Zero-Shot Vision Encoder Grafting via LLM Surrogates

Kaiyu Yue Vasu Singla Menglin Jia" John Kirchenbauer
Rifaa Qadri Zikui Cai Abhinav Bhatele Furong Huang Tom Goldstein
University of Maryland "Meta
67.5
Input image Input question: what are the people in the cars doing? __45.5(| =M Decoder training
66.0 v Encoder training
X = |/ T ® 339.0 Pretraining
Encoder LLM Racing. £64.5 = o <
[g 32,5
863.0 8
3 $26.0
Zero-shot grafting S061.5] | zero-shot E1os 27.78
S0l | I
<™ —~@— ours E13.0 "o
e s trainin @ i °
=i Red. loss) %85 - E:;Zhne I ICET 7.01 7.01
W Train e 70550 20 60 80 100 0 Ours Baseline LoRA

Input question: what color is the car in the image?

Figure 1. Zero-shot vision encoder grafting via a small language
surrogate (srgt) model to trigger the target LLM to perform visual
understanding task without any additional training.

Abstract

Vision language models (VLMs) typically pair a modestly
sized vision encoder with a large language model (LLM),
e.g., Llama-70B, making the decoder the primary computa-
tional burden during training. To reduce costs, a promising
strategy is to first train the vision encoder using a small lan-
guage model before transferring it to the large one. We con-
struct small “surrogate models” that share the same embed-
ding space and representation language as the large target
LLM by directly inheriting its shallow layers. Vision en-
coders trained on the surrogate can then be directly trans-
ferred to the larger model, a process we call zero-shot graft-
ing' — when plugged directly into the full-size target LLM,
the grafted pair surpasses the encoder-surrogate pair and,
on some benchmarks, even performs on par with full de-
coder training with the target LLM. Furthermore, our surro-
gate training approach reduces overall VLM training costs
by ~45% when using Llama-70B as the decoder.

Most modern auto-regressive VLMs are built by extracting
visual features from images using an encoder like CLIP
[33] or SigLIP [40, 45], and placing these features into
the context window of an LLM. The image features must

'We define zero-shot grafting as plugging a vision encoder trained on
a surrogate model directly into its target LLM without additional training.
In contrast, transferring involves further fine-tuning after grafting.

Training data utilization (%) Methods with the same training setup

Figure 2. Reducing full decoder training cost with our surrogate-
trained encoder for Llama-70B in VLMs. Hollow O indicates the
average score of the surrogate-trained encoder on the left.

be aligned with the representation space of the LLM, and
this is achieved by training the entire pipeline end-to-end.
The cost of such training is often severely dominated by
the language model. For example, plugging CLIP (approx
400M parameters) into Llama-70B [9] results in a pipeline
where vision encoder training occupies almost none of the
required memory and computation.

In this paper, we explore methods of performing encoder
alignment using small lightweight language models, and
transferring the resulting features to a large language model.
We train small surrogate language models with the same
representation space as a larger target LLM. After training
the vision encoder on this small surrogate model, we can
then transfer it to the larger model, either directly (grafting)
or with fine-tuning.

A major focus of our work is on understanding how to con-
struct small surrogate models that accurately mock larger
target LLMs. Our method of creating such small models
stems from analyzing the internal prediction dynamics of
LLMs, particularly how predictions evolve across layers.
This analysis reveals two distinct phases in the prediction
trajectory, separated by a clear transition point. We con-
struct our small models by preserving the layers that partic-
ipate in the early feature extraction phase of inference, and
condensing all other layers. Since the small model inherits
its shallow parameters from the target LLM, it shares the

same embedding space as the original larger model and can
effectively stand in as its surrogate. Our surrogate model
has two major advantages:

Zero-shot grafting capability. Vision features trained on a
smaller and less resource-intensive surrogate can be directly
used by the larger target LLM without any fine-tuning, as
depicted in Figure 1. This zero-shot grafting demonstrates
these surrogate-trained encoders effectively trigger visual
understanding in target LLMs.

Fast-converging VLM training. The encoders trained on
surrogate models can be further fine-tuned with the full-size
target LLM. Since they are already aligned with the LLM’s
embedding space, they achieve high performance with com-
paratively little full-scale training. Our experiments show a
~45% cost reduction for full decoder training with Llama-
70B, as shown in Figure 2, highlighting the efficiency of our
surrogate-trained encoders.

Table of Main Contents

» Section 1: We detail the method of constructing our sur-
rogate model, providing analysis that demonstrates how
we discovered, developed, and validated our approach
through experimental ablations.

» Section 2: We show our surrogate models for giant LLMs
like Llama-70B, producing encoders with a strong zero-
shot grafting ability, which can also accelerate the full
decoder training of giant language models for VLMs.

1. Building Surrogate Models

In this section, we present our approach for building small
surrogate models for target LLMs. First, we analyze the
LLM’s hidden features to identify the critical transition
point between shallow and deep information processing lay-
ers. Next, we observe that the second/deep phase of infer-
ence contributes very little to encoder transferability, and
observe that image features transfer well between models
when they share their early/shallow processing layers. Fi-
nally, we validate these findings and propose to construct
surrogate models by preserving the early-phase layers while
replacing late-phase layers with a translator.

1.1. Analyzing the Prediction Trajectory

For a target LLM and input array’ of N text token IDs
t € Z", we trace the evolution of features over a forward
pass of the model. By propagating these tokens through all
L transformer layers, we obtain intermediate hidden states
X* e RV*P from each layer, where £ € [0, L—1] denotes the
layer index and D is the hidden dimension. The final hid-
den states X©~! are passed through a normalization layer

2Bold capital letters denote a matrix X, and bold lower-case letters a
column vector x. X[, j] refers to the element at row 7 and column j in
matrix X. All non-bold letters represent scalars.

and the final linear layer W € RV to produce the logits,
where V' is the vocabulary size. The probability distribu-
tion for the predicted next token can be computed for all
positions:

P = softmax (norm(X*)W) e RV*V. (1)

The probability for the next output token at each individual
position is

p=P[1:t[: -1]] e RN, 2)

where P[1 :, t[: —1]] shifts P by one position forward and
indexes by t up to the second-to-last position, aligning each
token’s probability with its following token in the sequence.

For each layer’s hidden states X4, we compute the interme-
diate probability distribution q’ following the same proce-
dure:

q’ = softmax (norm(X“)W7) [14,t[: -1]]. (3)

To capture the trajectory of evolving predictions, we calcu-
late the KL divergence between the normalized layer-wise
distribution q° and the final distribution p:

l
Dir(q’ || p) =17(a’ log q;),)

where 1 ¢ RV~ is a vector of ones, log is applied element-
wise. Eq. (4) quantifies the deviation of each layer’s predic-
tion from the final model output, offering insight into how
much each layer’s distribution shifts along the prediction
trajectory. This measure enables a deeper understanding of
each layer’s role in shaping the model’s eventual output dis-
tribution.

In Figure 3, we plot Eq. (4) across different layers of the
Llama-3B, 8B, and 70B’ models by feeding* 300 random
samples from GenQA [5]. To demonstrate the same curve
pattern in a different model family, Gemma-2B is also in-
cluded. Each model displays a distinct phase transition
where the curves abruptly coalesce and then monotonically
converge to the final distribution. For example, in Llama-
8B, this point appears to occur around layer 17 whereas
for Llama-70B it is closer to layer 40. We speculate that
this point marks a transition in the type of position-wise
information processing occurring in the model, where the
internal states shift from early phase before the transition
point to the late phase after it. The layers in the early phase
process information from individual token embeddings and
combine simple representations together to form higher or-
der concepts, then layers in the late phase converge towards
a specific next-token prediction.

3Unless stated otherwise, each model mentioned refers to its latest in-
struct version. For example, Llama-3B indicates Llama-3.2 3B, Llama-
70B represents Llama-3.1 70B, and Gemma-2B denotes Gemma-2 2B.

4One concern about this teacher-forced manner is ablated in Sec. A.1.

< 10.0 10.0 10.0]
o 10.0
w75 7.5 7.5
£ 17 7.5 s
ot 6 5.0 | 5.00 40)
c ! N i ! 5000 :
+ i ! s “ « PR
R4l 2.5 2.5 \ :
<
003 10 15 20 25 000~ 12 18 22 30 9% 6 32 48 6 79 9% 35 10 15 20 25

Layers in Llama-3B

Layers in Llama-8B

Layers in Llama-70B

Layers in Gemma-2B

Figure 3. The trajectory of prediction across different layers of Llama-3B, 8B, and 70B, and Gemma-2B from a different model family.
The arrow marks the transition point where the trajectories of 300 random samples converge.

(— Translator j

L

LJ

Figure 4. Replacing layers with a translator. Despite the rel-
ative size in the illustration, our translator is simply an identical
transformer layer inherited from the target LLM. The translator
bypasses many network layers, and is initialized from the shallow-
est original layer that it replaced.

1.2. Studying the Transition Phases

To test our hypothesis on the transition point, we exper-
iment with Llama-3B> by replacing consecutive layers of
each phase with a single transformer layer called a transla-
tor (terminology adopted from [3]), as depicted in Figure 4.
From Llama-3B’s 28 layers, we preserve the first (¢ = 0)
and last (¢ = 27) layers while replacing two groups of eleven
layers each with a translator 7 layers from ¢ = 1 to 11 in-
dicated as T (1,11) for the early phase before Llama-3B’s
transition point (¢ = 16 in Figure 3) and 7 (16, 26) for the
late phase after it. Each is a 2B small model.

Next, we examine the two transition phases by evaluating
vision encoders trained on models 7 (1,11) and 7 (16, 26).
To understand their differences and how they affect encoder
transferability to the target LLM, we construct two LLaVA-
like VLMs using these small models as decoders. We em-
ploy a two-stage training approach to conduct the initial ex-
periments:

1) First, we simultaneously pre-train a vision adapter (a two-
layer MLP) and the translator on 1M instructions®, combin-
ing LLaVA-1.5-665K [26] vision-language instructions and
random GenQA [5] 500K text instructions, for one epoch.
2) Then, we fine-tune the encoder (ViT-1/14@336px) and
vision adapter with the frozen decoders on the LLaVA-1.5-
665K instructions for one epoch.

SInitial experiments with Gemma-2B showed similar results. In later
sections we adapt the method to a 70B model.
©This differs from the typical pre-training of vision adapters, which use

i) % g

2 2 7 2 2 g 2

E 5 ¢ ¢ £ & T g8

small model g =]] 3 a2 8 15
Llama-3B 60.7 73.0 71.1 527 706 77.1 789 392
T(1,11) 26.6 425 503 277 53.5 66.6 57.5 324
T(16,26) 589 57.2 54.8 385 64.3 67.6 782 32.6
T(16,26)* | 56.9 573 575 40.7 643 70.1 799 352

Table 1. Accuracy (%) of small models for Llama-3B on text
benchmarks. * is a control experiment added later in the study.

Evaluating decoders. After fine-tuning translators in the
first stage, we evaluate models 7(1,11) and 7 (16, 26) on
text benchmarks’ (Table 1). The first row is the baseline
performance of Llama-3B. The second and third rows show
the performance of the decoders with early- and late-phase
layers replaced, respectively. A significant performance
drop occurs when replacing early-phase layers, underscor-
ing their critical role in understanding and generation.

Evaluating encoders. During the second stage, encoders
are fine-tuned with small models 7(1,11) and 7 (16, 26).
We also train an encoder with the full-size Llama-3B as our
baseline, listed in the first row of Table 2. For each model,
T(1,11) and T (16,26), we report two results: a) perfor-
mance with their respective encoders, and b) performance
with these encoders zero-shot grafted to Llama-3B. For case
b), since Llama-3B is never trained on vision-language in-
structions, it cannot consistently follow special instructions
in benchmarks like MME [10] and POPE [25] that expect
“yes” or “no” answers by prompting with “single word or
phrase”. For these benchmarks, we prompt the model with
binary prompts, directing it to answer with “yes” or “no” to
ensure measurable responses.

Table 2 clearly shows that the encoder trained with early-
phase layers preserved model 7 (16,26) outperforms the
one with early-phase layers discarded model 7(1,11). Re-
markably, performance improves further when the encoder

captions rather than instructions.

TTo ease the benchmarking, we evaluate our instruct models on the
same benchmarks as the non-instruct models, i.e., base models, and report
accuracy produced by log-likelihood.

Encoder fine-tuned by small model 7(1,11) —>

There is no image provided. The text appears to be a collection of phrases and sentences that seem to be
related to a topic, possibly about a image or a visual element, but no actual image is included.

Input image

Encoder fine-tuned by Llama 3B

Input prompt

Based on the visual
elements captured in
this image of<|image
tokens|>, describe
the image briefly.

Pre-trained Encoder

and charming appearance.

Encoder fine-tuned by small model 7(16, 26)

Llama 3B Zero-shot grafting: failure

—> Llama3B Zero-shot grafting: success

The image shows two lambs standing side by side in a yard, with one lamb having a distinctive tuft of wool on
its forehead. The lambs appear to be in a natural setting, possibly in a farm or a rural area.

Llama 3B
The image features two sheep standing next to each other, with one sheep looking directly at the camera. The

other sheep is slightly turned away, but still visible in the scene. The sheep are standing on a dirt path, and
there is a wooden fence in the background.

fine-tuned Llama 3B

The image features two adorable baby llamas standing next to each other in a brick courtyard. They are facing

the camera, with one of the llamas looking directly at the viewer. The scene appears to be set in a zoo, as there
is a bench visible in the background. The two llamas are the main focus of the image, showcasing their unique

Figure 5. Qualitative results on zero-shot grafting capability of encoders trained with small models for Llama-3B. For comparison, we
also include responses from the encoder trained with Llama-3B and the fine-tuned Llama-3B. Response is sampled with greedy decoding.
The encoder trained on 7 (16, 26) achieves strong zero-shot transfer to Llama-3B. A — B means plugging A into B.

= ko] o

> > g = 9

o & g) = g

&2 5 2 3 <« 5 |E

o oa A 2 S &lE

> & 5 = 3 = | €

encoder fine-tuned on = & 17 = - = | &
Llama-3B 1028 81.7 542 241 429 41.8
model 7(1,11) 599 632 258 143 372 06

zero-shot grafting 540 27 253 69 263 92| |

model 7(16,26) 923 704 532 206 427 454

zero-shot grafting | 1022 80.1 53.1 23.1 566 474 |t

model 7(16,26)* | 1162 844 59.8 25.0 48.1 503

zero-shot grafting 714 223 40.7 112 342 30.1 | |
Table 2. Accuracy (%) of encoders fine-tuned by small models
for Llama-3B on VLM benchmarks. * indicates a control experi-
ment added later in the study.

fine-tuned on 7 (16, 26) is zero-shot grafted to Llama-3B,
as shown in the third row block. This improvement high-
lights that the encoder trained with 7(16,26) can produce
image features that are interpretable by Llama-3B.

In Figure 5, we present qualitative results showcasing the
zero-shot grafting cabability of the encoders trained via
T(1,11) and T (16,26). The responses enhance the above
results that replacing the early-phase layers causes the en-
coder to fail in generating image features that are directly
interpretable by the full-size Llama-3B.

Are early layers the most critical for encoder transfer?
The shallow phase of inference plays a crucial role in trans-
ferring a pre-trained encoder to the full-size target LLM.
To concretely verify this observation, we conduct a control
run based on 7 (16, 26), in which we unfreeze every other
layer before the translator and train them alongside it dur-
ing the first stage. This control experiment is designed to
disrupt the original early-phase parameters, allowing us to

completely assess their impact on encoder transferability.
We denote this modified model as 7 (16,26)*.

First, back in Table 1, the last row indicates that fine-tuning
additional layers alongside the translator leads to better per-
formance on text benchmarks. However, in Table 2, when
evaluating the encoder trained on 7 (16,26)*, we actually
observe a huge loss of zero-shot grafting ability. This sug-
gests that modifying early-phase parameters in 7 (16, 26)
enhance performance on both text and VLM benchmarks
when evaluated through itself, but fails to preserve the
encoder’s zero-shot grafting capability as the embedding
space of T (16,26)* drifts away from the target model.

How many early-phase layers should be preserved? If
retaining the original early-phase parameters is necessary,
the next question is how many layers to preserve for effec-
tive zero-shot grafting. In other words, we seek to confirm
the transition point in Figure 3 as the optimal starting point
for layer removal and translator insertion.

To ensure generalization, we conduct this ablation with
Llama-8B, where the transition point is around layer £ = 17.
To validate the transition point, we create three small mod-
els by progressively reducing the replaced layers before the
transition point: 7(6,30), 7(12,30), and 7(17,30). As
shown in Table 3, the performance of these three models on
text benchmarks corroborates our findings from Llama-3B,
demonstrating that early layers are indeed important. Keep-
ing more early layers leads to better performance, with the
best achieved by the model 7 (17, 30).

We evaluate the zero-shot grafting capability of the en-
coders trained with these three models to Llama-8B in Ta-
ble 4. Performance improves with more preserved early lay-

Encoder fine-tuned by small model 7(6,30) —>

It seems like you're having a bit of fun with the text! To answer your question, the image you're referring to is
not actually an image, but rather a text prompt. I'm here to help you with any questions or topics you'd like to
discuss. If you'd like to start fresh, feel free to ask me anything, and I'll do my best to help!

Input image

Input prompt

Based on the visual
elements captured in
this image of<|image
tokens|>, where is
the cat? And what is it
doing?

Encoder fine-tuned by Llama 8B

Pre-trained Encoder

Encoder fine-tuned by small model 7(12,30) —>

The cat is sitting on a colorful, hand-painted canvas, which is likely a wall or a piece of art. The cat appears to be
looking directly at the viewer with a curious expression, as if it is observing its surroundings.

Encoder fine-tuned by small model 7(17, 30)

Llama 8B Zero-shot grafting: failure

Llama 8B Zero-shot grafting: success

—> Llama 8B Zero-shot grafting: success

The cat is sitting on a colorful, striped cushion or couch, looking directly at the viewer with its eyes. It appears to
be relaxed and calm, possibly enjoying the comfortable seating.

Llama 8B
The cat is sitting on a yellow couch, looking directly at the camera.

fine-tuned Llama 8B
The cat is sitting on a couch, which is located in a room.

Figure 6. Qualitative results on zero-shot grafting capability of encoders trained with surrogate models for Llama-8B. For comparison,
we also include responses from the encoder trained with Llama-8B and the fine-tuned Llama-8B. Responses are sampled with greedy
decoding. More early-phase layers preserved lead to stronger zero-shot grafting capability. A — B means plugging A into B.

o % g

g ¢ 5 E

2 o = & S

s & z : & T 2

E = & & £ & g g

small model E = s | 2 a5 15
Llama-8B 68.4 80.5 79.8 61.8 77.3 81.5 854 448

T(6,30) 255 31.8 36.8 24.7 50.9 58.8 61.3 25.8

T(12,30) 254 429 40.5 29.0 59.6 62.6 694 29.6
T(17,30) 66.8 61.2 593 44.8 70.9 71.0 69.3 34.2

Table 3. Accuracy (%) of small models for Llama-8B on text
benchmarks.

2 0F 2 . % |2

¥ 4 2 2 5 &|E

s 5§ 2 5 3 2|5

encoder fine-tuned by = & wn = a3 =2|&a
Llama-8B | 1165 84.7 57.5 232 47.6 449
model 7(6,30) 583 733 258 89 224 86

zero-shot grafting 767 20.6 309 134 28.1 -1
model 7 (12, 30) 983 779 269 13.6 29.1 043

zero-shot grafting | 1022 81.7 50.7 205 479 454 |t
model 7(17,30) | 1041 81.3 554 209 420 49.7

zero-shot grafting | 1044 83.4 56.1 252 56.8 535 | 1

Table 4. Accuracy (%) of encoders fine-tuned by small models
for Llama-8B on VLM benchmarks.

ers, showing particularly strong results when retaining all
early-phase layers before the transition point in 7 (17,30).

Figure 6 depicts a qualitative example demonstrating the
zero-shot grafting capability of three trained encoders. As
expected, the encoder trained by the model 7(6,30) fails
to generate readable image features for Llama-8B as most
of the early-phase layers are removed. The encoder trained
by T (12,30) performs better, but its image features lack
fine-grained detail (e.g., no couch in response), which ex-
plains the zero-shot performance gap in Table 4. The en-

coder trained by 7 (17,30) generates more detailed and ac-
curate image features, achieving the best zero-shot grafting
response among the three, which covers the cat’s color, ex-
pression, eye direction, position, the presence of a couch,
and even the atmosphere.

In summary, our entire analysis of the prediction trajec-

tory reveals:

» The early phase“ plays a pivotal role in the encoder’s
transferability to the target LLM.

 Retaining the original parameters of the early phase is
critical for maintaining the encoder’s zero-shot graft-
ing capability.

* The transition point in Figure 3 is a good starting point
for late-phase removal and translator insertion.

“We believe the early phase of LLMs has potential beyond building
surrogate models, enabling more creative applications.

Based on these three key findings, now we define the model
T (16,26) as our surrogate model for Llama-3B, the model
T(17,30) as our surrogate for Llama-8B, by inheriting the
early-phase layers and replacing the late-phase layers with
a translator, which can be fine-tuned with a small set of text
instructions, e.g., 500K for one epoch.

2. Generalizing to Giant Models

Having validated our approach at relatively small scales, we
now expand our methodology to construct surrogate mod-
els for giant LLMs — Llama-70B. In this section, our ex-
periments demonstrate two key advantages of our surro-
gate approach: First, surrogates can bring a strong zero-
shot grafting ability to encoders, enabling them to trigger

Input image

Encoder fine-tuned by surrogate 7(40, 78)

can you write two funny Haiku poems for this
image? One is about the subject with fine-
grained details, and the other is about how the

%

Llama 70B Zero-shot grafting: success

is this a sad picture?

No, this is not a sad picture. The image depicts a playful

Haiku 1: Fine-grained details
Fuzzy sheep in foam

Bubbles dance upon its back
Playful, fluffy friend

Input prompt

Based on the visual
elements captured in
this image of<|image

> . . .
tokens|>, Green and white swirl mix

Frothy, bubbly, joyful scene
Sheep in soapy sea

subject vividly interacts with the background.

Haiku 2: Interaction with background

and whimsical scene featuring a black sheep figurine
surrounded by green, bubbly soap suds. The sheep's
facial expression appears cheerful and friendly, adding
to the lighthearted and humorous tone of the image.

guess what I'm doing now?

I'm currently taking a bubble bath, surrounded by
green, foamy water and a cute, black sheep toy floating
nearby.

Figure 7. Qualitative results on strong zero-shot grafting ability of surrogate-trained encoder for Llama-70B, which produces fine-
grained image features to trigger Llama-70B to perform complex visual understanding tasks. Response is sampled with greedy decoding.

target LLMs to perform visual understanding tasks without
additional training. Second, training target LLM decoders
on surrogate-trained encoders significantly reduces cost by
providing a warm start for fine-tuning.

2.1. A Surrogate for Llama-70B

We analyze the prediction trajectory for Llama-70B in Fig-
ure 3 to identify the transition point that marks the end of
token processing, which occurs around layer ¢ = 40. Then
we keep the first (¢ = 0) and last layer ({/ = 79), insert a
translator at £ = 40, and remove the late phase from ¢ = 41
to £ = 78, to build a 37B surrogate 7 (40, 78). Text bench-
mark results of this surrogate are shown in Table 5, and
VLM benchmark results in Table 6. Table 6 shows the per-
formance of the encoder trained using surrogate 7 (40, 78)
on VLM benchmarks, highlighting a significant improve-
ment through zero-shot grafting. These experiments show
that our approach can be scaled up to giant models, holding
the same principles of early phase preservation.

2.1.1. Results: Zero-shot Grafting

In Table 7, with encoder-only training, our surrogate out-
performs the full-size Llama-70B on most VLM bench-
marks, except for VisWiz. This demonstrates the effec-
tiveness of our surrogate models. The last row shows the
performance of zero-shot grafting the surrogate-trained en-
coder into Llama-70B. Notably, the performance of zero-
shot grafting surpasses the full-size Llama-70B decoder
training on some benchmarks by a big margin, demonstrat-
ing that our surrogate-trained encoder effectively prompts
LLaMA-70B to handle complex visual understanding tasks.

Figure 7 presents qualitative results showcasing the strong
zero-shot grafting capability of our surrogate-trained en-
coder, including questions about creativity, negation, and

Input prompt

Input image

Based on the visual elements captured
in this image of<|image tokens|>, what
is the text in the image? And where is it?

The text in the image reads "Press In!"
and is located at the bottom of the
screen.

Figure 8. Qualitative OCR results on strong zero-shot grafting
ability of surrogate-trained encoder for Llama-70B. The input im-
age size is 336°.

9 g
k]

e & g o

= 2 g S

= 7 z = en o 2

= < & £ o) = =

g = $ 3 =l s 5 o
o) 2 2 g =2 3 Q.

small model g =]] 2 & =5 15

Llama-70B | 82.6 86.9 83.4 71.2 854 83.7 89.1 47.6
surrogate-37B | 80.8 704 67.3 56.6 779 739 869 37.8

Table 5. Accuracy(%) of surrogate model for Llama-70B on text
benchmarks.

e 2 8

o5 3 = g

&g 5 2 3 <« 5 |E

o od & 2 T K=

S5 8 £ 3 Z¢

encoder fine-tuned on = & v = a = | &
Llama-70B | 1294 834 59.8 27.0 45.6 58.8
surrogate-37B | 1287 84.8 642 29.6 542 59.5

zero-shot grafting | 1315 86.1 64.1 374 59.7 60.7 | t

Table 6. Accuracy (%) of encoder fine-tuned by surrogate for
Llama-70B on VLM benchmarks.

reasoning. Additionally, Figure 8 demonstrates its effec-
tiveness on OCR tasks, showing that our surrogate models
are able to squeeze robust and detailed visual information
into encoders.

While the surrogate-trained encoder enables zero-shot con-
version of the giant LLM into a VLM, its performance still

MMEgpinary MME POPEpinary POPE SEED-Bench MM |LLaVA | MMB CV-Bench GQA | Vis-

training method | cog perc | cog perc | acc. fl |acc. f1 all img vid |-Vet| -Wild | en 2d 3d avg Wiz
Llama-70B decoder | 327 1545| 345 1524|849 83.1|84.8 829 |63.6 689 43.7|35.5| 675 | 71.8 | 61.8 73.3 67.5| 62.4 |53.0
Llama-70B encoder | 285 1294 288 1321 83.4 82.6|82.7 81.2|59.8 654 38.6|27.0| 456 58.8 162.2 594 60.8| 544 |47.4
surrogate-37B encoder | 312 1329| 291 1250| 85.5 83.9 (86.3 85.0(659 71.1 46.2(28.8| 54.3 63.1 | 64.7 64.0 64.3] 56.5 |22.7
zero-shot grafting | 295 1348| 303 1298 | 86.8 86.1 | 87.0 86.4 | 65.4 70.7 453|328 | 689 | 656 |63.2 672 652|519 |40.0

Table 7. Accuracy (%) for Llama-70B on VLM benchmarks. The bold numbers indicate the best performance between the full-size
decoder training and our surrogate-trained encoder by zero-shot grafting. A special clarification for LLaVA-Wild is in Sec. A.9.

avg. | MMEpinary MME POPEpiy,y POPE SEED-Bench MM |LLaVA | MMB CV-Bench GQA | Vis-

method | X% | score | cog perc | cog perc|acc. fl |acc. fl all img wvid |-Vet| -Wild | en 2d 3d avg Wiz
baseline | 10 | 0.5127 | 301 1178|333 1139|745 73.1|743 73.9[46.0 49.2 34.1|17.7| 304 | 45.6 | 524 61.7 57.1| 454 |43.9
20 | 0.5153 | 255 1061|277 1116|71.4 61.1|71.6 613|522 555 39.5|20.6| 413 | 583 |56.6 66.8 61.7| 475 |38.5

30 [0.6277 | 314 1447 316 1399|855 84.8 855 84.8|59.8 64.8 40.9|30.8| 579 | 66.8 | 60.6 71.1 659 | 57.1 |55.1

60 | 0.6444 | 353 1511|358 1515|84.8 83.1|84.4 824|624 679 41.5|324| 645 | 709 |61.5 722 66.8| 61.3 | 48.1

100 | 0.6538 | 327 1545|345 1524|849 83.1|84.8 829|63.6 689 43.7|355| 675 | 71.8 |61.8 733 67.5| 624 |52.9

grafting - 10.6259 | 295 1348| 303 1298| 86.8 86.1 | 87.0 86.4|654 70.7 453|328 | 68.9 65.6 | 63.2 67.2 652|519 |40.0
ours | 10 | 0.6612| 340 1404 | 342 1430|87.3 86.8 |84.9 82.7|67.1 7277 459 |37.6| 69.7 | 709 | 66.6 70.6 68.6| 60.1 |57.9

20 | 0.6701 | 369 1435| 361 1486|86.7 85.6|86.4 849|672 72.8 46.0|388| 70.5 | 73.2 | 65.7 74.8 70.3 | 60.6 |52.4

30 [0.6704 | 374 1449| 349 1490|879 87.7|86.8 85.5|67.0 72.0 47.8|389| 693 | 739 | 66.6 72.8 69.7| 61.4 | 49.2

Table 8. Convergence comparison with using X% of training data between baseline and our surrogate training approach for Llama-70B
decoder training. The gray row indicates the results (training hours) reported in the Table 9 with 20% of training data for ours.

lags behind that of full-size decoder training. What benefits
can we expect from this surrogate-trained encoder? Next,
we demonstrate that it can accelerate training convergence
and improves the performance of full-size decoder training.

2.2. Reducing Full Decoder Training Cost

In the previous sections, we conduct the experiments with a
two-stage training strategy, where we simultaneously train
the vision adapter in encoder and the translator in decoder
during the first stage, and then fine-tune the encoder atop the
surrogate in the second stage. Currently, we are interested in
training the full-size decoder, which is the final third train-
ing stage. First, we introduce the training setup, and recipes
are introduced in Sec. A.5.

Models. As in previous sections, we use the CLIP-L/14 en-
coder with an input image size of 3362. The vision adapter
is a two-layer MLP, consisting of consecutive linear layers
with a GELU activation in between. Notably, we maintain
a fixed vision adapter size across all model scales, unlike
prior works [6, 23] that scale it with model size. This de-
sign choice ensures that variations in adapter size do not
introduce unknown effects on the encoder’s zero-shot graft-
ing capability, allowing for a controlled initial study. For
state-of-the-art performance, however, the vision adapter
can be scaled up with the model size. The decoders are our
surrogate-37B, i.e., 7 (40, 78), and full-size Llama-70B.

Data. In the third training stage, the training data is still the
same as in the previous two stages — the LLaVA-1.5-665K
[26] instructions (without text-only samples). This choice
is based on the following considerations:

1) The first training stage focuses on the adapter and trans-
lator. Commonly, vision adapters are trained on captions in-

stead of instructions, but we found no significant difference
in experimental outcomes. Thus, to simplify training, we
merge the training of the vision adapter and translator into
a single stage using vision-language and text-only instruc-
tions. When forwarding the text-only instructions, gradients
backpropagated to the vision adapter are zero.

2) The second stage trains encoders with surrogates, aiming
to efficiently compress data into encoders while preparing
to transfer knowledge to the full-size decoder. To ensure
consistency, we use the same training data for the second
and third stages. It is recommended to use larger and more
diverse datasets for those two stages.

2.2.1. Results: Convergence and Training Cost

In Table 8, we compare performance of the typical baseline
method and our surrogate training approach across differ-
ent percentages of training data used for training decoders.
The baseline trains Llama-70B with the original CLIP en-
coder, while ours trains it with our surrogate-trained en-
coder (the third row in Table 7). First, the gray row rep-
resents the performance of zero-shot grafting the surrogate-
trained encoder to Llama-70B, which nearly matches the
baseline with 30% of the data. Second, after training on just
10% of data, our approach achieves nearly the same perfor-
mance as the baseline with 100% of the data, except for
MME. For other benchmarks, our 10% performance even
outperforms the final baseline result. With continued train-
ing, performance remains unchanged, suggesting saturation
after 20% of the data. In Figure 2, we plot the normalized
average score of each X% data utilization for our method
and baseline.

We also visualize Table 9 in Figure 2 for a direct compari-
son of training hours for each training stage. First, our pre-

training time is longer than the baseline because we train
both the vision adapter and the translator with additional
text instructions. However, the key advantage of our surro-
gate training approach is seen in the decoder training, which
is the real bottleneck in common methods. With 20% of the
data used for our decoder training, we achieve a training
cost reduction of ~45%. This reduction is the minimum, as
our performance in the 10% case already exceeds the final
result of the baseline, as shown in Table 8.

method ‘ # gpu ‘ pre. ft. enc. ft. dec. total hours

128 | 700 000 2788 34.79

128 9.36 4.25 5.56 19.17

Table 9. Training hours comparison between baseline and our
surrogate approach for training VLMs with Llama-70B, includ-
ing the time for pretraining (pre.), fine-tuning encoder (ft. enc.),
and fine-tuning decoder (ft. dec.). Checkpoint loading and saving
times are excluded. More details in Sec. A.4.

baseline
ours

3. Related Work Overview

Understanding LLMs is a key topic in mechanistic inter-
pretability [35]. [1] uses linear classifiers (probes) to un-
derstand the dynamics of intermediate layers in neural net-
works. For LLMs, [32] directly employs the output em-
bedding matrix as a probe to classify layer-wise representa-
tions, illustrating how input tokens shift from current posi-
tions to next ones. Tuned Lens [3] extends this idea with a
trainable probe for broader applicability to modern LLMs.
[36] conceptualizes transformer layers as “painters” that
iteratively refine representations and suggests that middle
layers share the same representation. In contrast, we iden-
tify two distinct transition phases in LLMs.

The shared representation in middle layers suggests redun-
dancy. [36] further concludes that some middle layers can
be removed without a significant performance drop. Prun-
ning LLMs largely is based on such insight of redundancy.
Notably, both [12] and [30] found that deep layers are not
essential and can be removed. Interestingly, our surrogate
models also replace deep layers in the late phase. However,
our method differs in how we identify the transition point
and in our objective. Unlike prunning, which aims to re-
move layers while preserving performance, our focus is on
the efficiency of surrogate models for encoder transferabil-
ity. While our surrogate models consistently underperform
compared to their target LLMs, they serve a distinct purpose
in producing efficient encoders for VLMs.

Our surrogate-trained encoders can directly prompt target
LLMs to generate the expected responses without any fine-
tuning. This zero-shot grafting ability aligns with the con-
cept of steering LLMs, a lightweight alternative to fine-
tuning LLMs [14, 19]. Prior works show that language
models can be guided to perform specific tasks without ex-
tensive fine-tuning. Similarly, in our case, image features

from surrogate-trained encoders act as steering tokens, en-
abling target LLMs to interpret visual content and answer
various complicated questions.

This capability provides a warm start for further decoder
fine-tuning, helping to mitigate the expensive training cost
of VLMs [2, 6, 24, 39, 41, 42]. The costs surged as decoder
sizes scale from relatively small models (3B, 8B) to much
larger ones, such as 70B [23], 110B [21, 27]. Additionally,
increasing the number of image tokens for high-resolution
inputs further escalates the computational burden. LoRA
[16] could be applied for training VLMs. While LoRA im-
proves efficiency, it underperforms full fine-tuning, espe-
cially in giant LLMs, when applied with small rank (e.g.,
8) and alpha (e.g., 32) to query and key decoder layers — a
common practice in LLM training. Closing this gap needs
applying LoRA to entire transformer layers with large rank
and alpha (e.g., rank 128 with alpha 256 as in [23] for 13B
decoder training). Then LoRA takes about the same time as
full decoder fine-tuning. This limitation likely explains why
current VLMs still rely on full decoder fine-tuning. Criti-
cally, contrasting to our surrogate training approach, LoRA
does not accelerate convergence. See more in Sec. A.2.

Additionally, the idea of using small models to train en-
coders before applying them to larger decoders has been de-
picted in [18]. However, this work is not directly related to
ours, as it employs a progressive multi-stage training strat-
egy to just scale up model size and refine image processing
from coarse to fine. No further details are provided on this
method, leaving it unclear how it reduces costs. In con-
trast, our approach provides a well-defined framework for
constructing efficient surrogate models specifically tailored
for any target LLM. Plus, we plug the surrogate-trained en-
coders directly into their target LLMs, converting them into
VLMs without any fine-tuning to perform complex visual
understanding tasks. Further, with our surrogate-trained en-
coders, the decoder needs only a few full-scale fine-tuning
steps to achieve the desired performance.

4. Conclusion

In this work, we show that vision encoders trained with our
surrogate models can accelerate VLM training. We also
note that our surrogate models are not limited to vision en-
coders. The main limitation of our approach is the need for
a well-designed surrogate, which ideally should be small.
Although our layer-dropping strategy works in principle for
any LLM, resulting models are still half the size of their
target LLMs, for example, our surrogate-37B for Llama-
70B. This underscores the practical value of surrogate mod-
els and highlights the need for ways to create them more
efficiently and with better compression.

A. Appendix
A.1. Ablation on Teacher-Forced Feeding

In Section 1.1, the curves in Figure 3 are produced using
teacher-forced feeding to obtain the model’s predictions.
Specifically, we feed 300 randomly sampled pairs of ques-
tion and response into the model and examine the interme-
diate feature dynamics. A potential concern is that this
teacher-forced manner with real-world text samples may
not accurately represent the model’s natural feature dynam-
ics, as it assumes perfect reconstruction of the sequence.

To validate our findings, we prompt models with 300 ran-
dom questions and allow them to predict responses through
greedy sampling. Then we feed these predictions back into
the models and find that the resultant curves remain con-
sistent with those obtained from the forced-prediction ap-
proach in Figure 3.

A.2. Comparing with LoRA

It is reasonable to ask whether applying LoRA [16] to full
decoder training could reduce training costs enough to elim-
inate the need for our surrogate training approach. We eval-
uate this by applying LoRA to the full Llama-70B decoder
training with the same setup as the experiments in Section
2.2. LoRA is applied to query and key layers in all trans-
former blocks, with rank 8 and alpha 32, following a com-
mon configuration [16] for tuning LLMs. Each training step
takes an average of 14.2 seconds, including data loading
and optimizer steps. Indeed, LoRA training is faster than
full parameter fine-tuning, as shown in Figure 2.

However, LoRA cannot reduce training costs as effectively
as our surrogate training approach because it does not im-
prove convergence speed. This happens for two reasons:

1) LoRA is designed for fine-tuning an already well-trained
model, where the target distribution is mostly aligned. For
example, fine-tuning a language model on a new text cor-
pus. In contrast, VLM training aims to transform a language
model from a text-only space to a vision-language space.
Since LoRA only modifies a small number of parameters,
it struggles to adapt the language model to vision features,
leading to suboptimal performance.

2) LoRA reduces trainable model parameters, but not the
total training steps. Conversely, our surrogate training ap-
proach speeds up the decoder training convergence by the
surrogate-trained encoder, reducing overall training steps.
By addressing optimization efficiency rather than just pa-
rameter count, our method is fundamentally more effective.

A.3. Language Degradation in Decoders

A common issue in VLM training is that the language de-
coder underperforms on text benchmarks after training with
vision-language instructions. This degradation is due to the

model’s focus on vision-language tasks, which can lead to a
loss of language understanding. The common solution is to
mix the text corpus with vision-language instructions during
training to mitigate this issue. For our surrogate training ap-
proach, we are interested in whether it could help alleviate
this issue.

< 5

o 5 B gz
= < (=]

5 . 2 E S| E

z %z 7 3 &2 _ g 2|5

E F ¢ ¢ g g 8 8 |

model g = s] 2 a 2B o | &
Llama-70B | 82.6 86.9 834 712 854 83.7 89.1 47.6

ours | 82.5 86.6 84.2 719 853 84.1 89.7 478 | -
baseline | 79.4 84.8 789 69.5 84.6 83.6 87.5 502 | |
Table A.1. Accuracy(%) of 70B decoders from the final training
stage of our surrogate approach (ours) and baseline method on text
benchmarks.

In Table A.1, we compare the accuracy of the 70B decoders
from the final training stage of our surrogate approach and
the baseline method on text benchmarks. Our decoder re-
tains language performance, matching or even slightly sur-
passing the original Llama-70B. In contrast, the baseline
method suffers a significant drop in performance on most
benchmarks, including MMLU, HellaSwag, ARC, Wino-
grande, and BoolQ.

This is because our surrogate approach fine-tunes the full-
size decoder with a few steps on our surrogate-trained en-
coder, which is already aligned with the LLM’s embedding
space. This alignment prevents the decoder’s representation
from drifting too far, preserving its language understanding.

A 4. Training Time for Llama-70B

The bottleneck in training Llama-70B is not only the GPU
card, but also the network bandwidth for communication.
In our experiments, we use 128 A100-80G GPUs with AWS
EFA network. We shard the 70B parameters across 16 GPU
ranks, and the replica group size is 8 using PyTorch FSDP
[46]. The batch size is also 128, which means each training
step requires communication among all GPUs for forward
and backward propagation, without gradient accumulation.
The NCCL communication is AWS EFA®. For reference of
training a full 70B model, the average forward time is 4.5
seconds, and the average backward time is 15.7 seconds.
Thus, the total average time of each training step is ~20.5
seconds, including the data loading time and optimizer step.

A.5. Training Recipes

In the analysis experiments of Section I, we train the en-
tire encoder with surrogate models for one epoch during the
second training stage. In contrast, the main experiments in
Section 2 follow a different setting: only the last eight lay-
ers of the encoder are trained for one epoch, using either

8Introduction of Amazon Elastic Fabric Adapter (EFA).

https://aws.amazon.com/hpc/efa/

surrogate-37B or full-size Llama-70B, while the remaining
layers are frozen. This setting is also applied to the base-
line method. Aside from this difference, all other training
recipes remain the same. Next, we provide a detailed de-
scription of the training recipes.

We apply the chat template specific to each LLM, including
any special chat tokens, to the input conversations. For in-
stance, the dialog shown in Figure 6 starts as raw text; after
applying the chat template, it becomes:

<|begin_of_text|><|start_header_id |>user<|end_header_id|>\n\nBased
on the visual elements captured in this image of<|image tokens|>,
where is the cat? And what is it doing?<| eot_id |><|start_header_id |>
assistant<|end_header_id|>\n\nThe cat is sitting on a couch, which is
located in a room.<|eot_id|>

In VLM training, cross-entropy loss for next-token predic-
tion is typically applied only to the green tokens in re-
sponses. The special token eot_id marks the end of a con-
versation turn, while all other tokens are masked out. How-
ever, we found that during encoder-only training, the loss
should also be applied to the blue special tokens. Without
this adjustment, the encoder struggles to properly follow
question instructions and generate desired responses, both
in zero-shot grafting senarios and when paired with surro-
gate models. For Llama-70B, along with their surrogates,
we fully fine-tune all parameters during decoder training.
Hyper-parameters are in Table A.2.

A.6. Evaluation Benchmarks

We evaluate VLMs following LLaVA-1.5 [26], including
MME [10], POPE [25], SEED-Bench [20], MM-Vet [43],
LLaVA-in-the-Wild [28], MMBench [29], GQA [17], and
Viz-Wiz [13] using 1lmms-eval toolkit [22]. Our evalua-
tion setting also contains a vision-centric benchmark — CV-
Bench [39]. We evaluate LLMs and our surrogate language
models on MMLU [15], HellaSwag [44], ARC [8], Wino-
grande [34], PIQA [4], BoolQ [7], and OpenBookQA [31]
using lm-harness toolkit [11]. The few-shot setting
and the type of reported accuracy for text benchmarks in
1m-harness is shown in Table A.3.

9 g

on % g 2

<) = [}

3 2 = S

= 12 Z = o0 o Ra)

—_— < < =] < —_— =

g = S S .8 o e 8

g <=]] z 2 RS 15

number of shots 5 10 0 25 5 0 0 0
acc. type - norm norm norm - norm - norm

Table A.3. Few-shot setting for text benchmarks in Im-harness.
For accuracy type, “norm” refers to length-normalized accuracy.

A.7. Surrogate Training for Smaller Models

For interested readers, we share our experience applying
our surrogate training approach to smaller language mod-
els, such as Llama-3B and 8B, compared with Llama-70B.

Before diving in, our key takeaway is: our surrogate train-
ing approach is most effective for giant LLMs. The larger
the LLM decoder and the training data scale in VLMs, the
greater the cost reduction our method achieves.

Applying this approach to relatively small LLMs is unnec-
essary, two reasons:

a) Their training costs are already affordable nowadays.

b) It introduces additional hyper-parameters with minimal
cost savings.

This section serves purely as a discussion, as our experi-
ments revealed some interesting yet unverified observations.
We share these findings to provide insight into potential lim-
itations and edge cases of our method, which may inform
future research.

When applying our surrogate training approach to Llama-
3B and 8B, we observe performance degradation in the third
training stage, particularly on benchmarks requiring short
answers (e.g., “yes” or “no” in MME and POPE) or single
words/phrases (e.g., GQA and VizWiz). The initial thought
is that we may encounter the overfitting issue since we use
the same LLaVA-1.5-665K instructions for all the training
stages.

After further investigation, we find that the performance
degradation is not due to overfitting. Instead, our surrogate
is highly effective at training encoders with strong zero-shot
grafting capability in the second training stage. Then in the
third stage, the encoder triggers the target LLM to gener-
ate responses that already align with the training data dis-
tribution, resulting in lower-than-expected loss, especially
for short answers or single words/phrases. This issue arises
from how loss is mean-reduced in a batch — by dividing
the total loss by the number of tokens involved (e.g., green
tokens in responses). As a result, the loss from short an-
swers is overwhelmed by that of longer answers, such as
open-ended responses with hundreds of tokens, leading to
insuffcient gradient updates for short answers.

To address this issue and verify our hypothesis, we ad-
just the loss calculation to consider the number of tokens
in responses. Specifically, we multiply the loss for each
response group by a dynamic loss weight to balance the
loss contributions from different response lengths within a
batch. Asume the length of the i-th response is L; and the
total number of responses in a global batch is N across all
ranks. The dynamic loss weight for the ¢-th response is cal-
culated as:

)ord w;
, Wi < N N .
(Zj:l wj)/(Zj:I Lj)

We then scale the loss for all tokens in the i-th response by
w;. Figure A.1 illustrates how this weighting adjusts based
on the maximum response length in a batch. In our exper-

w, = [L) L
log L;

recipes stage-1 stage-2 stage-3
encoder CLIP-L/14-336px
decoder Llama-3.2-3B, 3.1-8B, 3.1-70B instruct version
adapter in encoder Linear - GELU — Linear
translator in decoder transformer layer
trainable parameters |adapter + translator |encoder + adapter|encoder + adapter + decoder 10 3
learning rate le-4 5e-5 2e-5 for 70B, 5e-5 for others © —— max length = 30
batch size 256 128 Il —— max length = 300
instruction datasets | GenQA[5]-500K LLaVA-1.5-665K © 2.5
LLaVA-1.5-665K (ShareGPT-40K not included) 54
translator layer index 16 for Llama-3B, 17 for Llama-8B, and 40 for Llama-70B ﬁ
image input size fixed size of 3362 pixels s 2.0
image augmentation pad to input size with per-channel mean pixel value e
number of A100-80G 16 (Llama-3B, -8B) and 128 (Llama-70B) 2 1.5
warmup ratio 3% of total batch iterations g
Ir scheduler cosine annealing with Ir_min = 0 n
optimizer AdamW(31 = 0.9, B2 = 0.999, eps = 1e-8) 8 1.0
weight decay 0 = 5 20 40 60 80 100
gradient clip max-norm = 1.0 with 2-norm Sequence length
epochs 1
precision bfloat16 Figure A.1. Dynamic loss weights for balancing
PyTorch FSDP enabled loss contributions from different response lengths
gradient accumulation enabled in a global batch. Multiple curves represent differ-
activation checkpointing enabled ent maximum response lengths in a batch, gradually

Table A.2. Training hyper-parameters, recipes and settings.

65.0

o
o
=)

62.5

o
N
n

£60.0

g
o ©60.0
©57.5 o
b b
%55.0 %57 5
525 955.0
< <
50.0 -@- Ours 52.5 / -@- Surrogate (Ours)
475 é;f;?ﬁhm W~ Baseline o0 . B Surrogate (Distilled)
0 20 40 60 80 100 T o 20 40 60 80 100

Training data utilization (%) Training data utilization (%)

Figure A.2. Training cost comparison among our surrogate train-
ing approach, baseline method, and training with distill models as
surrogates for Llama-3B and 8B.

iments, we set ord = 0.5. With this adjustment, we solve
the performance degradation issue and achieve comparable
performance to the baseline method, as shown in the left
subfigure of Figure A.2. We believe dynamic loss weight-
ing is not the only solution. The issue could be addressed by
using more diverse, larger-scale datasets in the second and
third stages, unlike the single small set of vision-language
instructions used in our experiments.

A.8. Distilled Model as Surrogate

In some LLM families, such as Llama [9] and Gemma
[37], they distill small models (Llama-1B) with large ones
(Llama-8B). We investigate whether these distilled models
can serve as surrogates for training encoders. The core issue
with using distilled models as surrogates is that they have
different embedding dimensions from the larger models. So
additional training stage is required to align the embedding

11

increasing from 30 to 300.

dimensions, e.g., with a linear layer. We conduct the exper-
iments on Llama-1B and 8B, treating Llama-1B as a surro-
gate model. The extra training stage is added between the
second and third stages, where we fix the surrogate-trained
encoder and other parameters, only training the linear layer
to align the embedding dimensions. In the right subfigure
of Figure A.2, we compare the performance of the distilled
model as a surrogate with our surrogate training approach
using the same training setup, including the ord = 0.5 dy-
namic loss weighting. The distilled model as a surrogate
performs worse than our surrogate training approach, indi-
cating that distilled models are not ideal surrogate choices
for our method.

A.9. Performance Drop on LLaVA-Wild

Our models and the baseline model both score lower on the
LLaVA-in-the-Wild [28] than the official scores reported in
LLaVA-1.5 [26], appearing in Tables 7 and 8, as well as
in the ablation studies in Section 1. This drop is expected
due to a change in the GPT-4 API model version in the jud-
ing process. LLaVA-1.5 uses GPT4-0314, which has been
deprecated. Instead, the evaluation toolkit Ilmms-eval uses
GPT4-0613, which systematically results in lower scores
across all models. For example, LLaVA-1.5-7B drops from
65.3 to 59.6, and LLaVA-1.5-70B from 72.8 to 66.1. For
more details, please refer to README.md’ in 1mms-eval
repository.

?Imms-eval - Comprehensive evaluation results of LLaVA family
models.

https://docs.google.com/spreadsheets/d/1a5ImfdKATDI8T7Cwh6eH-bEsnQFzanFraFUgcS9KHWc/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1a5ImfdKATDI8T7Cwh6eH-bEsnQFzanFraFUgcS9KHWc/edit?gid=0#gid=0

input question | response of model 7(1,16)

response of model 7(16,24)

Which one is larger, the cat or the dog?
1 is larger than 10, is it correct?

Happy birthday to you!

Ilove you.

The cat is larger than the dog.
No, 10 is not larger than 1.
Happy birthday to you!

I’'m glad to hear that. I'm here
to help you with any questions
or tasks you may have.

The dog is larger.

The statement is not true. The number 1 is less than the number 10.
Thank you for the birthday greetings! I am happy to celebrate with you.
I am an Al language model and do not have personal feelings or
emotions. However, I can provide you with information and assistance in
your own way.

1, 2, 3, 4. Count the next three numbers. 1,2,3,4 1,2,3,4,5,6,7,8,9, 10
What is 100 + 13 =7? 100+ 13=113 100+ 13 =125
Calculate 2 *10.2=? | 2*10.2=20.4 2%102=224
Calculate 1 + 10 =7 1+10=11 1+10=20
Is 8.11 > 8.3? No, 8.11 is not greater than 8.3. | Yes, 8.11 > 8.3.

Table A.4. Simple ability assessment for two small models of Gemma-2B. The model 7 (1, 16) means the trained translator replaces the
early transition phase, while 7 (16, 24) replaces the late phase. Response is sampled with greedy decoding.

A.10. Different Abilities in Two Transition Phases

In our initial experiments with Gemma-2-2B for Section 1,
we observe that different abilities emerge in the two transi-
tion phases of the model.

Gemma-2B has 26 layers and its transition point is at layer
16, as shown in Figure 3. We construct two small models
by replacing transition phases with a translator: 7 (1,16) to
replace the early phase, and 7 (16,24) to replace the late
phase. As in the ablation studies of Section 1, we train the
translator for one epoch in the first training stage. When we
prompt these two small models with the same question, we
find that 7 (16,24) and 7(1,16) exhibit different abilities
in their responses.

In Table A.4, we show the responses of both models to a set
of questions. The first block includes simple questions that
test basic common sense reasoning, factual recall, and con-
versational coherence. Model T (16,24) performs well on
these questions, in which the early phase is preserved. It can
correctly answers that the dog is larger than the cat, provides
a coherent response to the birthday greeting, and appropri-
ately declines the love confession as an Al model. Addi-
tionally, it follows the instruction to count the next numbers
but misinterprets how many to include. In contrast, model
T(1,16) struggles with these questions, in which the late
phase is preserved. This suggests that:

a) Common sense reasoning, factual knowledge, and con-
versational abilities are primarily stored in the early-phase
parameters.

b) Despite training the translator in 7(1,16), it may not
fully recover the model’s knowledge, possibly due to its
limited capacity with fewer parameters than the full model.

The second block of questions tests the model’s ability
to perform basic arithmetic calculations and comparisons.
Conversely, 7(1,16) correctly handles even floating-point
multiplication, while 7 (16,24) fails entirely. This suggests
that arithmetic computation and numerical comparison are
primarily handled by the late-phase parameters.

12

F10.0 125
o 10.0
w 7.5
f= 7.5]!
g sof .‘
= 5.0(18
- \ l
Y o5
T 2.5
<
005 10 15 20 25 %% 6 12 18 24 30

Layers in Gemma-3-1B Layers in Gemma-3-4B

?12'5 } 10.0
o-10.04H}!
w 7.5
£ 75l |
[} i\
O 5.0 ‘ 30
% 5.0 27 {
7 !
u 25
o 25 ' 2
-
X 0.0l 0.0
"0 8 16 24 32 40 47 "0 10 20 30 40 50 60

Layers in Gemma-3-12B Layers in Gemma-3-27B

Figure A.3. The trajectory of prediction across different layers
of 1B, 4B, and 12B, and 27B instruct models from Gemma-3. The
arrow marks the transition point where the trajectories of 300 ran-
dom samples converge.

A.11. Prediction Trajectory of Gemma-3 Family

In Figure A.3, we plot the prediction trajectory across dif-
ferent layers of Gemma-1B, 4B, 12B, and 27B instruct
models from Gemma-3 [38] using 300 random sequences.
Despite Gemma-3 using sliding window attention, its pre-
diction trajectory follows a similar pattern to Llama-3. The
trajectory converges at a transition point, marking the shift
between early and late phases of the model. We highlight
the transition point for each model. As the figure shows,
the early phase becomes increasingly spiky as model size
grows in the Gemma-3 family, while the late phase remains
smooth and stable.

We believe Eq. 4 generalizes across different LLM families
and that our surrogate training approach can be applied to
Gemma-3 using the same procedure as Llama-3.

Acknowledgements

We sincerely appreciate Meta’s support in providing GPUs
for our experiments. This work was supported by DAPRA
TIAMAT, the ONR MURI program, the National Science
Foundation (IIS-2212182), and the NSF TRAILS Institute
(2229885). Commercial support was provided by the Ama-
zon Research Award program, Open Philanthropy, and Cap-
ital One Bank.

Disclaimer

The image-based training data was used only to train vi-
sion encoders to produce image features, not any generative
components.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Guillaume Alain and Yoshua Bengio. Understanding Inter-
mediate Layers Using Linear Classifier Probes. In ICLR,
2017. 8

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katherine Millican, Malcolm Reynolds, et al. Flamingo: a
Visual Language Model for Few-Shot Learning. In NeurIPS,
2022. 8

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi,
Igor Ostrovsky, Lev McKinney, Stella Biderman, and Jacob
Steinhardt. Eliciting Latent Predictions From Transform-
ers With the Tuned Lens. arXiv preprint arXiv:2303.08112,
2023. 3,8

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. PIQA: Reasoning about Physical Commonsense in
Natural Language. In AAAI 2020. 10

Jiuhai Chen, Rifaa Qadri, Yuxin Wen, Neel Jain, John
Kirchenbauer, Tianyi Zhou, and Tom Goldstein. GenQA:
Generating Millions of Instructions from a Handful of
Prompts. arXiv preprint arXiv:2406.10323, 2024. 2, 3, 11

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen,
Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu,
Lewei Lu, et al. InternVL: Scaling up Vision Foundation
Models and Aligning for Generic Visual-Linguistic Tasks.
In CVPR,2024. 7, 8

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom
Kwiatkowski, Michael Collins, and Kristina Toutanova.
BoolQ: Exploring the Surprising Difficulty of Natural
Yes/No Questions. In ACL Anthology, 2019. 10

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord.
Think you have Solved Question Answering? Try ARC, the
AI2 Reasoning Challenge. arXiv preprint arXiv:1803.05457,
2018. 10

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The
Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783,
2024. 1, 11

13

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, Ke
Li, Xing Sun, et al. MME: A Comprehensive Evaluation
Benchmark for Multimodal Large Language Models. arXiv
preprint arXiv:2306.13394, 2023. 3, 10

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence Gold-
ing, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle Mc-
Donell, Niklas Muennighoff, Chris Ociepa, Jason Phang,
Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang,
and Andy Zou. A Framework for Few-Shot Language Model
Evaluation, 2024. 10

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A Roberts. The Unreasonable
Ineffectiveness of the Deeper Layers. In /ICLR, 2025. 8
Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi
Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P Bigham.
VizWiz Grand Challenge: Answering Visual Questions from
Blind People. In CVPR, 2018. 10

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun,
Nan Jiang, Tarek Abdelzaher, and Heng Ji. Word Embed-
dings Are Steers for Language Models. In ACL Anthology,
2024. 8

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measur-
ing Massive Multitask Language Understanding. In ICLR,
2021. 10

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al.
LoRA: Low-Rank Adaptation of Large Language Models. In
ICLR, 2022. 8,9

Drew A Hudson and Christopher D Manning. GQA: A New
Dataset for Real-World Visual Reasoning and Compositional
Question Answering. In CVPR, 2019. 10

InternVL2. InternVL2: Better than the Best—Expanding
Performance Boundaries of Open-Source Multimodal Mod-
els with the Progressive Scaling Strategy. https://
internvl.github.io/blog/2024-07-02-InternVL—
2.0/,2024. 8

Md Kowsher, Nusrat Jahan Prottasha, and Prakash Bhat.
Propulsion: Steering LLM with Tiny Fine-Tuning. In ACL
Anthology, 2024. 8

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao
Ge, and Ying Shan. SEED-Bench: Benchmarking Multi-
modal LLMs with Generative Comprehension. In CVPR,
2024. 10

Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui
Zhang, Feng Li, Yuanhan Zhang, Ziwei Liu, and Chun-
yuan Li. Llava-next: Stronger llms supercharge multimodal
capabilities in the wild.
io/blog/2024-05-10-1lava-next—-stronger—11lms/,
2024. 8

Bo Li, Peiyuan Zhang, Kaichen Zhang, Fanyi Pu, Xinrun
Du, Yuhao Dong, Haotian Liu, Yuanhan Zhang, Ge Zhang,
Chunyuan Li, and Ziwei Liu. LMMs-Eval: Accelerating
the Development of Large Multimodal Models.

https://llava-vl.github.

https:

https://internvl.github.io/blog/2024-07-02-InternVL-2.0/
https://internvl.github.io/blog/2024-07-02-InternVL-2.0/
https://internvl.github.io/blog/2024-07-02-InternVL-2.0/
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://github.com/EvolvingLMMs-Lab/lmms-eval

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

//github.com/EvolvingLMMs—Lab/lmms—-eval, 2024.
10

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li,
Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Zi-
wei Liu, et al. LLaVA-OneVision: Easy Visual Task Trans-
fer. arXiv preprint arXiv:2408.03326, 2024. 7, 8

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
BLIP-2: Bootstrapping Language-Image Pre-training with
Frozen Image Encoders and Large Language Models. In
ICML,2023. 8

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin
Zhao, and Ji-Rong Wen. Evaluating Object Hallucination in
Large Vision-Language Models. In EMNLP, 2023. 3, 10
Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
Improved Baselines with Visual Instruction Tuning. In
CVPR, 2024. 3,7, 10, 11

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Im-
proved reasoning, ocr, and world knowledge.
//1llava-vl.github.io/blog/2024-01-30-11lava-
next/,2024. 8

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual Instruction Tuning. In NeurIPS, 2024. 10, 11

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang
Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He,
Ziwei Liu, et al. MMBench: Is Your Multi-modal Model an
All-around Player? In ECCV, 2025. 10

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng Chen.
ShortGPT: Layers in Large Language Models are More Re-
dundant Than You Expect. arXiv preprint arXiv:2403.03853,
2024. 8

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sab-
harwal. Can a Suit of Armor Conduct Electricity? A New
Dataset for Open Book Question Answering. In ACL An-
thology, 2018. 10

nostalgebraist. interpreting GPT: the logit lens.
//www.lesswrong.com/posts/AcKRB8wDpdaN6véru/

https :

https:

interpreting-gpt-the-logit-lens, 2020. 8

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
Transferable Visual Models From Natural Language Super-
vision. In ICML, 2021. 1

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula,
and Yejin Choi. WinoGrande: An Adversarial Winograd
Schema Challenge at Scale. In ACM Communications, 2021.
10

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey,
Jeff Wu, Lucius Bushnaq, Nicholas Goldowsky-Dill, Stefan
Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open
Problems in Mechanistic Interpretability. arXiv preprint
arXiv:2501.16496, 2025. 8

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion
Jones. Transformer Layers as Painters. arXiv preprint
arXiv:2407.09298, 2024. 8

Gemma Team. Gemma-2. Kaggle, 2024. 11

14

(38]
(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

Gemma Team. Gemma-3. Kaggle, 2025. 12

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun
Woo, Manoj Middepogu, Sai Charitha Akula, Jihan Yang,
Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-
1: A Fully Open, Vision-Centric Exploration of Multimodal
LLMs. In NeurIPS, 2025. 8, 10

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muham-
mad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil
Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil
Mustafa, et al. SigLIP 2: Multilingual Vision-Language
Encoders with Improved Semantic Understanding, Localiza-
tion, and Dense Features. arXiv preprint arXiv:2502.14786,
2025. 1

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
Ge, et al. Qwen2-VL: Enhancing Vision-Language Model’s
Perception of the World at Any Resolution. arXiv preprint
arXiv:2409.12191,2024. 8

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji
Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei Zhao, Xixuan
Song, et al. CogVLM: Visual Expert for Pretrained Lan-
guage Models. In NeurIPS, 2024. 8

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang.
MM-Vet: Evaluating Large Multimodal Models for Inte-
grated Capabilities. In ICML, 2024. 10

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi,
and Yejin Choi. HellaSwag: Can a Machine Really Finish
Your Sentence? In ACL Anthology, 2019. 10

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid Loss for Language Image Pre-
Training. In ICCV, 2023. 1

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-
Chin Huang, Min Xu, Less Wright, Hamid Shojanazeri,
Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experi-
ences on scaling fully sharded data parallel. arXiv preprint
arXiv:2304.11277,2023. 9

https://github.com/EvolvingLMMs-Lab/lmms-eval
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

	Building Surrogate Models
	Analyzing the Prediction Trajectory
	Studying the Transition Phases

	Generalizing to Giant Models
	A Surrogate for Llama-70B
	Results: Zero-shot Grafting

	Reducing Full Decoder Training Cost
	Results: Convergence and Training Cost

	Related Work Overview
	Conclusion
	Ablation on Teacher-Forced Feeding
	Comparing with LoRA
	Language Degradation in Decoders
	Training Time for Llama-70B
	Training Recipes
	Evaluation Benchmarks
	Surrogate Training for Smaller Models
	Distilled Model as Surrogate
	Performance Drop on LLaVA-Wild
	Different Abilities in Two Transition Phases
	Prediction Trajectory of Gemma-3 Family

	Students Full Name Last First Middle:
	Students UMD Email Address:
	Month Year Started Entry Year:
	Title of MS Scholarly Paper:
	Date2_af_date:
	Advisor Name:
	Graduation Term:

