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Abstract

In this paper, we address the problem of workload characterization in a wireless LAN (WLAN). Workload

is generated by applications/users trying to carry out some of their functions. Our attempt is to capture such

application/user level characteristics from the information gathered at the MAC level. Developing an understandable

description of the workload requires making some abstractions at the application/user level. Our approach is to

consider the workload in terms of “sessions”, where a session is an application/user level sequence of exchanges.

We attempt to capture the session by considering a lull in the activities between a wireless end-point and the

network.

We consider workload to consist of a population of sessions for which a probability distribution function can

be defined. Considering this distribution function to be a mixture distribution, we attempt to find the components

by using non-parametric clustering technique. As the number of types of user level activities is not likely to be

very large, we expect that we can associate a distinct activity with each such component. In this work, we identify

such components and analyze the traffic and protocol characteristics of each component. Moreover, we empirically

show that the identified workload components can effectively represent the actual WLAN workload and its daily

variations.

I. INTRODUCTION

With the popularity of the IEEE 802.11 [1] based wireless networks, it has become increasingly

important to understand the characteristics of the wireless traffic. A number of measurement studies

[2–10] have examined traffic characteristics in wireless networks. Most of the studies have focused on

characterizing wireless LAN (WLAN) usage patterns and performances, which are useful for WLAN

deployment and management, and workload generation.

The goal of this work is to characterize the WLAN workload from the actual WLAN measurement.

Most of the previous measurement studies [2–10] have exploited packet-, (TCP) connection-, and host-

level information to obtain WLAN usage characteristics. Those usage characteristics are realistic and

therefore, can be used for generating the workload at each corresponding level. However, those levels

do not properly describe application/user-level characteristics, such as the characteristics of some related

tasks that applications/users will carry out through the network. With the workload descriptions at the

application/user level, we can more clearly understand such tasks than with the workload descriptions at

other levels.
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To describe the workload at the application/user level, we need some abstractions of the network

activities. Our approach is to consider the workload in terms of “sessions”, where a session1 is an

application/user level sequence of exchanges which may be carried out for achieving some specific task.

To be more precise, a session is defined to be a bi-directional traffic unit with the same wireless end-point

(host) as source or destination, that is separated from other sessions by at least some timeout of inactive

duration. By considering a lull (i.e. an inactive duration) in the application/user activities, we can identify

a session of similar activities.

Modeling at the session-level gives several advantages over those at the packet- or connection-levels:

First, because a session attempts to describe similar application/user activities, it can better represent

distinct traffic characteristics. Second, each application/user-level task may have different demands for the

networking resources, such as bandwidth and CPU consumption. Therefore, session-level modeling can

also better represent the resource demands. Finally, it can model the network workload of any protocol

traffic. For example, connection-level modeling can represent only the network activities using TCP

protocol, whereas session-level can model all protocols.

As a basic building block for workload characterization, a session is represented as a multidimensional

feature vector, where each feature is chosen to capture the basic resource usage characteristics of the

session. The population of the session is considered to be defined by a probability distribution in the

feature space. Further, we expect this probability distribution to be a mixture distribution such that each

component of the mixture represents one type of user level activity. To identify each component of the

mixture, we adopt a non-parametric clustering methodology. We developed a clustering technique, called

Adaptive Mahalanobis-distance Algorithm (AMA, in short), and applied it on the sessions. As a result, we

characterized two-week campus WLAN traffic of one AP (Access Point) to identify several components

that represent different workload types.

In a session, an application or a user can generate a workload for a service at a specific layer, e.g., a

layer among MAC-TCP/UDP. For example, as shown in Figure 1(a), a human user using a web search

engine can generate a workload at the TCP layer for http service. User mobility can also generate a

workload at the MAC layer for the service of probing the APs with the best signal condition. Since we

exploits MAC-layer measurements, we can identify various components (represented as different clusters)

that are specific to a layer among MAC-TCP/UDP. For example, from the actual measurement traces

we identified excessive MAC Probe cluster at the MAC layer, port scanning cluster at the IP layer, and

broadcast traffic cluster at the TCP/UDP layer.

We believe that our characterization results can be effectively used for analytical or simulation studies.

Simulation studies can exploit our results by generating realistic workload according to the workload

structure we empirically found. Moreover, the clustering methodology can also be used for WLAN
1Different from the 802.11 session that is the duration between association and disassociation for an AP.
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(b) Session definition (figure slightly revised from [11])

Fig. 1. WLAN Workload consists of “sessions” that represent similar application/user activities.

deployment and management. WLAN administrators can better understand the way the user population

is using the network resources.

A. Results To Date

We designed and implemented an accurate wireless monitoring technique [10, 12], and measured two

weeks of WLAN traffic at the wireless MAC layer. From the measured data, we generated sessions as

basic building blocks for workload characterization. We then developed a clustering algorithm, which

classified the sessions into several clusters in non-parametric, unsupervised manner. We showed that the

algorithm successfully identified several clusters and produced stable clustering results regardless of the

order of input data. For characterizing the WLAN workload, we provided an understandable description

of each identified cluster. Using different measurement data, we empirically showed that the identified

workload components can effectively represent the actual WLAN workload and its daily variations.

B. Future Work

We plan to examine the temporal workload change at some measurement location over several months.

We will characterize typical daily, weekly, and monthly workload patterns, and address their impacts

on the traffic characteristics and network resource consumptions. We also plan to address the location

dependency in workload. Workload may have different population for each type for different measurement

locations. We will characterize the workload at different measurement locations, e.g., at different APs and

in different WLANs other than university WLAN. We will also characterize the workload in non-wireless

network and compare it with the WLAN workload. In this way, we can obtain a set of standard WLAN

workload types, which can be useful for comparing the WLAN workloads at different locations or at
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different times. Finally, we plan to model dynamic behaviors of WLAN workload, such as marginal

distribution of inter-arrival times, for providing a generative model for WLAN workload. By providing

such dynamic models for each (static) standard workload type, we can generate a workload in which the

types are appropriate for the purpose of a WLAN simulation study.

The remainder of this paper is organized as follows. We summarize related work in Section II and

describe our WLAN workload model and sessions in Section III. We present the description of character-

ized workload types and their uses in daily workload variations in Section IV. In Section V, we describe

our future work. We also attach the descriptions of our WLAN measurement technique and clustering

technique, in Appendix I and Appendix II, respectively.

II. RELATED WORK

There have been several measurement studies of 802.11 WLANs, and in particular, university WLANs.

One of the earliest was by Tang and Baker [9], who performed a twelve-week trace of the Stanford

Computer Science Department WLAN. Chinchilla et al. [3] traced user associations and web usage

on the University of North Carolina WLAN over one month. In another recent study, Schwab and

Bunt [6] characterized one-week’s usage and traffic patterns on the University of Saskatchewan’s WLAN.

A significantly larger scale experiment in terms of duration and coverage area was conducted on the

Dartmouth campus WLAN by Kotz and Essien [8]. They characterized the typical usage and traffic

patterns in a university WLAN over eleven weeks.

One of the few non-academic WLANs was studied by Balachandran et al. , who collected traces from

a well-attended ACM conference [7]. They characterized not only WLAN usage patterns, but also the

workloads of user arrivals and session durations with parameterized models. Balazinska and Castro traced

the WLAN of a corporate research campus over the course of four weeks [4]. They characterized user

mobility and traffic loads across different access points.

Similar to many of these studies, our characterization is performed in a typical university WLAN

environment: a Computer Science Department network. Rather than characterize usage patterns and

performance variability at IP and the above layers, we characterize typical WLAN workload structure

that consists of different workload types describing application/user-level requests.

Meng et al. [2] statistically characterized network flows in a large campus wireless network using a

trace. They characterized the flow arrivals as a Weibull regression model. While their workload model

can describe the dynamic behavior, e.g., flow arrivals, our current model focuses on the static structure

of the workload. We also plan to work on the dynamic workload model for each workload type in the

static structure.

Clustering has been widely used for characterizing the workload for batch and interactive computer

systems in early days, e.g., [13]. More recently, McGregor et al. [14] applied the parametric EM clustering

algorithm to classify TCP flows, which were extracted from a university (non-wireless) IP traces following
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Claffy’s model [11]. Even though they took similar approach to ours, we note several important differences.

First, our target workload is for wireless network on all the wireless networking layers. Second, we

carefully model the session and its features, taking into account temporal locality (i.e. timeout), resource

demands and traffic characteristics. Finally, along with the well-defined session model, our non-parametric

clustering algorithm clearly discriminates among the clusters with different traffic characteristics and

resource demands.

III. WLAN WORKLOAD

In this section, we first describe our WLAN workload model, where the workload consists of sessions

as basic building blocks. We then describe how we can generate the sessions from WLAN measurement

traces. Finally, we discuss the selection of session features for discriminating the workload.

A. WLAN Workload Model

In general, network workload consists of the requests for the services at each networking layer [15, 16].

Applications or users can make requests for the service at specific layers for carrying out their functions.

Figure 1(a) shows how applications/users can generate different types of workload (requests) in a wireless

host. A human user using a web search engine can make requests for http service and the requests are

then propagated to the lower layers. A mobile user can generate requests at the MAC layer for the service

of probing for the AP with the best signal condition. Some applications can make requests at the IP layer

for ICMP echo service. Requests can also be generated by other hosts. For example, an ARP (Address

Resolution Protocol) query packet that is broadcast by host can make requests at the LLC (Logical Link

Control) layer for ARP responses.

To describe such application/user-level workload, we define a session to capture similar requests with

which an applications/user can carry out a task. In this paper, we define a session in similar way to how

Claffy et al. defined a flow in [11]. Claffy et al. introduced a flow as a traffic unit that has temporal

(i.e. occurring closely in time) and spatial locality (i.e. occurring between the same end-points) [11].

Similarly, we define a session in WLAN as a bi-directional traffic unit with the same wireless end-point

(host) as source or destination, that is separated from other sessions by at least a predefined timeout of

inactive duration. (selection of the timeout value will be discussed in the next section). Since we want

to model similar requests for wireless network service, we choose a wireless host as the end-point entity.

Figure 1(b) illustrates the session definition. Here, we do not include the timeout in the session duration.

Session duration is defined as the duration between the time of the first packet observed and the time of

the last packet observed in a session.

We consider a session to be a basic building block for workload characterization, such that each session

can describe the workload in terms of traffic characteristics and resource demands. For this purpose, we

represent a session as a � -dimensional feature vector, where each feature captures the basic characteristics
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Fig. 2. We obtained the sessions from the wireless measurement traces with 30 minute timeout.

of a session. Note that as the users use the sessions for carrying out several types of functions, we expect

that the characteristics captured by the features for similar functions to be similar.

If a session is represented as an i.i.d. (independent, identically distributed) random vector � ����� ,

we want to model the distribution of � as a multimodal distribution, and therefore as a mixture of �
components. The PDF (Probability Distribution Function) of � is given as follows:�
	 ����
���� ��� ��� �
	 ����
���� � ��� 	 � � � � (1)

where � � is the ! ’th component of the mixture, �"	 ����
���� � � is the PDF of the ! ’th component, and � 	 � � �
is the probability of the ! ’th component such that #%$�� 	 � � �'&)(*�,+ �� ��� � 	 � � ���-( .

Instead of determining the parameters of the distribution, e.g., ���/.0� 	 � � � 1 �� ��� , we use a non-parametric

clustering technique to identify the components without making any assumptions about those parameters.

Our clustering algorithm, called Adaptive Mahalanobis-distance Algorithm (AMA), uses Mahalanobis

distance instead of Euclidean distance in order to identify the clusters of ellipsoidal shape. Moreover, the

algorithm exploits several adaptive techniques in order to improve the quality of clusters. We will describe

our clustering technique in more detail in Appendix II.

B. Session Generation

In this section, we describe how to generate sessions from WLAN measurement traces. Note that the

workload model introduced in the previous section makes two assumptions: the sessions are i.i.d. and the

sessions represent similar requests for the WLAN network services. We generate the sessions according to

the definition described in the previous section and attempt to satisfy these two assumptions by selecting

a proper timeout value.
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As shown in Figure 1(b), we generate a session for a wireless host that is identified by its wireless

MAC address. For each wireless MAC address, a session for the MAC address continuously includes the

packets with the MAC address as source or destination, until the wireless host of the address neither sends

nor receives any packets for more than a predefined timeout.

To determine a proper timeout value, with the timeout varying over 1, 2, 4, 8, 15, 30 and 60 minutes,

we generated the sessions from our two-week traffic trace according to the session definition. The result

is shown in Figure 2(a). From the figure, we observe that for timeout values of 15 minutes or larger,

number of sessions have become stable. We consider the sessions with the timeout values in such stable

ranges to be well separated, and therefore to satisfy the independence assumption.

Among the stable timeout ranges ( 2 15 minutes), we choose 30 minutes as the session timeout, because

30 minutes corresponds to the default web session timeout that is typically used [17, 18]. Because the

web is one of the most popular applications and http traffic amounts to significant portion in wireless

traffic [7, 8], 30 minute timeout can properly represent the typical inactive duration between the requests.

Figure 2(b) shows the distribution of distinct number of protocols in a session that was generated with 30

minute timeout. We observe that about 90% of the sessions consist of only one protocol. This is another

piece of evidence that 30 minute timeout is proper for representing similar requests.

C. Session Features

To use a session as a characterization building block, we need to select proper features for the workload

characterization. Desirable features should properly distinguish among the sessions in terms of the traffic

characteristics and resource demands.

For this purpose, we do not select any protocol information as features because the network protocol

by itself does not imply the resource demands nor the traffic characteristics. For example, even different

protocols (e.g., http and ftp) can generate the similar traffic (e.g., large file transfer). On the other hand,

the same protocol (e.g., ICMP) can generate traffic with different characteristics (e.g., echo and router

solicitation). We also would not select protocol-dependent features, because we want to characterize the

workload of any protocol. Even though we do not consider any protocol information for selecting the

features, we note that the clusters generated by our approach to workload characterization resulted in

sessions in a cluster using similar protocols.

Considering the above discussion, we select the following features: number of packets and bytes, number

of MAC errors (retransmissions), number of distinct peers, and session duration. We select these simple

features because they can be easily calculated but properly represent resource demands, such as MAC

bandwidth and computing resources (CPU and memory). Moreover, they are free of protocol information

and available in any protocol. Note that even though using those features we successfully characterized

WLAN workload, we can add any features that can even better characterize the workload.



8

Here, we define these features in detail and discuss how they can discriminate among the sessions, in

terms of the traffic characteristics and resource demands.3 Number of packets and bytes represent traffic volume of a session. A session with high value in these

features consumes substantial bandwidth, and therefore those features distinguish the sessions with

high bandwidth demands. Moreover, sessions with high traffic volume may indicate that the sessions

exchange high user/application-generated traffic, rather than small machine-generated traffic. Because

we notice that the two features, number of packets and bytes, are highly correlated, we use only one

of them as a session feature. We choose the number of packets for its simplicity of calculation and

representation.3 Number of MAC errors is obtained as the number of MAC retransmissions. MAC-level retransmissions

occur when the destination host does not send a MAC ACK packet for ACK-ing the original packet,

mainly due to bad signal condition or packet collisions in 802.11 WLAN. Significant MAC errors

incur the waste of bandwidth and extra MAC processing, and therefore this feature can discriminate

among the sessions on demands of those resources.3 Number of distinct peers is the number of distinct remote hosts (identified by their MAC addresses).

This feature indicates how many distinct remote hosts a wireless host communicates with within a

session. A session with high value in this feature may consume a large amount of memory in the

wireless host for keeping the information for each peer host. Moreover, this feature can distinguish

unicast traffic and broadcast traffic. For example, a wireless host typically exchanges unicast traffic

with a few peers, while the traffic that is broadcast from outside the AP to the wireless side may

have many distinct (source) peers because the broadcast address is shared by all hosts.3 Session duration is defined as the duration between the time of the first packet observed and the

time of the last packet observed in a session (Figure 1(b)). Excessively long session duration may

lead to the overhead for reserving the memory in the wireless host for a long time. Session duration

can also qualitatively distinguish the sessions. For example, sessions with very long duration, e.g.,

for several days, may represent housekeeping networking tasks, while short-duration sessions may

represent network probing tasks, such as ICMP ping messages.

We also consider bi-directional features because due to the traffic exchange patterns a feature in different

direction may have different values. We selected six features as follows: From-AP number of packets,

From-AP number of MAC errors, To-AP number of packets, To-AP number of MAC errors, number of

distinct peers, and session duration. Here, From-AP means the direction from the AP to the wireless

host, and To-AP means the reverse direction. In the following sections, these six features are denoted by465 � 487 �:9 5 �:9 7 � 5 �;� and <>= , respectively.
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D. Summary

In this section, we discussed WLAN workload model for capturing application/user-level characteristics.

We considered sessions as the basic building blocks for workload characterization. We showed that with

a proper timeout value a session can represent similar application/user-level requests and by selecting

proper features we can distinguish the sessions in terms of traffic characteristics and resource demands.

IV. CHARACTERIZING WLAN WORKLOAD

In this section, we characterize the WLAN workload using the clusters obtained by the clustering

techniques described in Appendix II. We identified 10 clusters from 3884 sessions of one AP over two

weeks during Feb. 9 - Feb. 22, 2004. Each identified cluster represents a different workload type (type,

in short) in terms of traffic characteristics and resource demands.

We first describe the session data and its overall characteristics in Section IV-A. We then analyze

traffic characteristics and protocol characteristics of 10 identified workload types in Section IV-B and IV-

C, respectively. Next, we label each type and give a concise description in Section IV-D. Finally, in

Section IV-E we use the sessions from a two-day measurement, which were not included in the original

sessions for clustering, to show that the identified workload types can characterize the workload for

different measurement data. Moreover, we empirically show that the identified workload components can

be effectively used for representing daily variations of WLAN workload.

A. Session Data

In this section, we describe the session data we obtained from the two-week WLAN measurement and

its overall characteristics. Our traffic trace contains per-packet information spanning all networking layers,

from 802.11 MAC to TCP/UDP, as we exploited wireless monitoring techniques [12] for measurement.

Detailed description on measurement set-up and methodology can be found in Appendix I.

From the 2-week traces, we generated 3884 sessions. We did not include 802.11 Beacon traffic in the

sessions, because the request for Beacon (synchronization) service occurs at constant rate (e.g., 10 per

second) and therefore its workload is constant. Neither did we include 802.11 Control traffic, e.g., 802.11

ACK packets, because the volume of this traffic is highly correlated with that of 802.11 Data/Management

traffic. On the other hand, we included 802.11 Management traffic such as MAC Probe traffic. The request

for MAC Probe service is typically made on user mobility and bad signal conditions, and therefore its

workload can represent WLAN-specific characteristics.

The overall statistics of the 3884 sessions are presented in Table I. For each feature, sessions have

significantly small mean and median values compared to the maximum, and the range of values spans

several orders of magnitude. This indicates that the distribution of each feature has a long right tail, which

was confirmed by examining the distributions (not shown here).
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TABLE I

STATISTICS OF RAW SESSION DATA

Feature ?�@ ?�A B
@ BCA @ED FHG (in sec)

Mean 2738 131 505 56 7.2 3234

STD 40305 1188 6948 911 57.9 14637

Median 3 0 0 0 1 6.6

Min 1 0 0 0 1 0

Max 1877377 25416 279550 35383 2548 271174

TABLE II

STATISTICS OF IDENTIFIED WORKLOAD TYPES (WE bold-face THE TYPES OF SIGNIFICANT RESOURCE DEMANDS)

Session Statistics Feature Means (in original scale)

Type Pkt % Bytes % Session % FN FE TN TE NP DU

1 0.02 0.002 4.7 10.3 4.4 0 0 1 0.9 sec

2 55.8 23.6 17.8 10177 0 0 0 30.3 3.2 hr

3 0.04 0.01 39.8 3.2 0 0 0 1.003 7.6 sec

4 0.003 0.0008 10.1 1 0 0 0 1 0

5 2.2 0.3 14.8 473.7 187 0 0 1 75 min

6 40.6 75.8 3.0 26824 2862 16553 1838 30.0 4.2 hr

7 0.002 0.0003 3.6 2 1 0 0 1 0.002 sec

8 1.3 0.3 2.0 2000 795 98.2 15.9 4.2 82 min

9 0.002 0.0005 1.1 5 0 0 0 1 7 sec

10 0.002 0.0005 3.0 2 0 0 0 1 2 sec

From the distributions, we observe that more than 90% of the sessions have zero 9 5
value, i.e. more

than 90% of the sessions consist only of From-AP traffic. We also notice that most of the sessions having

To-AP traffic have the (To-AP) errors (i.e. non-zero 9 7
value), while only 30% of the sessions having

From-AP traffic have non-zero
467

value. This indicates that typically To-AP traffic has weaker signal

strength than From-AP traffic, and therefore experiences more transmission errors.

B. Traffic Characteristics of Identified Workload Types

The statistics of each workload type on sessions and the features are shown in Table II. From the table

we can make the analysis on traffic characteristics and resource demands as follows. We bold-face the

types that may have significant resource demands.3 Type 1: Short-duration (1 sec on average) From-AP traffic from one source address, with high

transmission errors (43%) and low traffic volume. This type amounts to a small fraction in packets
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and sessions, and therefore the resource demands are insignificant.3 Type 2: Long-duration (3 hr on average) From-AP traffic from many source addresses (30 on average),

with high traffic volume. This type amounts to 56% of packets, 24% of bytes, and 18% of sessions,

and therefore imposes significant overhead on bandwidth and memory consumption.3 Type 3: Short-duration (8 sec) From-AP traffic from a small number of source addresses, with low

traffic volume. This type amounts to 40% of sessions, however the resource demands are insignificant.3 Type 4: Sessions containing only one From-AP packet.3 Type 5: Medium-duration (75 min) From-AP traffic from one source address, with high transmission

errors (40%) and medium traffic volume. This type amounts to 15% in sessions and may lead to the

computing overhead for handling the excessive errors.3 Type 6: Long-duration (4.2 hr) two-way traffic from many source addresses (30), with very high

traffic volume in both From-AP and To-AP, and low transmission errors (11%). This type of traffic

amounts to 41% of packets and 76% of bytes, and therefore this type incurs the highest resource

demands for bandwidth among all types.3 Type 7: Very short-duration (0.002 sec) From-AP traffic from one source address, with exactly 2

packets but high error (50%).3 Type 8: Medium-duration (82 min) two-way traffic from a few source addresses (4.2 on average),

with medium traffic volume in both From-AP and To-AP. The transmission errors mostly occur in

From-AP traffic (40%). This type of traffic amounts to only 1.3% of packets and 2.0% of sessions,

and therefore does not incur much overhead in networking resources.3 Type 9: Short-duration (7 sec) From-AP traffic with exactly 5 packets.3 Type 10: Short-duration (2 sec) From-AP traffic with exactly 2 packets.

The workload of type 2, 5, and 6 represent significant and unique resource demands, while the other

types distinguish different traffic characteristics. We notice that a significant fraction (about 70%) of

WLAN sessions have short duration less than 10 seconds. We also observe that most sessions, other than

those in type 6 and 8, are From-AP only.

C. Protocol Characteristics of Identified Workload Types

Table III shows the protocol composition of each workload type, where we break down the protocols

by networking layers and protocol categories. We consider three protocol categories as follows:

1) User protocols: imap (Internet Message Access Protocol), http, ssh, ms-ds (Microsoft DS: used for

file sharing), https, esp (Encapsulated Security Payloads), app-others (unidentified or minor APP

protocols).

2) Broadcast protocols: nb-ns (NetBios Name Service), nb-dgm (NetBios Datagram), osu-nms (OSU

Network Management Service), bootp (Boot Protocol), arp (Address Resolution Protocol), and

(MAC) probe.
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TABLE III

PROTOCOL CHARACTERISTICS FOR IDENTIFIED WORKLOAD TYPES

Protocols by Layers Protocols by Category

Types TCP/UDP IP LLC MAC User Broadcast Multicast

1 probe probe

2 nb-ns, nb-dgm arp, iapp, stp nb-ns, nb-dgm, arp iapp, stp

3 srvloc icmp ipv6 probe ipv6, icmp, srvloc

4 app-others igmp ipv6 probe app-others probe igmp, ipv6

5 probe probe

6 imap, http, ssh esp imap, http, ssh, esp

7 probe probe

8 http, ssh probe http, ssh probe

9 nb-ns icmp nb-ns icmp

10 icmp icmp

3) Multicast protocols: aarp (AppleTalk ARP), srvloc (Service Location Protocol), igmp (Internet Group

Management Protocol), icmp (Internet Control Message Protocol), ipv6, iapp (Inter-AP Protocol),

and stp (Spanning Tree Protocol).

User protocols are those used for popular user applications, such as http, ssh, ftp, etc. Broadcast protocols

are basically used for “query-to-all, response-from-any” purpose through the MAC broadcast address

“ff:ff:ff:ff:ff:ff”. Multicast protocols are used for “query-to-some, response-from-any(-of them)” purpose

through the multicast addresses, e.g., the MAC addresses starting with “01:00:5E” for IP multicasting. In

the following analysis, we will show that the identified 10 workload types are properly distinguished by

those three protocol categories.

Based on the information in Table III, we observe the following:3 Because we extracted the sessions from MAC-layer measurement data, our clustering technique can

identify various layer-specific workload types. In the protocol composition by layers in Table III,

workload of types 6 and 8 is TCP/UDP-specific, and workload of type 10 is IP-specific, respectively.

We also observe that workload types 1, 5, and 7 are MAC-specific workload.3 Type 1, 5, and 7 are MAC Probe Response traffic. They do not contain corresponding MAC Probe

Request traffic. This indicates that the destination hosts of those Response packets were located

far from the current AP. Because typically Probe Request from a wireless host has weaker signal

than Probe Response from an AP, those Probe Request packets were not captured by our sniffers

(monitoring devices). On the other hand, workload of type 8 includes both MAC Probe Request and

Response, which indicates that the wireless hosts are located close to the AP and our sniffers.3 Type 6 and 8 both consist of user protocol traffic, i.e. well-known application traffic. The only

difference is that type 8 has the user protocol traffic mixed with Probe traffic. This means that the
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TABLE IV

SUMMARY OF IDENTIFIED WORKLOAD TYPES

Label Pkt % Bytes % Session % Description

MP 0.02 0.002 4.7 Medium-Duration MAC Probe Response Traffic

BM 55.8 23.6 17.8 Long-Duration Broadcast/Multicast Traffic

SM 0.04 0.01 39.8 Short-Duration Multicast Traffic

IT 0.003 0.0008 10.1 Isolated (one-packet) Traffic

EP 2.2 0.3 14.8 Excessive MAC Probe Response Traffic

UG 40.6 75.8 3.0 User Protocol Traffic in Good Channel Condition

SP 0.002 0.0003 3.6 Short-Duration MAC Probe Response Traffic

UB 1.3 0.3 2.0 User Protocol Traffic in Bad Channel Condition

PT 0.002 0.0005 1.1 137 Port Scan

PG 0.002 0.0005 3.0 ICMP Ping Scan

difference is in the channel condition; type 6 is the user protocol traffic in a good channel condition,

while the traffic of type 8 is in a slightly bad channel condition.3 Type 2 consists of broadcast and multicast traffic that use some “well-known” addresses. For exam-

ple, broadcast traffic commonly uses MAC address “ff:ff:ff:ff:ff:ff” and iapp commonly uses MAC

multicast address “01:40:96:ff:ff:ff”. On the other hand, the multicast traffic of Type 3 and 4 mostly

uses “obscure” (i.e. not well-known) addresses. For example, IPv6 and ICMP traffic in those types

uses obscure multicast addresses for neighbor discovery. IGMP traffic in those types also uses obscure

multicast addresses for managing each multicast group.

D. Workload Description

Based on the analyses in Section IV-B and IV-C, we give a concise description of each workload type.

Table IV summarizes these workload types.

1) Type MP [Medium-Duration MAC Probe traffic]: This workload type contains an average of a

one second duration Probe Response traffic from the AP. In the sessions of this type, the wireless hosts

were not in a good channel condition and had to broadcast Probe Request repeatedly (during 1 second)

until they found a better AP.

2) Type BM [Long-Duration Broadcast/Multicast Traffic]: The workload of this type contains

broadcast/multicast traffic that uses some well-known addresses. The protocols of broadcast traffic in-

clude Net-Bios (nb-ns and nb-dgm) and arp, which query to all hosts through MAC broadcast address

“ff:ff:ff:ff:ff:ff”. The multicast protocols of this type include iapp and stp, which are used for communica-

tion between APs and switches through well-known multicast addresses, such as “01:40:96:ff:ff:ff” (iapp)
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and “01:80:c2:00:00:00” (stp)2. Because these broadcast/multicast addresses are used by many hosts, the

sessions of this type contain high traffic volume (10000 packets), a large number of peers (30), and long

duration (3.2 hours). Therefore, the traffic in this type demands significant networking resources, such as

bandwidth and memory.

3) Type SM [Short-Duration Multicast traffic (6.1%)]: This type contains an average of 10 second

multicast traffic consisting of IPv6, icmp, and srvloc protocols. IPv6 and icmp traffic in this workload type

is used for neighbor discovery through obscure (i.e. not well-known) multicast addresses. For example,

if a host wants to know the link layer address of a neighbor host, it multicasts IPv6 neighbor solicitation

message through the multicast address for that neighbor host. srvloc (Service Location Protocol) is used

for automatic discovery of IP network service. For example, if a host wants to find a specific service,

it sends a packet to a specific multicast address. For the multicast traffic in this workload type exploits

obscure multicast addresses, the number of distinct peers, i.e. the number of distinct hosts using those

addresses, is very small (nearly 1 in a session on average). Also, the sessions have low traffic volume

(3.2 packets on average) and short duration (7.6 seconds on average).

4) Type IT [Isolated (One Packet) Multicast sessions]: The sessions in this workload have only one

packet, and therefore we call them isolated sessions. Like workload type SM, this workload type contains

the traffic using obscure multicast addresses. The protocols include ipv6 and igmp. The ipv6 traffic in this

workload type is for address resolution, a part of neighbor discovery. For example, if hosts want to send

ipv6 packets, they query (solicit) the link layer address of the target host. The ipv6 traffic in this type

consists of such neighbor solicitation packets, which were not responded by any neighbor hosts. Hosts

use igmp (Internet Group Management Protocol) packets to report their IP multicast group memberships,

query the members of a group, and notify their leave from the group. The igmp traffic in this workload

type mostly consists of the “leave group” messages, which do not need follow-up packets.

5) Type EP [Excessive MAC Probe traffic]: This workload type contains an average of a 1 hour

duration Probe Response traffic from the AP. In the sessions of this type, the wireless hosts had consistently

sent out a large amount of Probe Request packets and received corresponding Probe Response packets

(470 packets on average) for longer than 1 hour. These hosts are inferred to have been in significantly

bad signal condition and therefore, had to repeatedly perform active searching for better APs.

6) Type UG [User Protocol Traffic in Good Channel Condition]: The workload of popular appli-

cation protocols, such as imap, http, ssh, esp, etc. The traffic is not mixed with MAC Probe traffic, and

therefore the wireless hosts are inferred to have been in a very good channel condition. This traffic has

high volume (27000 packets on average), very long duration (4.2 hours on average), and many distinct

peers (30 on average), and therefore may significantly demand networking resources, such as bandwidth

and memory. This traffic has From-AP and To-AP volumes well balanced, which shows typical two-way
2Because such iapp/stp traffic is for inter-AP communications, APs do not have to forward such iapp/stp traffic to the wireless side. We

believe that due to proprietary AP implementation or misconfiguration, the traffic was visible to our sniffers.



15

handshake patterns of popular user applications.

7) Type SP [Short-Duration MAC Probe traffic]: This workload type consists of short duration MAC

Probe Response traffic with 2 packets and duration of 0.002 seconds, on average respectively. In these

sessions, the wireless hosts had quickly responded to the Probe Responses from the AP. This strongly

indicates that the wireless hosts may have associated with the AP.

8) Type UB [User Protocol Traffic in Bad Channel Condition]: This type of workload consists of

user protocol traffic by popular applications, such as http, ssh. The user traffic is mixed with MAC Probe

Request/Response traffic. Those Probe traffic amounts to more than 80% in packet. Typically, the wireless

STAs in bad channel condition perform active scanning searching for better APs if necessary. Therefore,

the traffic of this types may come from some wireless hosts in slightly bad channel condition.

9) Type PT [137 Port Scan]: In the sessions of this type, some remote host sent exactly 5 NetBios-NS

packets to port 137 during 2 seconds. These sessions are potentially malicious scanning activities, called

port 137 scan, which aim to collect node information, e.g., a listing of any NetBios names known to that

node [19]. This information may be used for the spread of internet worm known as network.vbs [19].

10) Type PG [ICMP Ping Scan]: This type contains average 2-second duration ICMP echo request

traffic. The destinations of those ICMP packets are multicast addresses, which we believe were intentionally

forged. The purpose of this (potentially) malicious traffic is to discover active STAs in the network. This

traffic is the evidence of a network scanning activity, called “Ping Scan”. Ping Scan can be easily performed

using some public-domain software, e.g. nmap.

In summary, we identified three workload types with high resource demands (BM, EP, and UG), four

types of short From-AP sessions (MP, SM, IT, and SP), and two types of anomalous scanning traffic (PT

and PG).

E. Characterization of Daily Workload Variations

In this section, we raise the question “are these workload types also able to characterize the sessions

of different measurement data?”. The characterized workload, called two-week workload, was obtained

from the session data measured during Feb. 9 - Feb. 22, 2004 (two weeks). In this section, using the

two-week workload we characterize the measurement data of the next two days, Feb. 23 (Monday) and

Feb. 24 (Tuesday), 2004.

We first extracted “new” sessions from the measurement data of each of the two days. We then applied

the same transformation and scaling described in Appendix II. To examine the deviations of the workload

of new data from the two-week workload, we measured the Mahalanobis distance from each data point

(session) to the identified clusters. Distribution of the Mahalanobis distances is shown in Figure 3(a). We

observe that all the data points on both days have a closest cluster within 7, which is the value of I
used in clustering. This indicates that there is no need for a “new” workload types to describe the “new”
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Fig. 3. The two-week workload can characterize the workload of other days and can represent the daily workload variations.

sessions. Moreover, the data points are as close to the clusters as one on average. This confirms that the

two-week workload types can correctly characterize the workload of the two days.

Next, using the two-week workload types, we examined the workload variations over the two days.

Figure 3(b) shows daily change in number of sessions in each workload type. For daily reference value,

we present daily averaged number of sessions of the two-week workload for each type. From the figure,

we observe that Feb. 23 and 24 both have more sessions than daily reference values in any workload type.

The reason is that the two-week workload includes the workload on Saturdays and Sundays, and therefore

the daily reference values are relatively small. In all workload types, Feb. 23 has more sessions than Feb.

24, because typically Monday has the highest traffic among weekdays. Finally, we note that there is no

sessions for type PT and PG, on both days. This indicates that PT and PG represent the workload of

anomalous traffic and therefore are not typical for every day traffic.

F. Summary

In this section, we presented 10 workload types which were found using our clustering technique. We

analyzed identified different workload types in terms of traffic and protocol characteristics and provided

an understandable description of each type. We also showed that these workload types can be effectively

used for characterizing daily workload variations.

V. FUTURE WORK

We have described our results to date for workload modeling and characterization in a typical campus

WLAN. Our future work is composed of the followings.
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A. Time Dependency in Workload

We plan to examine the temporal workload change in a campus WLAN over several months. We will

examine the temporal changes not only at an AP but also at a channel, characterizing a typical workload

change from a larger scale measurement. The goal is to characterize typical daily, weekly, and monthly

workload patterns, and discuss their impacts on the traffic characteristics and resource demands.

We will apply the clustering technique to the sessions over daily, weekly, and monthly periods, examin-

ing the temporal changes in cluster mean, session population, and protocol composition for each workload

type. For this, we will not apply the clustering technique to the session data over each interesting period

separately, but will apply the technique to the data of the period, with the clusters previously found

as initial clusters. By exploiting this incremental clustering, we can effectively highlight the significant

temporal changes. We will then analyze those changes in terms of traffic characteristics and resource

demands.

B. Location Dependency in Workload

We also plan to address the location dependency in workload. Workload may have different population

per each type for different measurement locations. Workload may even have different types or different

protocol compositions over the locations.

To examine location dependency, we will apply our clustering technique to the data measured at different

locations, e.g., at different APs and in different WLANs other than university WLAN. For comparison,

we will also characterize the workload in non-wireless networks. In this way, the ultimate goal is to obtain

a set of standard WLAN workload types, which can be useful for comparing the WLAN workloads at

different locations or at different times.

Using such standard WLAN workload types, we can analyze the traffic characteristics of different

typical WLAN environments. For example, we expect to answer such questions as “how different are the

academic WLAN and the public WLAN in terms of application/user-level traffic characteristics?” or “how

much difference in the impacts of channel condition on the traffic is there between the academic/corporate

WLAN and the public WLAN?”.

C. Modeling Dynamic Behaviors of the Workload

Finally, we plan to model dynamic behaviors of WLAN workload, such as the behaviors of inter-arrival

times (of packets or sessions). Such dynamic behaviors can be described in some generative model, e.g.,

marginal (time-invariant) distributions or some time-dependent stochastic traffic models like self-similar

model. Such models are generative in that they can be used for repetitively generating different workloads

as needed by the evaluation experiments.

Moreover, we seek to find an answer to the question ”how can we generate a synthetic workload

according to the standard workload types?”. Different WLAN workload types may have difference in
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their dynamic behaviors. Therefore, we can provide such dynamic models per each (static) standard

workload type. In this way, we can systematically generate a workload in which the types are appropriate

for the purpose of a WLAN simulation study.

APPENDIX I

THE WIRELESS MONITORING (WM) TECHNIQUE

In this section we describe our methodology, in which we use multiple sniffer devices and merge multiple datasets to

improve the capture performance of the WM technique.

A. WM Setup

To capture wireless frames, we used three network sniffers, each comprising a PC running Linux with the 2.4.19 kernel.

Each sniffer had a Prism2 chipset-based wireless network interface card; two sniffers had Demarctech DT-RWZ0-200mW-WC

cards, and the third had a Linksys WPC11v3 card. To measure traffic, we used the Ethereal protocol analyzer (version 0.9.6)

with the libpcap library (version 0.7). Each card was placed into ‘monitor mode’, which allowed the card to capture 802.11

frame information on a target channel.

The sniffers captured the first 256 bytes of each observed 802.11 frame, recording the complete view of the frame, i.e.,

PHY/MAC/LLC/IP/Above-IP information. PHY information, such as MAC Time and SNR (signal-to-noise ratio), can be

captured using Prism2 monitor header, which is not a part of the IEEE 802.11 frame header, but is generated by the firmware

of the receiving card.

B. Implementation of WM system

In this section, we briefly describe the WM framework, based on the techniques introduced in [10]. In that work, we

demonstrated two serious drawbacks of using a single sniffer: each sniffer experiences severe loss in captured frames, and each

sniffer only observes its local view, that is, the frames observed by one sniffer, which may differ from the AP’s global view.

Our framework aims to improve the capture performance by using multiple sniffers, placed according to SNR measurements.

1) Merging multiple sniffers : Multiple sniffers can reduce measurement loss in two ways. First, a single sniffer may

not be able to observe all of the frames sent to and from a particular AP, due to radio reception and range. By using multiple

sniffers, we can aggregate each sniffer’s local view to create a closer approximation of the AP’s global view. Second, even if

a sniffer had identical radio hardware and positioning to that of an AP, it may be useful to observe the frames that the AP

itself was unable to receive.

To accurately merge data from multiple sniffers, we need to be able to distinguish unique 802.11 frames for removing

duplicates. We also need to prevent reordering upon merging. Reordering may occur when different sniffers observe disjoint

sets of frames. For instance, if there are four frames JLKNMPO transmitted on a WLAN, and sniffer Q sees JRK and J,S , but snifferT
sees J U and JVO . Although each sniffer has observed their respective frames in relative order, it is impossible to use this

relative order to merge the four frames. To prevent such duplication and reordering, we need to synchronize multiple sniffers’

timestamps.

Our WM framework uses 802.11 Beacon frames, which are generated by the AP, as the frame of reference for all the

sniffers. Beacon frames contain their own 64-bit absolute timestamps as measured by the AP, and we can therefore uniquely

identify such common beacon frames in different sniffer traces. On the timestamps of such common frames, we took one of

the sniffers as a reference point and used linear regression to fit the other sniffers’ timestamps to the reference sniffer.
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To prevent duplication and reordering, the time synchronization error (the difference between two timestamps of different

sniffers for the same frame) needs to be less than half the minimum gap ( WYX[Z]\ ) between two valid IEEE 802.11 frames.

In the IEEE 802.11b protocol, the minimum gap, W X[Z^\ , can be calculated as the 192 _a` (microsecond) preamble delay plus

the 10 _a` SIFS (Short Inter-Frame Space) and the 10 _a` minimum transmission time for a MAC frame (for the case of

an Acknowledgement frame) to be a total of 212 _a` . Therefore, the time synchronization error needs to be less than 106_a` . Applying linear regression for each Beacon interval ( b 100ms) on 24 hours of traces from our test setup, we measured

synchronization errors on the Beacon frames from another AP. We observed a maximum error of 30 _a` , which is well below

the 106 _a` requirement. Our setup was thus suitable for measurement using multiple sniffers.

2) Sniffer placement : We used SNR measurements to place our multiple sniffers. One sniffer was placed adjacent

to the AP, to be responsible for capturing the From-AP traffic and the traffic of clients near the AP. The other sniffers were

placed as close as possible to the wireless clients. Assuming that clients are uniformly distributed over the coverage area, this

meant placing the sniffers so that they cover as much of the AP’s coverage area as possible. Generally, if we have c sniffers

to place, we split the AP coverage area into c equal areas and place the sniffers in the center of mass of these areas.

To determine the AP coverage area, we first used the SNR (obtained from Prism2 header) seen in Beacon frames from the

target AP to draw the contour lines. The AP coverage area was then determined by choosing a particular SNR contour, e.g.,

the 15-dB contour line.

We can refine this strategy by noting that, in an environment where multiple APs are installed, the coverage area of an AP

may be reduced to the Association Area of the AP. The Association Area of an AP is the area at which a client will favor this

AP for association compared with other APs in the area. This behavior may be device-specific and may also vary depending

on whether a client has roamed to an area or has just powered on their radio. For the purposes of sniffer placement, we assume

that clients will associate with the AP with the highest SNR.

APPENDIX II

CLUSTERING TECHNIQUE

Clustering is a non-parametric, unsupervised classification technique that does not have to determine the parameters of

underlying distribution and does not exploit any external guidance. Since we do not want to make any assumptions about

the parameters of the session distribution, e.g., d*egf:D;hji�ZlkNmVnZ]opK in Equation (1), non-parametric, unsupervised classification

techniques, such as clustering are suitable for our WLAN characterization purpose.

In this section, we first describe our session data and transformation and scaling procedure. After discussing our distance

metric, i.e. Mahalanobis distance, we give a detailed description of our algorithm, called QCqrQ (Adaptive Mahalanobis-distance

Algorithm). Followed are the discussions on the selection of the algorithm parameters. Finally, we evaluate our algorithm by

examining the quality and stability of clustering results.

A. Session Data

In this section, we discuss the raw session data we obtained from two-week WLAN measurement.

As we discussed in Section IV-A, for each feature, sessions have significantly small mean and median values compared

to the maximum, and the range of values spans several orders of magnitude (Table I). There are two problems if we use

these raw data for clustering: First, similarity based on the difference of raw values may distort the actual similarity. For

example, a session of 1 minute duration is as similar to a session of 2 minute duration as a session of 1000 minutes is to

a session of 1001 minutes. If it is not true, we must apply some non-linear transformation (such as logarithm) to the data.

Second, features have significantly different ranges to each other, which makes those features with large range dominating the
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clustering results. Therefore, we need to scale the data to normalize the ranges of different features. In the next section, we

discuss the transformation and scaling procedures in detail.

B. Transformation and Scaling on the Data

To avoid the similarity distortion in each of our features, we apply the logarithm transformation for those features whose

values have a range of over three orders of magnitude. From Table I, we notice that all 6 features are over three orders of

magnitude, and therefore are subject to the transformation. We use the equation sutwv]xzy K|{ h~}����:k for transforming a raw

feature value } to a transformed value s . Because } values are non-negative, addition of one insures non-negative s values.

When the logarithm transformation is applied, we still have the problem of the features with large range dominating the

clustering results. To handle this problem, we scale the values of different features into the same range. Because each feature

has non-negative values in our data, we scale them into [0,10]. This procedure is called min-max normalization [20] and we

use the following equation for scaling a logarithm-transformed value s :� t>��X�Z]\�����X[��� sr�%q���c�h�s�kqr�R�ph�s�k��%q��lc�hjs�k e (2)

where
�

is the scaled value, and � � X[Z^\ , � X���� � is the target range. Here, � X[Z^\ and � X���� are 0 and 10 respectively.

C. Distance Measures

One of the key features of our algorithm is to use the Mahalanobis Distance ( qrF ) for distance measure. In our clustering

algorithm, qrF is defined as the distance from a � -dimensional data point � to the center of a cluster (say iVZ ), as follows:qrF U h��ae�i Z k�t�h~����_ Z k|� � M¡KZ h�����_ Z k�e (3)

where � -dimensional _ Z is the center (cluster mean) of cluster i Z , and � Z is the covariance matrix of the already existing data

points in cluster i Z . qrF accounts for any correlation between the features within the cluster. Therefore, given the distance

limit ¢ as qrFEh~�pe£�|k[¤¥¢ , the cluster is maintained in an ellipsoidal shape.

In practice, Equation (3) should be carefully applied because in some cases � Z is either not available (e.g., for a cluster

with one data point) or singular (e.g., for a cluster in which some data points have the same feature value). In our algorithm,

in case ��Z is not available, we instead use i�¦ for �[Z , where i is a constant and ¦ is a � -dimensional identity matrix, so that the

distance measure can then become the Euclidean distance. When �"Z is singular, we have a problem that � M�KZ is not available,

then we perform SVD (Singular Vector Decomposition) on �"Z as ��Zat¨§%©«ª�©«§ � . We then replace nearly zero diagonal values

in ª by a small fraction ¬ (e.g., 0.01) of the largest diagonal value in ª . Thus, this procedure adjusts nearly zero minor axes

of the ellipsoid to the fraction ­ ¬ (e.g., 0.1) of the major axis, keeping the cluster in a regular ellipsoidal shape.

D. The Clustering Algorithm: ®°¯�®
In this section, we describe the Adaptive Mahalanobis-distance Algorithm ( Q±qrQ ) in detail. Our clustering algorithm is

non-parametric, and therefore it does not have to determine the parameters of the underlying mixture distribution. Instead, it

finds each component by iteratively applying three adaptive operations: distance-limiting, merging, and break-up.

The algorithmic description of Q±qrQ is given in Algorithm 1. QCqrQ iterates each pass consisting of the following three

steps.

1) (Distance-limiting) The algorithm first identifies each cluster by limiting the Mahalanobis distance ( qrF ) to a threshold¢ . More specifically, the algorithm either assigns each data point to the closest cluster within ¢ , or forms a new cluster
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Algorithm 1 Adaptive Mahalanobis Distance Algorithm (AMA)
Procedure Q±qrQ�h~�pe�¢Ri�²P³�e�¢´e¶µVe�·´eN¸´k
Input: c data points ( � ), target density ¢Ri�²P³ , and four clustering parameters as follows:¹ Distance-limiting thresholds ( ¢ in Mahalanobis distance),¹ Break-up threshold for number of data per cluster ( µ ),¹ Break-up threshold for cluster variance ( · ), and¹ Merging threshold for inter-cluster distance ( ¸ in Mahalanobis distance).

Output: Clustering º .

1: repeat

2: (Distance-limiting)

3: for each data point do

4: Assign the point to a cluster if it is close from the cluster within ¢ in Mahalanobis distance from the cluster. Otherwise,

assign the point to a new cluster having the point as the center.

5: Mean and covariance of the cluster are updated.

6: end for

7: if »*hjº�k is the maximum so far, then º½¼ current clusters.

8: (Merging) Merge any two clusters whose distance between the cluster means (in both directions) in Mahalanobis distance

is less than ¸ .

9: (Breaking up small clusters) Remove any clusters whose number of data is less than µ .
10: (Breaking up large clusters) Remove any clusters whose cluster variance is greater than · .

11: until »Phlº�k[¾¿¢/i�²P³ or no change in assignment or some maximum iteration is reached

if there is no clusters within ¢ . Whenever the point changes its cluster membership, covariance matrices of the affected

clusters are recalculated.

2) (Merging) Next, the algorithm tries to obtain a compact number of clusters by merging two or more clusters that are

close to each other within a threshold ¸ in qrF . Here, inter-cluster distance (ICD) is defined to be the Mahalanobis

distance between cluster centers. According to our distance measures, two ICDs are calculated for a pair of clusters.

Our algorithm merges two clusters if both the ICDs are less than ¸ .

3) (Break-up) Finally, it improves the quality of the clusters by removing the clusters with their size less than a thresholdµ and the clusters with their variance greater than a threshold · .

For the algorithm, the size of cluster i�Z , `��«À/ÁLh�igZ�k is defined as the number of data points in i:Z . The variance of igZ , denoted by·R�R¬Âh�i�Z«k is defined as the sum of diagonal elements in ��Z .
We define the quality of a cluster and a clustering (i.e. a set of clusters) by their density. For cluster i Z and clusteringº�t½f:i Z¶Ã � tr�/egÄgÄ�Ä¶dPm , we define the density of i Z ( »Phji Z k ) and the density of clustering º ( »*hjº�k ) as follows:»*h�i Z k�tÅv]xzy `g�«ÀRÁLh�i�Z�k·R�R¬Âh�igZlk e£»*hjº�kÆt n� Z]opK `g�«ÀRÁLh�i�Zlk«»*h�i�Z�kc e (4)

where c is the total number of data points. We take the logarithm for preventing an extremely high density of one cluster

from dominating the weighted sum »Phlº�k . In calculating »*hjº�k , we weight »*h�iVZjk by `��«ÀRÁRhji�Z�k because a density change in larger

clusters should more affect the quality of clustering.

To return the best quality clustering, in each pass the algorithm keeps the clustering with the maximum »*hjº�k so far. The

algorithm terminates either when the maximum »*hjº�k reaches ¢Ri�²´³ (density cut) or after some fixed number of passes.
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E. Parameter Selection

To select proper algorithm parameters, such as ¢´e¶¸ae¶µVe�· , we performed quick runs of the algorithm. We varied ¢ and ran

the algorithm by only three passes (iterations) for each ¢ . We only show the result of ¢×tØ�/e¶ÙÂe�ÄgÄ�Ä�eg�:Ú , because for ¢6¾w�:Ú
one big cluster becomes dominating the clustering. We did not apply merging and break-up operations for the runs, so that

the result can only show the impacts of ¢ .

From Figure 4(a), we observe that the number of clusters significantly decreases as ¢ increases. For ¢¥ÛÝÜ , number of

clusters is greater than 100, which is not desirable for compact characterization. Therefore, hereafter we only show the result

for ¢Yt>ÜÞeNßÂe�àÞe and ��Ú . ( ¢YtÅá and ¢Yt>â produce the similar results to ¢Yt>Ü and ¢Yt½�:Ú , respectively.)

We first examine the distributions of cluster size and cluster variance, and select proper µ and · that can remove “too small”
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Fig. 6. Quality and stability of clustering: each distribution is obtained from 20 runs of the algorithm with the same parameters.

and “too large” clusters. Then, we examine the distribution of inter-cluster distances (ICDs) to select proper ¢ that can produce

similar ICDs between all clusters. Finally, we select ¸ so that those clusters too close each other can be merged.

For breaking up “too small” clusters, we examine the distribution of cluster sizes, as shown in Figure 4(b). We observe a

clear region of such “too small” clusters at around 1% of total number of points (about 38), and therefore we choose 38 as

proper µ value. For breaking up “too large” clusters, we examine the distribution of cluster variances, as shown in Figure 5(a).

We observe that for large ¢Ph|¾Ct¨ß k there exists a clear region of large variance, e.g., that of greater than 15. We choose 15 as

the proper · value.

Figure 5(b) represents the distribution of ICDs. Here, we excluded those too small clusters and too large clusters withµ±täãzà and ·�tå�VÜ , because we expect those clusters will be removed by the break-up operations. High frequency of small

ICDs indicates that clusters are too close to each other. Those clusters are not clearly separated, and therefore may produce

unstable clustering result. On the other hand, high frequency of large ICDs means that clusters are too far apart. This indicates

that the clustering consists of only those clusters with small covariance, which can hardly represent some valid clusters with

large covariance.

Therefore, we choose ¢ that can produce as similar ICDs as possible. In Figure 5(b), we observe that the proper ¢ is 7,

because the majority (55%) of the ICDs exist between 2 and 10. For selecting the merging threshold ¸ , we re-examine the

ICD distribution of ¢ætwß in Figure 5(b). We can identify the small ICD region, that of ÛCt 3. We select ¸Etrç so that the

algorithm can merge the clusters whose ICDs (in both directions) are in that small region.

F. Quality of Clustering

In this and the next section, we evaluate our clustering algorithm by examining the quality and stability of the clustering

results. In Section II-D, we defined the quality of clustering º by the clustering density, »*hjº�k . In this section, we discuss how

the adaptive operations, i.e. distance-limiting, break-up, and merging, improve the quality of clustering. For this purpose, we

ran the algorithm with ¢�t¨ß in five scenarios:

1) plain3-run: 3 passes without break-up and merging,

2) plain20-run: 20 passes without break-up and merging,
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3) B-run: 20 passes with break-up only,

4) BM-run: 20 passes with break-up and merging, and

5) BMD-run: ¢/i�²´³�t¨ß with break-up and merging.

The parameters previously selected ( ¸æt¿ç´e¶µ�tÅã/àÞe�·Yt½�VÜ ) were used, if necessary. For each scenario, we performed 20 runs

with randomly chosen order of data points, with the same parameters. From each scenario, we obtained the distribution of»Phlº�k , as shown in Figure 6(a).

From Figure 6(a), we observe that plain20-run produces the clusters with much higher density than plain3-run. The reason

is that as iteration continues, distance-limiting operations gradually move the cluster centers close to the actual mean of each

component. We also observe that B-run significantly improves the quality of clustering over the plain runs. This is because in

each pass break-up operation removes low quality clusters, such as clusters with too small size or too large cluster variance.

However, BM-run produces worse quality than B-run, even though slightly better than plain runs. The reason is that merging

operation only examines the ICDs and therefore sometimes it tries to merge two clusters of high density, resulting in deterioration

of cluster quality. To avoid quality deterioration, we ran the algorithm with the density cut ( ¢Ri�²P³ ), without fixing the number

of passes (BMD-run). From Figure 6(a), BMD-run with ¢Ri�²´³�t�ß significantly improve the cluster quality over BM-run. We

note that the average number of passes in BMD-run was 17, which means that such density cut operation can achieve high

cluster quality with less computational overhead than other runs.

G. Stability of Clustering

Because our algorithm exploits dynamic creation and assignment of clusters on the data points coming in order, clustering

result may be sensitive to the order of data points. By stability of clustering, we mean how similar the clustering results are

for different orders of the data points.

For the measure of similarity between clusters, we use Folkes and Mallows index ( ?�qr¦ ) [21]. For two clusterings on the

same data points, ?�qr¦ calculates the probability of (any) two data points belonging to the same cluster in one clustering,

if those two points also belong to the same cluster in the other clustering. For clusterings ¦ and è , ?�qr¦Ph�¦´e�èak is given as

follows: ?�qr¦´hj¦0egèak�t @�é�ê ë­ @�é ­ @Yë t�ì @Yégê ë@ é ì @�é�ê ë@ ë e (5)

where @ é ( @ ë ) is the number of data point pairs belonging to the same cluster in clustering ¦ ( è ), and @ é�ê ë is the number

of data point pairs belonging to the same cluster in both clustering ¦ and è . ?�qr¦ is a probability and therefore the range is

between 0 (no similarity) and 1 (perfect similarity).

To examine the stability over the different order of data points, we use the same scenarios and clustering results described

in the previous section: plain3-run, plain20-run, B-run, BM-run, and BMD-run. Recall that for each scenario we performed 20

runs with randomly chosen order of data points with the same parameters. From the 20 runs in each scenario, we obtained 190

( tÝí U�{U�î ) pairs of clusterings. Then, we calculated 190 ?�qr¦ s, whose distribution for each scenario is presented in Figure 6(b).

plain20-run produces more stable clusterings than plain3-run because with more passes distance-limiting operations move

the cluster centers close to the actual centers of components. Even though B-run significantly improves the cluster quality over

plain20-run, it does not produce better stability than plain20-run. The reason is that sometimes a “valid” cluster is broken up,

and whenever it occurs distance-limiting for those points should start from the scratch.

BM-run produces most stable clusterings than other runs. Unstable clusterings are mostly due to the points around the cluster

boundary that frequently change the cluster membership. Merging operations avoid this boundary situation, and therefore BM-

run produces such highly stable clusterings. However, as pointed out in the previous section, BM-run may reduce the cluster
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quality by producing the low quality merged clusters. From Figure 6(b), we observe that BMD-run not only achieves high-

quality clusterings but also produces as stable clusterings as BM-run. The reason is that BMD-run exploits merging operations,

and at the same time tries to return high-quality clustering. Again, we note that BMD-run produced such high-quality, stable

clusterings with only 17 passes on average.

REFERENCES

[1] IEEE Computer Society LAN MAN Standards Committee. Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications. IEEE, 1999.

[2] X. Meng, S. Wong, Y. Yuan, and S. Lu. Characterizing flows in large wireless data networks. In Proceedings of the

Tenth Annual International Conference on Mobile Computing and Networking, Philadelphia, PA, October 2004.

[3] F. Chinchilla, M. Lindsey, and M. Papadopouli. Analysis of wireless information locality and association patterns in a

campus. In Proceedings of IEEE Infocom, Hong Kong, China, March 2004.

[4] Magdalena Balazinska and Paul Castro. Characterizing Mobility and Network Usage in a Corporate Wireless Local-Area

Network. In 1st International Conference on Mobile Systems, Applications, and Services (MobiSys), San Francisco, CA,

May 2003.

[5] Tristan Henderson, David Kotz, and Ilya Abyzov. The changing usage of a mature campus-wide wireless network. In

Proceedings of the Tenth Annual International Conference on Mobile Computing and Networking. ACM Press, September

2004.

[6] D. Schwab and R. Bunt. Characterising the use of a campus wireless network. In Proceedings of IEEE Infocom, Hong

Kong, China, March 2004.

[7] A. Balachandran, G.M. Voelker, P. Bahl, and V. Rangan. Characterizing user behavior and network performance in a

public wireless lan. In Proceedings of ACM SIGMETRICS, Marina Del Rey, CA, June 2002.

[8] David Kotz and Kobby Essien. Analysis of a campus-wide wireless network. In Proceedings of the Eighth Annual

International Conference on Mobile Computing and Networking, pages 107–118, September 2002. Revised and corrected

as Dartmouth CS Technical Report TR2002-432.

[9] D. Tang and M. Baker. Analysis of a local-area wireless network. In Proceedings of the Sixth Annual International

Conference on Mobile Computing and Networking, Boston, MA, August 2000.

[10] J. Yeo, M. Youssef, and A. Agrawala. A Framework for Wireless LAN Monitoring and its Applications . In Third ACM

Workshop on Wireless Security (WiSe’04), in conjunction with ACM MobiCom 2004, Philadelphia, PA, October 2004.

[11] K. Claffy, H.-W. Braun, and G. Polyzos. A parameterizable methodology for internet traffic flow profiling. IEEE Journal

on Selected Areas in Communications, 13(8):1481–1494, March 1995.

[12] J. Yeo, M. Youssef, and A. Henderson, T. Agrawala. An Accurate Technique for Measuring the Wireless Side of Wireless

Networks. In International Workshop on Wireless Traffic Measurements and Modeling (WiTMeMo ’05), in conjunction

with MobiSys ’05, Seattle, Washington, June 2005.

[13] A.-K. Agrawala, J.-M. Mohr, and R.-M. Bryant. An approach to the workload characterization problem. Computer, pages

18–32, 1976.

[14] Anthony McGregor, Mark Hall, Perry Lorier, and James Brunskill. Flow clustering using machine learning techniques.

In PAM, pages 205–214, 2004.

[15] S. Raghavan, D. Vasukiammaiyar, and G. Haring. Generative networkload models for a single server environment. In

Proceedings of ACM SIGMETRICS, Nashville, Tennessee, May 1994.



26

[16] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement,

Simulation, and Modeling. Wiley- Interscience, New York, 1991.

[17] Lara D. Catledge and James E. Pitkow. Characterizing browsing strategies in the World-Wide Web. Computer Networks

and ISDN Systems, 27(6):1065–1073, 1995.

[18] Huang X., Peng F., An A., and Schuurmans D. A dynamic web log session boundary detection based on statistical language

modeling. Journal of the American Society for Information Science and Technology (JASIST), 55(14):1290–1303, 2004.

[19] B. Alexander. Intrusion detection: Port 137 scan. In http://www.sans.org/resources/idfaq/port 137.php.

[20] Jiawei Han and Micheline Kamber. Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc., 2000.

[21] E.-B. Fowlkes and C.-L. Mallows. A method for comparing two hierarchical clusterings. Journal of the American

Statistical Association, 78(383):553–584, 1983.


