Wispy: Haunting zk-Promises

Emma Shroyer
University of Maryland
College Park, Maryland
Email: eshroyer@umd.edu

Abstract—Honest communication is often hindered by fear
of judgment or reprisal, which can discourage individuals
from sharing ideas within their communities. For example,
junior faculty may feel intimidated by senior or tenured
faculty and not share their ideas for fear of judgment or
loss of employment. When given the option of anonymity,
the fear of consequences decreases and ideas can be shared.
However, the freedom of anonymity also introduces challenges
for maintaining respectful discourse and enforcing community
values.

Building on prior work with zk-Promises, we introduce
Wispy, a protocol for anonymous messaging, pseudonymous
messaging, and anonymous polling. We also describe mech-
anisms for secure cryptographic moderation. In this work,
we extend the protocol to Signal, a widely used end-to-end
encrypted messaging platform. By layering our protocol atop
Signal, we preserve Signal’s own privacy guarantees while
enabling new forms of safe, anonymous interaction—enabling
users to contribute without compromising security or commu-
nity standards.

1. Introduction

Anonymity offers a space for honest expression and
connecting with others with minimal stakes or judgment [1].
Social media platforms and forums usually implement some
form of anonymity at scale. This anonymity usually is linked
to a phone number and takes the form of pseudonyms or
fake accounts [2]. However, anonymity is often used in en-
vironments where users engage with unfamiliar or untrusted
parties-friends, family, and colleagues rarely use anonymity.
Trust and pre-existing knowledge of others usually negate
anonymity usage. However, deviating from the norm within
these groups may have more perceived consequences or
judgment than an online community.

Professional settings in academia and business often
have complex relationships and systems that can prevent
open and honest communication. Lack of confidence, job
security, and interpersonal relationships can make it dif-
ficult for employees to speak openly [3]. Prior research
has shown that employees are often reluctant to speak up
about projects, colleague performance, and policies [4].
Anonymity would provide a neutral setting where ideas can
be considered without fear of judgment or repercussions. In

the past, schemes like suggestion boxes have tried to redress
these feelings. However, these may not be shared with other
employees and may not be truly anonymous.

Many workplaces now use instant messaging platforms
like Slack and WhatsApp to communicate in professional
or ad hoc contexts [5]. These platforms could be extended
to provide more support for free expression. They could
support anonymity in groups and anonymous polling.

Even if these platforms provide this feature, they will
need a method of moderation. Professional and social set-
tings operate under shared norms, and systems that permit
anonymous participation must also provide accountability.
Without accountability, a group’s functionality and culture
can erode. On the other side, protections must be in place
to prevent administrators from abusing moderation features.

In this work, we present Wispy, a system for anony-
mous messaging, pseudonymous messaging, and anonymous
polling for groups within Signal, a widely used end-to-
end encrypted messaging platform. Building on prior work
on zk-promises, we introduce a cryptographically verifiable
moderation mechanism for anonymity in Signal group chats.
Our system preserves privacy while enabling accountability,
and is designed with security, usability, and real-world de-
ployment in mind. By extending Signal in this way, we con-
tribute a practical tool for enhancing trust, participation, and
safety in both professional and social group communication.

2. Related Work

End-to-end encrypted messaging provides security and
privacy for users if implemented correctly. End-to-end en-
cryption means that only the intended recipients should be
able to see the plaintext of the messages being sent. An
eavesdropper should not be able to infer message contents,
but they can learn metadata. This is not protection against
an active attacker. Some end-to-end encrypted messaging
platforms, like Signal and WhatsApp, have the benefits of
widespread adoption [6] [7].

Signal is particularly committed to maximizing privacy
for users. Metadata, such as membership or group names,
can reveal hints about underlying activity, weakening pri-
vacy guarantees. Work from 2020 introduced an improved
group administration protocol within Signal that preserves
privacy [8]. In this work, the authors propose a method that

allows group administrators to securely add new members
without revealing group data or metadata to Signal [9].
There is also Signal’s Sealed Sender protocol to ensure
sender privacy using encrypted envelopes that hide sender
metadata from Signal [10]. In this protocol, sender identities
are hidden from Signal. Signal does need to know the
recipient to deliver the message; however, the server does
not know who is messaging whom [11]. Sealed Sender is
now the default for all messages sent using Signal. Signal’s
existing infrastructure, including Sealed Sender for sender
anonymity and its usability features, like reactions, make it
a good candidate to extend anonymous moderation to.
There has been other work in anonymous communica-
tion and moderation. Namavari et al. provides a hierarchial
governanace model for managing interactions in an end-
to-end encrypted platform [12]. However, their MlsGov
messaging system does not extend to the anonymous setting.
Hecate moderates and offers source tracking for end-to-
end encrypted messaging [13]. Hecate’s protocol has every
client authenticating the moderator to get a token to consume
when sending anonymously. However, reports of malicious
behavior will deanonymize users to the moderator.

2.1. zk-Promises

To enable anonymous moderation, among other fea-
tures, we build on the cryptographic framework of zk-
Promises [14]. zk-Promises enables advanced moderation
logic while providing confidentiality, integrity, and unlink-
ability. zk-Promises describes a generic system for manip-
ulating objects via methods that produce callbacks. These
callbacks are posted to a bulletin where they can later be
called, ingested, and applied to a user’s object. It guarantees
that a user cannot maliciously evade updating their state.

2.1.1. zk-Objects. A zk-object stores client state. This can
include account data, reputation scores, or ban status. A zk-
object can be updated by executing methods that modify the
client’s state. An zk-object includes a nonce that is revealed
on update, preventing replay of stale data. Updates to zk-
objects are performed using zero-knowledge proof showing
that the user has been following the protocol without linking
the user’s private information.

2.1.2. Bulletin. These objects must be able to maintain
global visibility where state can be maintained. This global
view is done with a global append-only log called the
bulletin. The bulletin stores cryptographically hidden com-
mitments to objects. In zk-Promises’ implementation the
bulletin is an append-only Merkle tree, supporting efficient
zero-knowledge set membership proofs. When users update
their zk-objects, they query the bulletin to proccess invoked
callbacks, which are described below.

2.1.3. Callbacks. A callback is a function in zk-promises
that modifies a zk-object and is managed by a separate zk-
object called the callback manager. The bulletin enables

callback ingestion after a callback is invoked. A callback
has the following life cycle:

1) Callback Creation: When a user performs an action,
e.g., sends a message, their zk-object generates a call-
back (t ik) and appends them to the bulletin along with
cryptographically signed metadata. The proof of call-
back creation (1) ensures that the callback conforms
to the system’s policies:

Tmsg = ZK-SNARK (0bj, £ 1k, Ppneg)- (1)

2) Callback Invocation: Administrators invoke callbacks
by posting (tik,args) to the bulletin, where args en-
codes moderation actions such as banning users or
updating reputation.

3) Callback Ingestion: Users scan the bulletin to detect
invoked callbacks and update their zk-objects. Scans
occur periodically, but non-membership proofs ensure
that callbacks cannot be skipped when scans so occur.
The update is validated using a zero-knowledge proof:

Tmsg = ZK-SNARK (P e (0bj, 0bj’, t ik, args)). (2)

2.1.4. Security Properties of zk-Promises. zk-Promises
provides the following informal cryptographic guarantees:

1) Confidentiality: A zk-object’s contents are only vis-
ible to the owner; however, function callers may learn
some information based on the call they make on the
object.

2) Obliviousness: Updating a zk-object does not reveal
which object was updated and multiple updates cannot
be linked.

3) Integrity: All updates must be applied in accordance
to programmed methods and by authorized entities.

4) Atomicity: There is only one valid zk-object at a given
time and it cannot be rolled back.

3. Overview

In this section, we review the security goals of our
system, provide a high-level overview of the construction,
and summarize key features that have been implemented.

3.1. Security Goals

We consider a group messaging system where users
communicate through an end-to-end encrypted platform
such as Signal. Group members may post normally, anony-
mously, pseudonymously, or vote in anonymous polls.

In our setting, we consider a potentially malicious server
and potentially malicious clients. As in zk-Promises, we
require at least two honest, unbanned users to ensure k-
anonymity where k=2 [14]. We define a ban in this context
as the inability to post anonymously in the group; even if
a user is banned, they may still interact with the group
as normal. This anonymity guarantee fails should one user
become banned, either through honest or malicious action
by the moderator. Additionally, a malicious moderator could

strategically ban honest users, breaking the assumption of k
k-anonymity and potentially leaking information about the
remaining users.

Signal’s Sealed Sender protocol ensures that even Signal
cannot determine the sender of a message, the members of
a group, or most metadata. However, our implementation
assumes a more relaxed deployment context. In particular,
our system introduces a proxy server that mediates anony-
mous communication and moderation. This proxy is not
operated by Signal and, therefore, must not be explicitly
trusted not to violate user anonymity. To mitigate this risk,
we assume that all communication done between the client
and the proxy server is through anonymous channels as not
to deanonymize the user over the network.

Our threat model does not hold against stylometric
or social engineering attacks. Adversaries leveraging may
exploit linguistic patterns, semantic identifiers, or repeated
phrasing to deanonymize users [15]. For example, if a user
consistently omits punctuation when posting under their real
identity and continues this habit anonymously, authorship
may be inferred. To reduce the threat of stylometric attacks,
users could utilize an LLM to obfuscate writing character-
istics.

Social engineering attacks present another challenge.
Even with LLMs, underlying content and core ideas could
still indicate authorship. Adversaries with prior knowledge
of group members, such as personal opinions, may attempt
to link anonymous posts to individual users. However, this
is out of the scope of our system.

3.2. Construction

An overview of our construction is shown in Figure 1.
The figure omits the initial setup phase, during which the
user initiates an interaction and registers with the server.
Note that the server does not ask for the user’s identifying
phone number. Instead it simply requires the unique group
ID to prove membership. The server never knows which
group member it is talking to.

Later, when the user wishes to anonymously message
the the group, the user communicates to the server to prove
they reviewed the bulletin and processed all outstanding
callbacks. If the server verifies the user’s proof, it forwards a
message to Signal to be posted in the group. The server also
monitors for responses from the group to update callbacks
as needed. Throughout this process, standard group com-
munication continues unaffected. Meanwhile, normal group
communication can occur.

To enable anonymity in this setting, the server must be
able to post within the group. Therefore, an additional “n +
1” Signal account is added to the group. This account acts
as a proxy to forward messages from the server to Signal. At
this time, it is up to the administrator to acquire and share
this n + 1 number with the server. It is also important that
no one but the server is posting under this number within
the group.

Our construction utilizes a third-party library, signal-cli-
client [16]. Messages are posted to a daemon communi-

cating with the Signal server using the provided JSON-RPC
API. While this interface is more limited than official Signal
interfaces, it exposes several features useful for our system:

1) Timestamps: Signal attaches unique timestamps to
each message in the group. In our construction, we
define the posting time in the callback, allowing moder-
ators to identify which message should lead to updated
state for the author.

2) Group ID: Signal assigns a unique group ID to
each group chat. This value is required for message
delivery and is also used to prove cryptographically
group membership to the server.

3) Emoji Reactions: Signal allows users to respond di-
rectly to a post using emojis. This feature is the primary
method by which reputation scoring is calculated. For
example, multiple thumbs-down emoji reaction may
signal disagreement with a post.

3.3. Features

At the current time, we have implemented the following
features have been added onto the Signal messaging plat-
form:

1) Anonymous Posting: Users can submit anonymous
messages to a Signal group by sending a command
containing the plaintext message, a group ID, and a
valid cryptographic proof to our server. The server
broadcasts the message to the group using the JSON-
RPC interface provided by an open-source Signal CLI
implementation [16]. Members of the group, including
the sender, can observe that the n+-1-th user has posted
without the original authorship being revealed.

2) Pseudonymous Posting: Users may post under a
recurring alias or pseudonym by sending a command
containing the message, the group ID, valid crypto-
graphic proof, and a pseudonym ID to the server. The
server maps the pseudonym ID to a unique name, , e.g.,
’Fuzzy Bunny’, provided by a rust name library [17].
Later posts using the same pseudonym ID will provide
linkability between posts and unlinkability between the
pseudonym and the author’s real identity. An example
of pseudonym usage is shown in Figure 2.

3) Anonymous Polling: Users can participate in group
polls while preserving anonymity. Each submission to
the server includes the group ID, unique poll ID, the
user’s vote. Users could trivially change their vote by
resending the same submission to the server. The server
would only need to update the vote for the poll ID.
Without exposing individual voter identities. Votes are
tallied and revealed once everyone has voted or the time
frame has passed. A prototype of anonymous voting is
also displayed in Figure 2.

4) Moderation and Banning: Group administrators and
even other users will have the ability to moderate
anonymous content. Each anonymous or pseudony-
mous message includes a unique timestamp, which can
be referenced by an administrator to initiate a ban on

Client

O Non-anonymous

@ Send(msg, grouplD, i)

Server

Proxy
Server

o Pseudononymous
+ Anonymous

Message: "Let's

unionize!"

| Send(To: Group, From:
Anon, msg)

+ State
+ GrouplD
+ Reputation
« Pseudonym @ Send(To: Client, From: Anon, msg)
i Messaging
Serial Number Service
User Object
A\ / -)

Figure 1. Protocol Design Using zk-Promises. (1) To send an anonymous message, the user submits the message, group identifier, and a cryptographic
proof to the proxy server. (2) The proxy server verifies the proof and forwards the message to the messaging service using a designated (n + 1)-th
account. (3) The messaging service then delivers the message to the target group. Non-anonymous messages, indicated by the blue dashed arrow, follow
a different path: they are sent directly to the messaging service, which then optionally contacts the proxy server (acting as a client) for moderation or
logging purposes. The messaging service can also communicate with the proxy server to initiate user bans or reputation updates, as represented by the
purple dashed arrow.

the associated sender. This ban is currently defined as
the inability to post anonymously using this system.
The server processes these calls for bans and posts
a callback, preventing further anonymous messages
from the offending user. Currently, an implementation

e Nk, Nserver: Random nonces (user-generated and
server-provided)
Anonymous Posting:
Client computation:

of administrator registration and authentication is still 1. (pk, sk) < KeyGen()
ongoing work. 2. ng « {0,1}*
As an alternative to administrator moderation, we 3. aliasy + PRF(sk|lng)
also support a reputation system. In this construc- '
tion, messages receiving sufficient negative feedback, = % Tmsg ¢ ZKProofOfPo.st(ms.g ,groupI D)
e.g., thumbs-down emoji reactions, will decrease the 5. 7r < ZKProofOfAlias(aliasy)
sender’s reputation score. When the score falls below 6. Client — Server: (msg, groupl D, Ty,sq, aliasy, ng,)
a threshold, an administrator or the server itself can .
enforce a ban on future anonymous posts from that Pseudononymous Posting:
user. Client computation:
1. (pk,sk) < KeyGen()
4. Cryptographic Protocols 2. ng < {0,1}* -chosen once and reused
3. aliasy <+ PRF(sk|ng)
o o g, o L SRS 4y PO, T
Notation: 5. T, + ZKProofOfAlias(aliasy,)
6. Client — Server: (msg, groupl D, T, s, aliasy, ng,)

e (pk,sk) <+ KeyGen(): Key generation
o PRF" Pseudorandom function
e m: Zero-knowledge proof

Unlike anonymous posting where the nonce is used
only once, a user can post multiple times under the same

c))
!

2:23 N\

< @ Anon Signal Girlies X

Casper Ghost Thu, May 1

cec NO? g:50am

& Zelda changed their profile name to bufflehead
chicken.
& bufflehead chicken changed their profile name to

manakin sawfish.

Casper Ghost
YO 12:00pMm

FROM: poodledotterel

testing pseudonym 15.04 pu

YO 12:30pMm

Il *Poll Time!*
React with _= for *Yes* -~ for
No

cc Do you like chocolate 15.59ppy

N: £
J ~E

& manakin sawfish changed their profile name to
airedale corgi.

+ Message C © 9

Figure 2. The Signal i0S interface showcasing pseudonyms and anonymous
polling. In this example, Casper Ghost is the n + 1-th number that all non-
banned users may use to post anonymously.

pseudonym by reusing the same nonce, ny. Using the same
nyg multiple times proves to the server that a user is using
that pseudonym. The user stores a list of previously used
nonces.

Anonymous Polling:

Server-side:

1. Neeer + {0,1}* -unique to the user

2. Server — Client: (Nserver)

Client computation:

4. (pk,sk) < KeyGen()

5. aliasy <+ PRF(sk||nserver)

6. Tyote < ZKProofOfVote(vote, groupID)

7. Client — Server: (vote, groupl D, myote, aliasy)

5. Future Work

This work provides a simple configuration for integrating
and moderating anonymous and pseudonymous posting into
group chats. Below we describe future work to extend the
functionality and usability of the system.

5.1. Configurable Moderation

Social contracts and rules are context-dependent, varying
across communities and communication environments. Our
current design presents a basic moderation mechanism, but
more sophisticated and configurable policies may be needed
for different communities. Future work may enable support
for more custom and complex moderation mechanisms.
With these new features, administrators or users could define
and update custom moderation to fit their needs.

For instance, rate-limiting mechanisms could restrict
the number of anonymous posts a user could submit in a
time period. Time-bound bans could temporarily suspend
users’ ability to post anonymously, and systems could issue
warnings prior to enforcing bans. Rather than revoking a
user’s ability to post anonymously entirely, groups could
selectively ban specific pseudonyms.

Incentive mechanisms could also be introduced. For ex-
ample, pseudonymous users who consistently post inoffen-
sive material could receive perks, e.g. badges or or increased
privileges, such as the ability to vote multiple times.

5.2. Multi-Group Moderation

The protocol may be extended to support moderation
across multiple groups. Currently, bans are local to indi-
vidual group chats. However, many communities, includ-
ing workplaces, online forums, or academic institutions,
are structured into subgroups that share overarching norms
and expectations. It may be desirable to enforce consistent
moderation policies across multiple groups to prevent harm-
ful behavior from migrating between them. For example,

faculty might have group chats based on research area.
In such cases, misconduct in one group should result in
consequences across other groups.

One possible extension would allow groups to share
a common bulletin, while users retain their private zk-
objects. In this construction, callbacks would be posted on
the same bulletin board, so changes in status would affect
all participating groups. The system would enable coordi-
nated enforcement of group policies while still maintaining
unlinkability and anonymity.

5.3. Claimable Messages

There are scenarios in which users may wish to de-
anonymize their own posts later in time—for example, to
claim authorship of a well-received anonymous message or
to prevent misattribution or messages. The system already
partially supports this functionality. Users can prove author-
ship to the server by resubmitting the nonce corresponding
to the post or posts in question. Remaining functionality
then requires proof of authorship be shown to the group.
The server cannot do this directly since it does not know
the identity of the user. Trivially, the user could post in the
group a proof claiming authorship and the server verifies the
proof. Future work may further simplify and formalize this
process, ensuring that authorship claims are user-friendly
and maintain overall system privacy.

5.4. Usability Study

While this work focuses on the design and cryptography
of anonymous group communication and moderation, future
work should explore its usability in real-world settings. A
usability study could evaluate whether users find the features
intuitive, whether the moderation mechanisms are perceived
as effective, and how anonymity affects group dynamics.
Such a study could reveal a need for additional features or
changes that could lead to system adoption.

6. Conclusion

In this work, we extend the Signal messaging plat-
form with support for anonymous messaging, pseudony-
mous identities, and anonymous polling. All features not
natively supported by Signal or other mainstream secure
messengers. Wispy leverages Signal’s existing infrastruc-
ture, including Sealed Sender for sender anonymity and it’s
usability features, like reactions, preserving compatibility
with the original Signal system. To ensure accountability,
we also integrate zk-Promises, a cryptographic moderation
system. Together, these components show how regulated
anonymous communication can be integrated with a widely
deployed platform while still preserving privacy guarantees.

Acknowledgments

The author would like to thank the other people on this
project: Rachel, Gabe, Ian, Hari, and Oliwia.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Guo and K. Caine, “Anonymity, User Engagement, Quality,
and Trolling on Q&A Sites,” Proceedings of the ACM on Human-
Computer Interaction, vol. 5, no. CSCWI1, pp. 1-27, Apr. 2021.
[Online]. Available: https://dl.acm.org/doi/10.1145/3449215

“Anonymity and identity shielding | eSafety Commissioner.”
[Online]. Available: https://www.esafety.gov.au/industry/tech-trends-
and-challenges/anonymity

F. J. Milliken, E. W. Morrison, and P. F Hewlin,
“An Exploratory Study of Employee Silence: Issues that
Employees Don’t Communicate Upward and Why,” Journal of
Management Studies, vol. 40, no. 6, pp. 1453-1476, 2003,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-
6486.00387. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-6486.00387

S. Burnett and L. Illingworth, “Anonymous knowledge sharing in
a virtual environment: a preliminary investigation,” Knowledge and
Process Management, vol. 15, no. 1, pp. 1-11, 2008, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/kpm.294. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/kpm.294

K. Paerata, “The wuse of workplace instant messaging
since covid-19,” Telematics and Informatics Reports,
vol. 10, p. 100063, 2023. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2772503023000233

Signal Messenger LLC,
https://signal.org/docs/, 2016.

“Signal: Specifications,”

“About end-to-end encryption | WhatsApp Help Center.” [Online].
Available: https://faq.whatsapp.com/820124435853543

M. Chase, T. Perrin, and G. Zaverucha, “The Signal
Private Group System and Anonymous Credentials Supporting
Efficient Verifiable Encryption,” 2019, publication info: Published
elsewhere. Major revision. ACM CCS 2020. [Online]. Available:
https://eprint.iacr.org/2019/1416

“Technology Preview: Signal Private Group System.” [Online].
Available: https://signal.org/blog/signal-private-group-system/

I. Martiny, G. Kaptchuk, A. J. Aviv, D. S. Roche, and E. Wustrow,
“Improving signal’s sealed sender,” in NDSS, 2021.

“Technology preview: Sealed sender for Signal.” [Online]. Available:
https://signal.org/blog/sealed-sender/

A. Namavari, B. Wang, S. Menda, B. Nassi, N. Tyagi, J. Grimmel-
mann, A. Zhang, and T. Ristenpart, “Private hierarchical governance
for encrypted messaging,” in 2024 IEEE Symposium on Security and
Privacy (SP). 1EEE Computer Society, 2024, pp. 255-255.

R. Issa, N. Alhaddad, and M. Varia, “Hecate: Abuse reporting in
secure messengers with sealed sender,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 2335-2352.

M. Shih, M. Rosenberg, H. Kailad, and I. Miers, “zk-promises:
Making zero-knowledge objects accept the call for banning and
reputation,” Cryptology ePrint Archive, 2024.

K. Lagutina, N. Lagutina, E. Boychuk, I. Vorontsova, E. Shliakhtina,
0. Belyaeva, 1. Paramonov, and P. Demidov, “A Survey on Stylometric
Text Features,” in 2019 25th Conference of Open Innovations
Association (FRUCT), Nov. 2019, pp. 184-195, iSSN: 2305-7254.
[Online]. Available: https://ieeexplore.ieee.org/document/8981504/

S. Scheibner, “AsamK/signal-cli,” May 2025, original-date: 2015-05-
11T10:49:427Z. [Online]. Available: https://github.com/AsamK/signal-
cli

“petname - crates.io: Rust Package Registry,” Apr. 2024. [Online].
Available: https://crates.io/crates/petname

