A.6 Use of AI

ChatGPT was used in this work to rephrase sentences, and write the code to generate tables. Most captions (Figures and Tables) were refined by AI.

A.7 Additions Experimentational Results: Tables

~		Task														
System		AG	News			M	NLI			Al	RC		MMLU			
	ssp	esp	sum	eum	ssp	esp	sum	eum	ssp	esp	sum	eum	ssp	esp	sum	eum
Qwen_1.5B	0.76	0.73	0.69	0.56	0.34	0.32	0.29	0.32	0.7	0.71	0.69	0.63	0.5	0.56	0.5	0.38
Qwen_7B	0.82	0.81	0.81	0.81	0.34	0.35	0.35	0.31	0.89	0.89	0.89	0.84	0.71	0.7	0.69	0.41
Qwen_72B	0.81	0.81	0.82	0.81	0.33	0.33	0.33	0.33	0.94	0.94	0.95	0.95	0.83	0.83	0.81	0.82
Cohere_8B	0.82	0.8	0.79	0.79	0.35	0.35	0.35	0.35	0.8	0.78	0.78	0.73	0.94	0.92	0.93	0.05
Cohere_32B	0.76	0.88	0.86	0.77	0.34	0.35	0.33	0.34	0.84	0.84	0.83	0.86	0.96	0.97	0.96	0.86
Mistral_7B	0.83	0.8	0.81	0.81	0.35	0.36	0.35	0.34	0.64	0.65	0.64	0.57	0.4	0.45	0.46	0.29
Mistral_8×7E	3 0.77	0.79	0.79	0.81	0.32	0.33	0.33	0.32	0.66	0.8	0.74	0.46	0.57	0.59	0.56	0.12
LLAMA3_3B	0.76	0.73	0.72	0.7	0.33	0.32	0.3	0.32	0.77	0.78	0.74	0.69	0.59	0.58	0.57	0.23
LLAMA3_8B	0.87	0.87	0.83	0.86	0.36	0.34	0.36	0.34	0.78	0.8	0.79	0.75	0.59	0.57	0.58	0.57
LLAMA3_70B	0.84	0.83	0.84	0.81	0.35	0.35	0.34	0.33	0.93	0.91	0.92	0.92	0.79	0.77	0.81	0.77

Table 3: Accuracy scores of ten LLMs on AG News, MNLI, ARC, and MMLU benchmarks under four prompting strategies: *ssp* (demos at the start of the system prompt), *esp* (demos at the end of the system prompt), *sum* (demos at the start of the user message), and *eum* (demos at the end of the user message).

~ .					(CNN/D	ailyM	ail				
System		ROU	JGE-1			ROU	GE-2		ROUGE-L			
	ssp	esp	sum	eum	ssp	esp	sum	eum	ssp	esp	sum	eum
Qwen_1.5B	0.35	0.32	0.34	0.14	0.13	0.12	0.13	0.01	0.22	0.20	0.22	0.09
Qwen_7B	0.38	0.38	0.38	0.23	0.13	0.13	0.13	0.06	0.24	0.24	0.24	0.15
Qwen_72B	0.41	0.40	0.39	0.39	0.15	0.14	0.14	0.14	0.25	0.25	0.24	0.23
Cohere_8B	0.42	0.41	0.42	0.23	0.18	0.17	0.17	0.06	0.28	0.27	0.27	0.15
Cohere_32B	0.43	0.43	0.44	0.37	0.19	0.20	0.20	0.15	0.29	0.30	0.30	0.24
Mistral_7B	0.35	0.36	0.36	0.15	0.14	0.15	0.15	0.01	0.22	0.23	0.23	0.10
Mistral_8×7E	3 0.35	0.33	0.32	0.35	0.13	0.12	0.12	0.13	0.22	0.20	0.20	0.21
LLAMA3_3B	0.40	0.39	0.39	0.14	0.15	0.14	0.14	0.01	0.25	0.25	0.24	0.10
LLAMA3_8B	0.39	0.39	0.40	0.38	0.15	0.15	0.15	0.15	0.24	0.24	0.25	0.23
LLAMA3_70B	0.41	0.42	0.41	0.41	0.16	0.16	0.16	0.17	0.26	0.26	0.26	0.26

~ .						XS	UM					
System		ROUGE-1				ROU	GE-2		ROUGE-L			
	ssp	esp	sum	eum	ssp	esp	sum	eum	ssp	esp	sum	eum
Qwen_1.5B	0.19	0.19	0.20	0.12	0.04	0.04	0.05	0.01	0.13	0.13	0.14	0.09
Qwen_7B	0.24	0.27	0.26	0.16	0.06	0.07	0.07	0.01	0.16	0.19	0.18	0.13
Qwen_72B	0.25	0.29	0.31	0.24	0.08	0.09	0.11	0.07	0.18	0.21	0.23	0.17
Cohere_8B	0.32	0.37	0.38	0.17	0.12	0.16	0.16	0.04	0.24	0.28	0.29	0.12
Cohere_32B	0.44	0.47	0.47	0.30	0.21	0.24	0.24	0.12	0.35	0.39	0.39	0.23
Mistral_7B	0.19	0.19	0.19	0.09	0.05	0.05	0.05	0.01	0.13	0.13	0.13	0.07
Mistral_8×7E	3 0.23	0.21	0.22	0.20	0.07	0.07	0.07	0.06	0.16	0.15	0.16	0.14
LLAMA3_3B	0.26	0.28	0.30	0.17	0.07	0.08	0.09	0.01	0.18	0.21	0.23	0.14
LLAMA3_8B	0.30	0.33	0.32	0.24	0.09	0.11	0.11	0.07	0.22	0.24	0.24	0.17
LLAMA3_70B	0.31	0.34	0.37	0.28	0.11	0.13	0.14	0.09	0.23	0.26	0.28	0.21

Table 4: ROUGE-1, ROUGE-2, and ROUGE-L scores for ten LLMs on the CNN/DailyMail and XSUM datasets. We evaluate four prompting strategies: *ssp* (demos at the start of the system prompt), *esp* (demos at the end of the system prompt), *sum* (demos at the start of the user message), and *eum* (demos at the end of the user message).

G .								Tas	ks							
System				S	QUAD							(GSM8K			
		Exact	Matcl	h		F	1			Exact	Matc	h		F	'1	
	ssp	esp	sum	eum	ssp	esp	sum	eum	ssp	esp	sum	eum	ssp	esp	sum	eum
Qwen_1.5B	50.5	56.5	54.5	16.5	64.97	71.21	67.12	25.63	-	-	-	-	13	16.7	13.5	0.31
Qwen_7B	66.5	68.5	65.5	53	80.39	81.9	80.5	68.51	-	-	-	-	24.58	43.58	42.76	41.74
Qwen_72B	68.5	69.5	69.5	68	83.26	83.82	84.02	82.62	-	-	-	-	45.56	45.68	45.95	46.97
Cohere_8B	72	69	68.5	7	84.34	83.69	82.86	10.9	-	-	-	-	39.02	45.82	45.87	17.67
Cohere_32B	63	64.5	67	58	80.66	81.66	82.83	77.45	-	-	-	-	34.59	47.85	48.33	47.21
Mistral_7B	57	52.5	49	41	74.55	70.64	67.87	54.01	-	-	-	-	32.19	40.11	39.63	31.14
Mistral_8×7E	3 51.5	47	44.5	33.5	69.18	65.19	63.84	56.29	-	-	-	-	24.21	27.71	27.71	35.75
LLAMA3_3B	62	63.5	58	58.5	77.12	78.45	74.35	73.22	-	-	-	-	34.76	33.73	36.52	11.5
LLAMA3_8B	68	68	68.5	63	82.28	82.66	83.16	78.95	-	-	-	-	38.45	40.06	39.72	42.85
LLAMA3_70B	68	67.5	69	68	82.66	82.7	84.09	82.28	-	-	-	-	5.94	5.78	12.07	41.93

Table 5: Exact Match and F1 scores of ten LLMs on SQuAD and GSM8K benchmarks under four prompting strategies: *ssp* (demos at the start of the system prompt), *sum* (demos at the start of the user message), and *eum* (demos at the end of the user message).

DPP Position	Qwen 1.5B	Qwen 7B	Qwen 72B	LLAMA3 3B	LLAMA3 8B	LLAMA3 70B
ssp	0.131	0.099	0.120	0.163	0.186	0.076
esp	0.112	0.089	0.106	0.181	0.160	0.078
sum	0.128	0.105	0.099	0.175	0.168	0.091
eum	0.099	0.112	0.169	0.102	0.124	0.134

Table 6: Positional-bias persists on Booksum, a long-context summarization benchmark (chapters 5 K tokens; 5-demo prompts is approx. 23 K tokens). We report ROUGE-L on six representative models. Bold numbers mark the best DPP position per model.

Dataset	ssp	esp	sum	eum	Dataset	ssp	esp	sum	eum
	(Qwen_1.5B	i			М	istral_7E	3	
mnli	0.0171	0.0108	0.0046	0.0124	mnli	0.0450	0.0550	0.0450	0.0350
ag_news	-0.2592	-0.2448	-0.2256	-0.1656	ag_news	0.4209	0.4002	0.4071	0.4105
arc	-0.1596	-0.1610	-0.1554	-0.1386	arc	0.4361	0.4450	0.4406	0.3827
mmlu	-0.0155	-0.0185	-0.0155	-0.0095	mmlu	0.1420	0.1775	0.1846	0.0674
		Qwen_7B				Mi	stral_8×7	7B	
mnli	-0.0048	0.0024	0.0048	-0.0168	mnli	0.0041	0.0061	0.0061	0.0041
ag_news	-0.0943	-0.0918	-0.0918	-0.0909	ag_news	-0.1580	-0.1653	-0.1638	-0.1696
arc	0.1370	0.1360	0.1370	0.1280	arc	0.4845	0.6223	0.5653	0.2993
mmlu	0.0053	0.0052	0.0051	0.0023	mmlu	0.1687	0.1778	0.1620	-0.0337
		Qwen_72B				L	LAMA3_3B		
mnli	-0.0048	-0.0064	-0.0064	-0.0048	mnli	0.0018	-0.0018	-0.0090	-0.0018
ag_news	0.0756	0.0763	0.0777	0.0763	ag_news	-0.1100	-0.1056	-0.1023	-0.0990
arc	-0.5180	-0.5180	-0.5215	-0.5215	arc	-0.3186	-0.3213	-0.3024	-0.2754
mmlu	-0.3965	-0.3965	-0.3873	-0.3904	mmlu	-0.0675	-0.0660	-0.0637	-0.0135
	(Cohere_8B				L	LAMA3_8B		
mnli	-0.0030	-0.0030	-0.0030	-0.0030	mnli	0.0126	0.0054	0.0126	0.0036
ag_news	0.5952	0.5712	0.5616	0.5616	ag_news	-0.4536	-0.4536	-0.4248	-0.4464
arc	-0.1728	-0.1674	-0.1688	-0.1553	arc	-0.2644	-0.2706	-0.2685	-0.2521
mmlu	-0.4125	-0.4042	-0.4070	0.0743	mmlu	0.0160	0.0154	0.0156	0.0152
	С	ohere_32	3			L	LAMA3_70E	3	
mnli	-0.0158	-0.0040	-0.0237	-0.0158	mnli	0.0068	0.0068	0.0051	-0.0017
ag_news	0.3941	0.4828	0.4722	0.4012	ag_news	0.0540	0.0535	0.0544	0.0508
arc	-0.3699	-0.3699	-0.3672	-0.3807	arc	-0.6715	-0.6545	-0.6630	-0.6630
mmlu	-0.4882	-0.4946	-0.4914	-0.4284	mmlu	-0.3540	-0.3393	-0.3629	-0.3422
(a) Qwen_1 here_32B	1.5B, Qwen	_7B, Qwen_	72B, Coher	e_8B, Co-	(b) Mistral_1 LLAMA3_7	7B, Mistral_8 70B	8×7B, LLAM	IA3_3B, LLA	AMA3_8B,

Table 7: Transition metrics for four benchmarks (MNLI, AG News, ARC, and MMLU) across ten LLMs under different in-context demonstration placements. For each model and dataset, the entry shows the performance delta (relative to the zero-shot baseline) under each placement strategy: ssp, esp, sum, and eum.

Dataset	ssp	esp	sum	eum	Dataset	ssp	esp	sum	eum
Dataset		n_1.5B	Sum		Dataset		ral_7B	Sum	
			0.4064	0.4442				0.0770	
mnli	0.4488	0.4426	0.4364	0.4442	mnli	0.3550	0.3650	0.3550	0.3450
xsum	0.0167	0.0139	0.0236	-0.0263	xsum	0.0182	0.0240	0.0212	-0.0473
squad	0.0089	0.1059	0.0422	-0.6020	squad	0.1141	0.0557	0.0143	-0.1928
gsm8k	9.2178	12.1266	9.6114	-0.7547 0.4688	gsm8k	15.4169	19.4560	19.2118 0.7139	14.8845
ag_news	0.3752 -0.0136	0.3896 -0.0319	0.4088 -0.0114	-0.1755	ag_news	0.7277 -0.0015	0.7070 0.0064	0.7139	0.7173 -0.1621
cnn_dailymail	0.4426	0.4412	0.4468	0.4636	cnn_dailymail	0.6202	0.6291	0.6246	0.5667
arc mmlu	0.5000	0.4412	0.5000	0.4030	arc mmlu	0.0202	0.0291	0.0240	0.3544
	Qw	en_7B				Mistr	al_8×7B		
mnli	0.4208	0.4280	0.4304	0.4088	mnli	0.4262	0.4283	0.4283	0.4262
xsum	0.0344	0.0614	0.0581	-0.0081	XSUM	0.0411	0.0313	0.0329	0.0155
squad	0.0646	0.0846	0.0660	-0.0927	squad	0.1719	0.1043	0.0814	-0.0465
gsm8k	7.7581	14.5307	14.2375	13.8742	gsm8k	6.6051	7.7051	7.7045	10.2305
ag_news	0.4447	0.4473	0.4473	0.4482	ag_news	0.4232	0.4159	0.4174	0.4116
cnn_dailymail	0.0164	0.0170	0.0199	-0.0956	cnn_dailymail	0.0196	0.0002	-0.0071	0.0144
arc	0.5780	0.5770	0.5780	0.5690	arc	0.6473	0.7850	0.7280	0.4620
mmlu	0.5021	0.5020	0.5019	0.4991	mmlu	0.5337	0.5428	0.5270	0.3313
	Qwe	en_72B				LLA	MA3_3B		
mnli	0.4456	0.4440	0.4440	0.4456	mnli	0.4388	0.4352	0.4280	0.4352
xsum	0.0440	0.0767	0.0999	0.0345	xsum	0.0299	0.0605	0.0842	-0.0204
squad	0.0420	0.0489	0.0515	0.0340	squad	-0.0249	-0.0080	-0.0599	-0.0742
gsm8k	9.7468	9.7755	9.8384	10.0803	gsm8k	6.0728	5.8630	6.4302	1.3402
ag_news	0.5434	0.5441	0.5455	0.5441	ag_news	0.4439	0.4483	0.4516	0.4549
cnn_dailymail	0.0299	0.0238	0.0173	0.0088	cnn_dailymail	0.0070	0.0080	0.0051	-0.1837
arc	0.1885	0.1885	0.1850	0.1850	arc	0.3542	0.3515	0.3704	0.3974
mmlu	0.2987	0.2987	0.3079	0.3048	mmlu	0.4858	0.4872	0.4895	0.5397
	Coh	ere_8B				LLA	MA3_8B		
mnli	0.4116	0.4116	0.4116	0.4116	mnli	0.4514	0.4442	0.4514	0.4424
xsum	0.1092	0.1615	0.1727	-0.0324	xsum	0.0743	0.1038	0.0994	0.0212
squad	0.0502	0.0421	0.0318	-0.8643	squad	0.0394	0.0442	0.0504	-0.0027
gsm8k	44.3362	52.2347	52.2888	19.5249	gsm8k	25.1482	26.2461	26.0143	28.1443
ag_news	0.8072	0.7832	0.7736	0.7736	ag_news_	0.2336	0.2336	0.2624	0.2408
cnn_dailymail	0.0442	0.0321	0.0340	-0.1237	cnn_dailymail	-0.0004	0.0035	0.0074	-0.0125
arc	0.4204	0.4258	0.4244	0.4379	arc	0.3852	0.3791	0.3811	0.3975
mmlu	0.2607	0.2690	0.2663	0.7475	mmlu	0.5036	0.5030	0.5032	0.5028
	Cohe	ere_32B				LLAN	1A3_70B		
mnli	0.3736	0.3854	0.3657	0.3736	mnli	0.4490	0.4490	0.4473	0.4405
xsum	0.1149	0.1607	0.1659	-0.0528	xsum	0.0922	0.1280	0.1531	0.0664
squad	0.0129	0.0254	0.0401	-0.0274	squad	0.0172	0.0176	0.0347	0.0125
gsm8k	16.7731	23.5865	23.8346	23.2584	gsm8k	0.0691	0.0406	1.1734	6.5517
ag_news	0.6811	0.7698	0.7591	0.6882	ag_news	0.5306	0.5302	0.5311	0.5274
cnn_dailymail	0.0069	0.0239	0.0336	-0.0546	cnn_dailymail	0.0156	0.0172	0.0158	0.0210
arc	0.3164	0.3164	0.3191	0.3056	arc	0.1387	0.1557	0.1472	0.1472
mmlu	0.2102	0.2039	0.2070	0.2701	mmlu	0.3289	0.3437	0.3200	0.3407

(a) Qwen_1.5B, Qwen_7B, Qwen_72B, Cohere_8B, Cohere_32B

(b) Mistral_7B, Mistral_8×7B, LLAMA3_3B, LLAMA3_8B, LLAMA3_70B

Table 8: Comprehensive transition metrics for eight benchmarks (MNLI, XSUM, SQuAD, GSM8K, AG News, CNN/DailyMail, ARC, and MMLU) across ten LLMs and four demonstration placements. Each cell reports the change in performance relative to zero-shot when demos are placed at the start/end of the system prompt or the start/end of the user message (ssp, esp, sum, eum).

				MNLI				
Position	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}
		Qwen_1.5B				Qwen_7B		
ssp	38.50	19.00	19.50	-1	37.00	18.50	18.50	0
esp	34.50	16.00	18.50	-5	34.50	18.00	16.50	3
sum	38.50	17.00	21.50	-9	37.00	19.50	17.50	4
eum	6.00	2.00	4.00	-4	29.50	13.50	16.00	-5
		Qwen_72B			1	Cohere_8B		
ssp	9.00	6.00	3.00	6	13.00	8.50	4.50	8
esp	9.50	6.00	3.50	5	19.00	11.50	7.50	8
sum	9.50	6.00	3.50	5	14.00	9.00	5.00	8
eum	8.00	5.50	2.50	6	12.00	8.00	4.00	8
		Cohere_32B			M	Mistral_7B		
ssp	13.00	6.50	6.50	0	34.00	20.00	14.00	12
esp	15.50	8.50	7.00	3	33.00	20.00	13.00	14
sum	10.00	4.50	5.50	-2	32.00	19.00	13.00	12
eum	12.00	6.00	6.00	0	26.00	15.50	10.50	10
	М	istral_8x7B				LLAMA3_3B		
ssp	5.00	2.00	3.00	-2	41.50	20.50	21.00	-1
esp	4.50	2.00	2.50	-1	30.50	14.50	16.00	-3
sum	4.50	2.00	2.50	-1	18.50	7.50	11.00	-7
eum	9.50	4.50	5.00	-1	24.50	11.50	13.00	-3
		LLAMA3_8B			L	LAMA3_70B		
ssp	23.00	13.50	9.50	8	58.50	30.00	28.50	3
esp	24.00	13.00	11.00	4	56.50	29.00	27.50	3
sum	33.00	18.50	14.50	8	58.00	29.50	28.50	2
eum	20.50	11.00	9.50	3	59.00	29.00	30.00	-2

Table 9: Delta metrics on the MNLI benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the Net Δ_{pred} (cnt.) (Total Count Improved – Total Count Regressed), all measured relative to the *sum* configuration.

				XSUM				
Position	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}
		Qwen_1.5B				Qwen_7B		
ssp	0.00	92.50	0.00	185	0.00	99.00	0.00	198
esp	0.00	90.50	0.50	180	0.00	99.00	0.00	198
sum	0.00	91.50	0.00	183	0.00	99.00	0.00	198
eum	0.00	69.00	0.00	138	0.00	92.50	0.00	185
		Qwen_72B			(Cohere_8B		
ssp	0.00	99.00	0.00	198	0.00	99.00	0.00	198
esp	0.00	98.50	0.00	197	0.00	97.50	0.50	194
sum	0.00	98.50	0.00	197	0.00	98.50	0.00	197
eum	0.00	98.00	0.50	195	0.00	78.00	1.00	154
		Cohere_32B			٨	Mistral_7B		
ssp	0.00	99.00	0.00	198	0.00	92.00	0.00	184
esp	0.00	99.00	0.00	198	0.00	90.50	0.00	181
sum	0.00	99.50	0.00	199	0.00	88.50	0.00	177
eum	0.00	88.50	0.00	177	0.00	42.00	0.50	83
	М	istral_8x7B			l	LLAMA3_3B		
ssp	0.00	94.00	0.00	188	0.00	99.50	0.00	199
esp	0.00	94.00	0.00	188	0.00	97.00	0.00	194
sum	0.00	95.00	0.00	190	0.00	98.50	0.00	197
eum	0.00	91.50	0.00	183	0.00	90.50	0.00	181
		LLAMA3_8B			L	LAMA3_70B		
ssp	0.00	98.00	0.00	196	0.00	99.50	0.00	199
esp	0.00	98.50	0.00	197	0.00	99.50	0.00	199
sum	0.00	97.50	0.00	195	0.00	99.50	0.00	199
eum	0.00	97.50	0.00	195	0.00	99.50	0.00	199

Table 10: Delta metrics on the XSUM benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the Net Δ_{pred} (cnt.) (Total Count Improved – Total Count Regressed), all measured relative to the *sum* configuration.

	SQUAD								
Position	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	
1 05101011	Qwen_1.5B					Qwen_7B			
ssp	0.00	23.00	26.50	-7	0.00	19.50	7.00	25	
esp	0.00	27.00	36.50	-19	0.00	20.00	3.50	33	
sum	0.00	24.50	27.50	-6	0.00	21.00	5.50	31	
eum	0.00	13.00	56.50	-87	0.00	19.50	20.00	-1	
		Qwen_72B			1	Cohere_8B			
ssp	0.00	16.50	4.50	24	0.00	20.50	6.50	28	
esp	0.00	16.00	4.00	24	0.00	16.00	9.00	14	
sum	0.00	17.00	4.50	25	0.00	15.50	8.00	15	
eum	0.00	13.50	5.50	16	0.00	9.50	75.50	-132	
		Cohere_32B			٨	Mistral_7B			
ssp	0.00	13.00	7.00	12	0.00	43.00	6.00	74	
esp	0.00	16.00	8.00	16	0.00	42.00	7.00	70	
sum	0.00	16.50	7.00	19	0.00	38.50	9.00	59	
eum	0.00	16.00	15.00	2	0.00	32.00	20.00	24	
	М	istral_8x7B				LLAMA3_3B			
ssp	0.00	42.50	3.00	79	0.00	19.50	13.00	13	
esp	0.00	34.50	5.50	58	0.00	22.50	9.00	27	
sum	0.00	37.00	8.00	58	0.00	22.00	18.50	7	
eum	0.00	27.00	10.50	33	0.00	22.50	18.50	8	
		LLAMA3_8B			L	LAMA3_70B			
ssp	0.00	16.50	5.50	22	0.00	14.50	5.00	19	
esp	0.00	17.00	5.00	24	0.00	15.00	5.50	19	
sum	0.00	19.50	6.50	26	0.00	17.00	5.00	24	
eum	0.00	15.00	12.50	5	0.00	18.00	8.00	20	

Table 11: Delta metrics on the SQUAD benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the Net $\Delta_{\rm pred}$ (cnt.) (Total Count Improved – Total Count Regressed), all measured relative to the *sum* configuration.

				GSM8K				
Position	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}
	Qwen_1.5B					Qwen_7B		
ssp	0.00	35.50	9.00	53	0.00	62.00	0.50	123
esp	0.00	42.50	5.50	74	0.00	100.00	0.00	200
sum	0.00	34.50	9.50	50	0.00	100.00	0.00	200
eum	0.00	0.50	15.50	-30	0.00	95.00	0.00	190
		Qwen_72B			1	Cohere_8B		
ssp	0.00	100.00	0.00	200	0.00	91.50	0.50	182
esp	0.00	100.00	0.00	200	0.00	100.00	0.00	200
sum	0.00	100.00	0.00	200	0.00	100.00	0.00	200
eum	0.00	100.00	0.00	200	0.00	53.50	4.00	99
	1	Cohere_32B			M	Mistral_7B		
ssp	0.00	73.00	1.50	143	0.00	96.50	0.50	192
esp	0.00	98.00	0.00	196	0.00	99.50	0.00	199
sum	0.00	99.50	0.00	199	0.00	99.50	0.00	199
eum	0.00	99.50	0.00	199	0.00	99.50	0.00	199
	М	istral_8x7B				LLAMA3_3B		
ssp	0.00	62.00	0.00	124	0.00	97.50	0.00	195
esp	0.00	73.50	0.50	146	0.00	95.50	2.00	187
sum	0.00	73.00	2.00	142	0.00	100.00	0.00	200
eum	0.00	91.00	0.50	181	0.00	73.50	3.00	141
		LLAMA3_8B			L	LAMA3_70B		
ssp	0.00	100.00	0.00	200	0.00	12.00	2.00	20
esp	0.00	99.50	0.00	199	0.00	13.00	1.50	23
sum	0.00	100.00	0.00	200	0.00	32.00	1.00	62
eum	0.00	100.00	0.00	200	0.00	92.50	0.00	185

Table 12: Delta metrics on the Gsm8k benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the Net $\Delta_{\rm pred}$ (cnt.) (Total Count Improved – Total Count Regressed), all measured relative to the *sum* configuration.

	AG_NEWS									
Position	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}		
1 05111011	Qwen_1.5B					Qwen_7B				
ssp	7.50	3.50	4.00	-1	5.00	1.50	3.50	-4		
esp	10.50	3.50	7.00	-7	5.50	1.00	4.50	-7		
sum	19.50	6.00	13.50	-15	6.50	1.50	5.00	-7		
eum	46.00	13.00	33.00	-40	7.00	1.50	5.50	-8		
		Qwen_72B			1	Cohere_8B				
ssp	3.50	1.00	2.50	-3	11.00	7.00	4.00	6		
esp	2.00	0.50	1.50	-2	11.50	6.00	5.50	1		
sum	2.00	1.00	1.00	0	11.50	5.50	6.00	-1		
eum	2.00	0.50	1.50	-2	17.50	8.50	9.00	-1		
		Cohere_32B			M	Mistral_7B				
ssp	20.00	5.50	14.50	-18	16.50	11.50	5.00	13		
esp	8.50	6.00	2.50	7	11.50	7.50	4.00	7		
sum	9.00	5.50	3.50	4	12.50	8.50	4.00	9		
eum	15.00	3.50	11.50	-16	14.00	9.50	4.50	10		
	М	istral_8x7B				LLAMA3_3B				
ssp	8.50	3.50	5.00	-3	14.50	9.00	5.50	7		
esp	11.00	3.50	7.50	-8	13.50	7.50	6.00	3		
sum	11.00	3.50	7.50	-8	14.00	7.00	7.00	0		
eum	8.50	3.00	5.50	-5	15.50	7.00	8.50	-3		
		LLAMA3_8B			L	LAMA3_70B				
ssp	9.00	5.50	3.50	4	10.50	9.50	1.00	17		
esp	9.00	5.50	3.50	4	10.00	9.00	1.00	16		
sum	12.00	5.00	7.00	-4	11.00	10.00	1.00	18		
eum	8.00	4.50	3.50	2	7.00	6.00	1.00	10		

Table 13: Delta metrics on the Ag News benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the Net Δ_{pred} (cnt.) (Total Count Improved – Total Count Regressed), all measured relative to the *sum* configuration.

	CNN_DAILYMAIL								
Position	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	
		Qwen_1.5B		_		Qwen_7B			
ssp	0.00	86.00	5.50	161	0.00	94.50	1.50	186	
esp	0.00	80.00	9.50	141	0.00	94.00	0.50	187	
sum	0.00	87.50	6.00	163	0.00	92.50	1.00	183	
eum	0.00	0.00	13.00	-26	0.00	42.50	7.00	71	
		Qwen_72B			(Cohere_8B			
ssp	0.00	95.50	0.00	191	0.00	94.00	1.50	185	
esp	0.00	95.50	0.00	191	0.00	91.50	4.00	175	
sum	0.00	95.50	0.00	191	0.00	91.00	1.50	179	
eum	0.00	94.00	0.00	188	0.00	31.50	7.00	49	
	Cohere_32B				M				
ssp	0.00	99.00	0.00	198	0.00	93.50	3.50	180	
esp	0.00	94.50	3.00	183	0.00	94.50	2.00	185	
sum	0.00	95.50	3.00	185	0.00	94.50	2.50	184	
eum	0.00	81.00	0.50	161	0.00	12.00	0.50	23	
	М	istral_8x7B			ĺ	LLAMA3_3B			
ssp	0.00	89.00	2.50	173	0.00	88.50	0.50	176	
esp	0.00	88.00	4.50	167	0.00	91.00	1.00	180	
sum	0.00	86.00	6.00	160	0.00	90.50	0.50	180	
eum	0.00	89.95	4.02	171	0.00	2.50	20.00	-35	
		LLAMA3_8B			L	LAMA3_70B			
ssp	0.00	91.50	0.00	183	0.00	98.50	0.00	197	
esp	0.00	89.00	3.00	172	0.00	98.50	0.00	197	
sum	0.00	90.50	1.00	179	0.00	99.00	0.00	198	
eum	0.00	90.00	1.00	178	0.00	99.00	0.00	198	

Table 14: Delta metrics on the Cnn/Dailymail benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the Net Δ_{pred} (cnt.) (Total Count Improved – Total Count Regressed), all measured relative to the *sum* configuration.

				ARC				
Position	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}
1 05111011		Qwen_1.5B				Qwen_7B		
ssp	14.00	9.50	4.50	10	3.00	2.50	0.50	4
esp	14.00	9.50	4.50	10	3.50	2.50	1.00	3
sum	14.00	8.50	5.50	6	4.00	3.00	1.00	4
eum	15.50	6.50	9.00	-5	3.50	1.50	2.00	-1
		Qwen_72B				Cohere_8B		
ssp	1.00	0.00	1.00	-2	7.50	5.00	2.50	5
esp	1.00	0.00	1.00	-2	10.50	5.50	5.00	1
sum	0.50	0.00	0.50	-1	13.00	7.00	6.00	2
eum	0.50	0.00	0.50	-1	10.00	3.50	6.50	-6
		Cohere_32B			٨	Mistral_7B		
ssp	6.50	2.00	4.50	-5	15.50	9.00	6.50	5
esp	5.50	1.50	4.00	-5	12.00	7.50	4.50	6
sum	7.00	2.00	5.00	-6	13.50	8.00	5.50	5
eum	3.50	1.50	2.00	-1	12.00	4.00	8.00	-8
	М	istral_8x7B				LLAMA3_3B		
ssp	10.50	7.00	3.50	7	17.00	11.00	6.00	10
esp	10.50	7.00	3.50	7	14.50	10.00	4.50	11
sum	11.00	7.50	3.50	8	14.00	8.00	6.00	4
eum	12.50	8.00	4.50	7	16.00	6.50	9.50	-6
		LLAMA3_8B			L	LAMA3_70B		
ssp	7.00	3.50	3.50	0	2.00	1.00	1.00	0
esp	8.50	5.00	3.50	3	2.00	0.00	2.00	-4
sum	9.00	5.00	4.00	2	2.00	0.50	1.50	-2
eum	8.00	2.50	5.50	-6	1.00	0.00	1.00	-2

Table 15: Delta metrics on the ARC benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the Net Δ_{pred} (cnt.) (Total Count Improved – Total Count Regressed), all measured relative to the *sum* configuration.

Table 16: Delta metrics on arc across models and DPPs.

				MMLU				
Position	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}	Δ_{pred} (%)	Improved (%)	Regressed (%)	Net Δ_{pred}
	Qwen_1.5B					Qwen_7B		
ssp	19.00	8.00	11.00	-6	11.50	7.50	4.00	7
esp	12.50	7.00	5.50	3	12.50	7.00	5.50	3
sum	17.00	7.00	10.00	-6	10.50	5.50	5.00	1
eum	29.50	7.00	22.50	-31	40.00	6.50	33.50	-54
		Qwen_72B			1	Cohere_8B		
ssp	4.50	2.50	2.00	1	11.50	10.00	1.50	17
esp	5.50	3.00	2.50	1	12.50	10.00	2.50	15
sum	6.00	2.50	3.50	-2	12.50	10.00	2.50	15
eum	3.50	1.50	2.00	-1	81.00	0.50	80.50	-160
		Cohere_32B			١	Mistral_7B		
ssp	5.50	3.00	2.50	1	13.50	5.00	8.50	-7
esp	4.50	3.00	1.50	3	22.50	9.00	13.50	-9
sum	4.00	2.50	1.50	2	23.00	9.50	13.50	-8
eum	12.00	1.50	10.50	-18	43.50	11.00	32.50	-43
	М	istral_8x7B				LLAMA3_3B		
ssp	13.00	8.50	4.50	8	15.50	9.50	6.00	7
esp	10.50	6.00	4.50	3	16.00	9.50	6.50	6
sum	12.50	6.00	6.50	-1	19.00	10.00	9.00	2
eum	26.50	8.50	18.00	-19	48.50	8.00	40.50	-65
		LLAMA3_8B			L	LAMA3_70B		
ssp	8.00	3.50	4.50	-2	10.50	5.00	5.50	-1
esp	7.00	2.00	5.00	-6	11.50	4.50	7.00	-5
sum	8.50	3.00	5.50	-5	10.00	5.50	4.50	2
eum	22.50	9.50	13.00	-7	7.50	2.50	5.00	-5

Table 17: Delta metrics on the MMLU benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the Net Δ_{pred} (cnt.) (Total Count Improved – Total Count Regressed), all measured relative to the *sum* configuration.

A.8 Full Win-Loss-Tie Breakdown by Model

Task-Centric Analysis. To complement the model-centric win-loss breakdowns discussed above, we provide a task-centric perspective here. Figures 14 through 17 illustrate how frequently each demonstration position emerges as the best (or worst) across models for individual tasks. These visualizations confirm that no single position consistently dominates across tasks: while ssp often performs best on classification tasks like MNLI and AG NEWS, positions like esp or sum sometimes outperform on reasoning or summarization tasks. This highlights the need for prompt position tuning tailored not just to model size but also to the task domain.

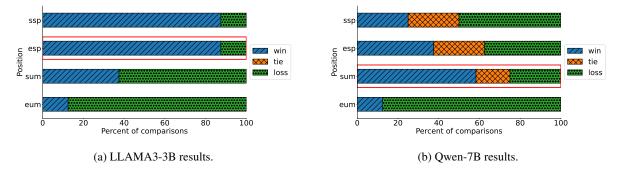


Figure 11: Win-loss-tie analysis for LLAMA3-3B and QWEN-7B across all tasks

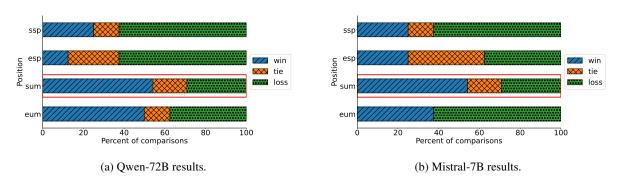


Figure 12: Win-loss-tie analysis for QWEN-72B and MISTRAL-7B across all tasks

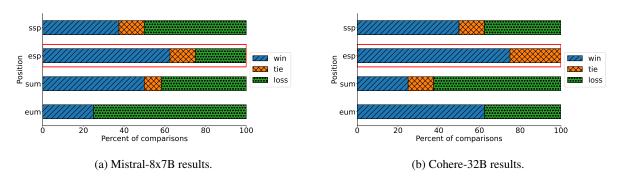


Figure 13: Win-loss-tie analysis for MISTRAL-8X7B and COHERE-32B across all tasks

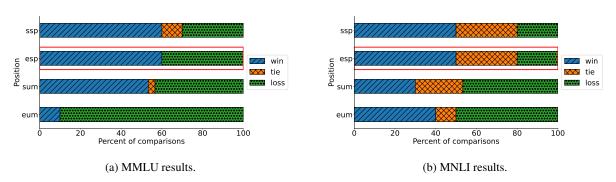


Figure 14: Win-loss-tie analysis for MMLU and MNLI across all models.

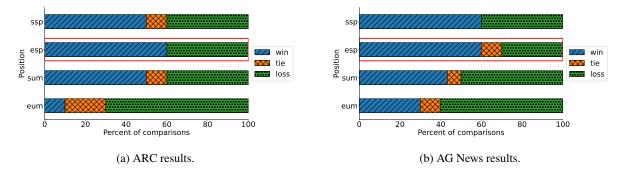


Figure 15: Win-loss-tie analysis for ARC and AG NEWS across all models.

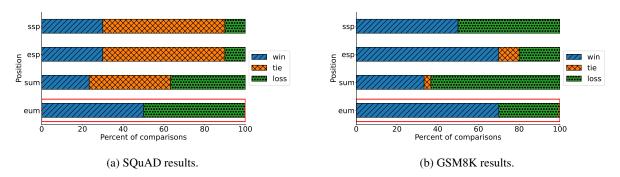


Figure 16: Win-loss-tie analysis for SQUAD and GSM8K across all models.

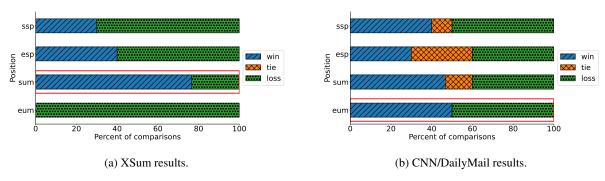


Figure 17: Win-loss-tie analysis for XSUM and CNN/DAILYMAIL across all models.

A.9 Data Sampling

For each benchmark we first sample 200 test examples (without replacement) from the official test split, using five different random seeds (42, 123, 456, 789, 1). We also sample 5 in-context demonstration examples (without replacement) from the train split for each seed as our DPP set.

A.10 Dataset-wise View of Prediction Volatility and Accuracy Gains

To complement the main analysis, we present detailed per-task plots visualizing how different ICL DPP's affect model behavior across scale. For each dataset (AG News, ARC, GSM8K, SQUAD and MNLI), we report (i) the percentage of prediction changes when we switch from the default DPP (sum) to alternative DPP's (ssp, esp and eum), and (ii) the signed percentage metric gain or loss when compared to the 0-shot baseline.

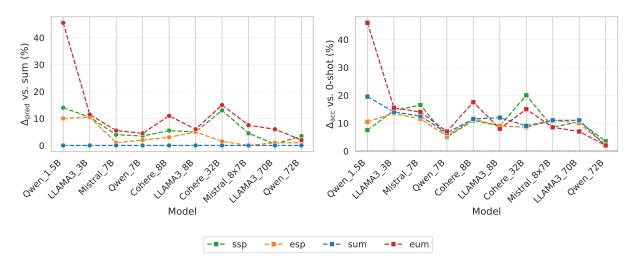


Figure 18: (AG News) **Left:** the percentage of predictions that change when switching from sum to other positions. **Right:** Accuracy change over the zero-shot baseline.

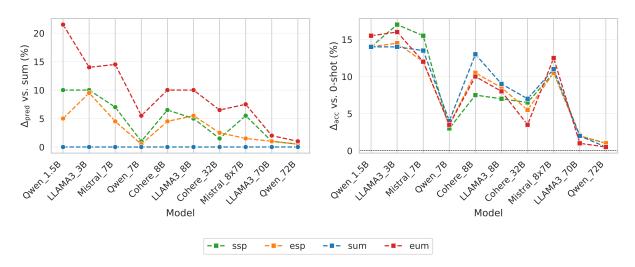


Figure 19: (AG News) **Left:** the percentage of predictions that change when switching from sum to other positions. **Right:** Accuracy change over the zero-shot baseline.

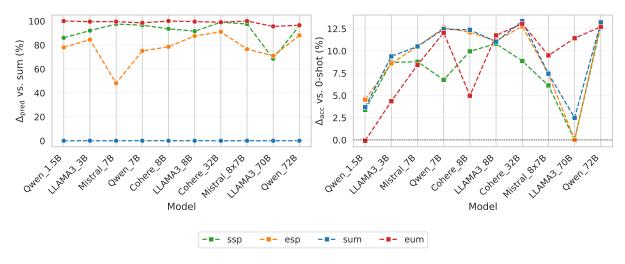


Figure 20: (AG News) **Left:** the percentage of predictions that change when switching from sum to other positions. **Right:** Accuracy change over the zero-shot baseline.

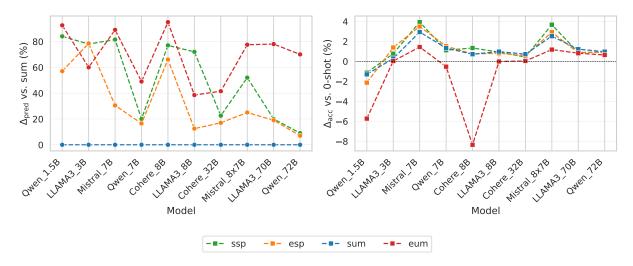


Figure 21: (AG News) **Left:** the percentage of predictions that change when switching from sum to other positions. **Right:** Accuracy change over the zero-shot baseline.

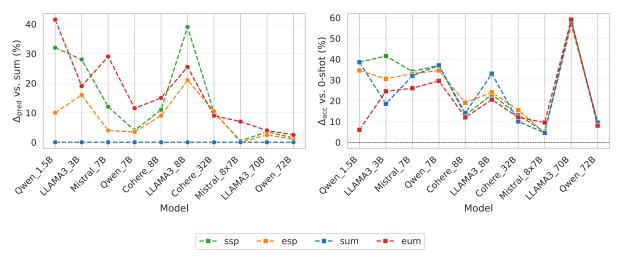


Figure 22: (AG News) **Left:** the percentage of predictions that change when switching from sum to other positions. **Right:** Accuracy change over the zero-shot baseline.