
Checking Type Safety of Foreign Function Calls∗

Michael Furr
University of Maryland, College Park

furr@cs.umd.edu

December 7, 2005

Abstract

We present a multi-lingual type inference system for checking type safety across a foreign function interface.
The goal of our system is to prevent foreign function calls from introducing type and memory safety violations into
an otherwise safe language. Our system targets OCaml’s FFI to C, which is relatively lightweight and illustrates
some interesting challenges in multi-lingual type inference. The type language in our system embeds OCaml types
in C types and vice-versa, which allows us to track type information accurately even through the foreign language,
where the original types are lost. Our system uses a representational type that can model multiple OCaml types,
because C programs can observe that many OCaml types have the same physical representation. Furthermore,
because C has a low-level view of OCaml data, our inference system includes a dataflow analysis to track memory
offsets and tag information. Finally, our type system includes garbage collection information to ensure that pointers
from the FFI to the OCaml heap are tracked properly. We have implemented our inference system and applied it to
a small set of benchmarks. Our results show that programmers do misuse these interfaces, and our implementation
has found several bugs and questionable coding practices in our benchmarks.

1 Introduction

Many programming languages contain a foreign function interface (FFI) that allows programs to invoke functions
written in other languages. Such interfaces are important for accessing system-wide libraries and other components,
but they are difficult to use correctly, especially when there are mismatches between native and foreign type systems,
data representations, and run-time environments. In all of the FFIs we are aware of, there is little or no consistency
checking between foreign and native code [3, 7, 13, 14, 15]. As a consequence, adding an FFI to a safe language
potentially provides a rich source of operations that can violate safety in subtle and difficult-to-find ways.

This paper presents a multi-lingual type inference system to check type and garbage collection safety across foreign
function calls. Our system targets the OCaml [14] foreign function interface to C [1], though we believe that our
ideas are adaptable to other FFIs.

In the OCaml FFI, most of the work is done in C “glue” code, which uses various macros and functions to pull
apart and translate OCaml data to and from C representations. It is easy to make mistakes in this code, which is
fairly low-level, because there is no checking that OCaml data is used at the right type. Our type inference system
prevents these kinds of errors, using an extended, multi-lingual type language that embeds OCaml types in C types
and vice-versa.

One interesting feature of the OCaml FFI is that C programs can observe that many OCaml types have the same
physical representation. For example, the value of type unit has the same representation as the OCaml integer 0,
nullary data constructors are represented using integers, and records and tuples can be injected into sum types if
they have the right dynamic tag. Thus to model OCaml data from the C perspective, we introduce representational
types that can model any or all of these possibilities (Section 2).

Additionally, C programs can perform tag tests at runtime and compute offsets into the middle of OCaml records
and tuples. Thus in addition to standard unification-style type inference, our type system includes a dataflow analysis
to track offset and tag information precisely within a function body (Section 3). Our dataflow analysis is fairly simple,
which turns out to be sufficient in practice because most programs use the FFI in a simple way (in part to avoid
making mistakes). We have proven that a restricted version of our type system is sound (Section 4), modulo certain
features of C such as out-of-bounds array accesses or type casting.

Finally, recall that OCaml is a garbage-collected language. To avoid memory corruption problems, before a C
program calls OCaml (which might invoke the garbage collector), it must notify the OCaml runtime system of any

∗This paper is submitted in partial satisfaction of the requirement for the degree of Master of Science in Computer Science at the
University of Maryland, College Park. This research was supported in part by NSF CCF-0346982 and CCF-0430118

1

mltype ::= unit | int | mltype ×mltype

| S + · · ·+ S | mltype ref

| mltype → mltype

S ::= Constr | Constr of mltype

(a) OCaml Type Grammar

ctype :: void | int | value | ctype *

| ctype × . . .× ctype → ctype

(b) C Type Grammar

Figure 1: Source Type Languages

pointers it has to the OCaml heap. This is easy to forget to do, especially when the OCaml runtime is called indirectly.
Our type system includes effects to track functions that may invoke the OCaml GC and ensure that pointers to the
OCaml heap are registered as necessary.

To test our ideas, we have implemented our inference system and applied it to a small set of benchmarks. In our
experiments we have found a number of outright bugs in FFI code, as well as several examples of questionable coding
practice. Our results suggest that multi-lingual type inference is a beneficial addition to an FFI system.

In summary, the contributions of this work as are follows:

• We develop a multi-lingual type inference system for a foreign function interface that mutually embeds the type
system of each language within the other. Using this information, we are able to track type information across
foreign function calls.

• Our type system uses representational types to model the multiple physical representations of the same type.
In order to be precise enough in practice, our analysis tracks offset and tag information flow-sensitively, and it
uses effects to ensure that garbage collector invariants are obeyed in the foreign language. We have proven that
a restricted version of our system is sound.

• We describe an implementation of our system for the OCaml to C foreign function interface. In our experiments,
we found a number of bugs and questionable practices in a small benchmark suite.

2 Multi-Lingual Types

We begin by describing OCaml’s foreign function interface to C and developing a grammar for multi-lingual types.
In a typical use of the OCaml FFI, an OCaml program invokes a C routine, which in turn invokes a system or user

library routine. The C routine contains “glue” code to manipulate structured OCaml types and translate between
the different data representations of the two languages.

Figure 1 shows the source language types. OCaml (Figure 1a) includes unit and int types, product types (records
or tuples), and sum types. Sums are composed of type constructors S, which may optionally take an argument.
OCaml also includes types for updatable references and functions. C (Figure 1b) includes types void, int, and the
type value, to which all OCaml data is assigned (see below). C also includes pointer types, constructed with *, and
functions.

To invoke a C function called c name, the OCaml program must contain a declaration of the form

external f : mltype = “c name”

where mltype is an OCaml function type. Calling f will invoke the C function declared as

value c name(value arg1, . . ., value argn);

As this example shows, all OCaml data is given the single type value in C. However, different OCaml types have
various physical representations that must be treated differently, and there is no protection in C from mistakenly
using OCaml data at the wrong type. As a motivating example, consider the following OCaml sum type declaration:

type t = A of int | B | C of int * int | D

2

1 if(Is long(x)) {
2 switch(Int val(x)) {
3 case 0: /* B */ break;
4 case 1: /* D */ break;
5 } } else {
6 switch(Tag val(x)) {
7 case 0: /* A */ break;
8 case 1: /* C */ break;
9 } }

Figure 2: Code to Examine a Value of Type t

ct ::= void | int | mt value | ct *
| ct × · · · × ct →GC ct

GC ::= γ | gc | nogc

mt ::= α | mt → mt | ct custom | (Ψ,Σ)

Ψ ::= ψ | n | >
Σ ::= σ | ∅ | Π + Σ

Π ::= π | ∅ | mt ×Π

Figure 3: Multi-Lingual Type Language

This type has nullary (no-argument) constructors B and D and non-nullary constructors A and C.
Each nullary constructor in a sum type is numbered from 0, and is represented in memory directly as that integer.

Thus to C functions, nullary constructors look just like OCaml ints, e.g., B and int 0 are identical. Additionally, the
value of type unit is also represented by the integer 0.

The low-order bit of such unboxed values is always set to 1 to distinguish them from pointers. C routines use the
macro Val int to convert to such tagged integers and Int val to convert back. There are no checks, however, to
ensure that these macros are used correctly or even at all. In particular, in the standard OCaml distribution the type
value is a typedef (alias) of long. Thus one could mistakenly apply Int val to a boxed value (see below), or dually
apply Val int to a value. In fact, we found several examples of this mistake in our benchmarks (see Section 5.2).

Each non-nullary constructor in a sum type is also numbered separately from 0. These constructors are represented
as boxed values or pointers to structured blocks on the heap. A structured block is an array of values preceded by a
header, which contains, among other things, a tag with the constructor number. For example, the constructor C of
type t is represented as

tag=1

Pointer

OO
int int

Products that are not part of a sum are represented as structured blocks with tag 0.
Boxed values are manipulated using the macro Field(x,i), which expands to *((value*)x+i), i.e., it accesses

the ith element in the structured block pointed to by x. There are no checks to prevent a programmer from applying
Field to an unboxed value or from accessing past the end of a block.

Clearly a value of type t may have many different representations, depending on its constructor. OCaml provides
a series of macros for testing tags and for determining the boxedness of a value. For example, code to examine a
value of type t is shown in Figure 2. Here, Is long() on line 1 checks whether a value is a pointer. If it is unboxed,
Int val() on line 2 is used to extract the tag, otherwise Tag val() is used on line 6 where x is known to be boxed.

Our goal is to accept this kind of code and infer the possible OCaml types for x. Figure 3 contains our combined,
multi-lingual type language that integrates and generalizes the types in Figure 1.

Our grammar for C types ct embeds extended OCaml types mt in the type value, so that we can track OCaml
type information through C. Additionally, we augment function types with an effect GC, discussed below.

Our grammar for OCaml types mt includes type variables α as well as function types and custom types (see
below). Note that α is a monomorphic type variable, and our system does not support polymorphic OCaml types,
since they seem to be uncommon in foreign functions in practice (see Section 5.1).

3

Φ(external mltype1 → · · · → mltypen) =
ρ(mltype1) value× · · · × ρ(mltypen−1) value→g

ρ(mltypen) value
g fresh

ρ(unit) = (1, ∅)
ρ(int) = (>, ∅)

ρ(mltype ref) = (0, ρ(mltype))
ρ(mltype1 → mltype2) = ρ(mltype1) → ρ(mltype2)
ρ(L1 | L2 of mltype) = (1, ρ(mltype))
ρ(mltype1 ×mltype2) = (0, ρ(mltype1)× ρ(mltype2))

Figure 4: Translation Rules for OCaml Types

All of the other OCaml types from Figure 1a—unit, integer, products, sums, and references—are modeled with a
representational type (Ψ,Σ). In this type, Ψ bounds the unboxed values of the type. For a sum type, Ψ is an exact
value n counting the number of nullary constructors of the type. Integers have the same physical representation but
could have any value, so for this case Ψ is >. Ψ may also be a variable ψ. The Σ component of a representational
type describes the boxed values, if any. Σ is a sequence of products Π, one for each non-nullary constructor of
the type. The position of each Π in the sequence corresponds to the constructor tag number, and each Π itself
contains the types of the elements of the structured block. For example, the OCaml type t has representational type
(2, (>, ∅) + (>, ∅)× (>, ∅)))).

Notice in Figure 2 that our code to examine a value of type t does not by itself fully specify the type of x. For
example, the type could have another nullary constructor or non-nullary constructor that simply is not checked for.
Thus our grammars for Σ and Π include variables σ and π that range over sums and products [19], which we use to
allow sum and product types to grow during inference. Only when an inferred type is unified with an OCaml type
can we know its size exactly.

In addition to using OCaml data at the correct type, C FFI functions that call the OCaml runtime must notify the
garbage collector of any C pointers to the OCaml heap. To do so, C functions use macros CAMLparam and CAMLlocal

to register parameters and locals, respectively. If a function registers any such pointers, it must call CAMLreturn upon
exiting to release the pointers. It is easy to forget to use these macros, especially when functions only indirectly call
the OCaml runtime, as we have found in our experiments (Section 5.2). Thus in our type language, we annotate
each function type with a garbage collection effect GC, either a variable γ, gc if the function may invoke the garbage
collector, or nogc if it definitely will not. GC naturally forms the two-point lattice with order nogc v gc (note we
reserve ≤ for the total ordering over the integers and use v for partial orders over any other lattice). Our type system
ensures that all necessary variables are registered before calling a function with effect gc.

Finally, sometimes it is useful to pass C data and pointers to OCaml. For example, glue code for a windowing
library might return pointers representing windows or buttons to OCaml. It is up to the programmer to assign
such data appropriate (distinct) opaque OCaml types, but there is no guarantee that different C types will not be
conflated, and perhaps misused. Thus our grammar for OCaml types mt includes types ct custom that track the C
type of embedded data. Our inference system checks that OCaml code faithfully distinguishes the C types, so that
it is not possible to perform a C type cast by passing a pointer through OCaml.

3 Type System

In this section, we present our multi-lingual type inference system. Our inference system takes as input a program
written in both OCaml and C and proceeds in two stages. We begin by analyzing the OCaml source code and
converting the source types of FFI functions into our multi-lingual types (Section 3.1). The second stage of inference
begins with a type environment containing the converted types and applies our type inference algorithm to the C
source code to detect any type errors (Section 3.3).

3.1 Type Inference for OCaml Source Code

The first stage of our algorithm is to translate each external function type declared in OCaml into our multi-lingual
types. Restricting ourselves to the type information from OCaml is sufficient for checking that C code uses OCaml
data correctly. We then combine the converted types into an initial type environment ΓI , which feeds into the second
stage.

4

e ::= n | lval | *e | e aop e | e +p e | (ct) e | Val int e | Int val e

lval ::= x | *(e+p n)

aop ::= + | - | * | == | · · ·
s ::= s ; s | return e | CAMLreturn(e) | lval := f(e, . . . , e)

| lval := e | L: s | goto L | if e then L
| if unboxed(x) then L | if sum tag(x) == n then L

| if int tag(x) == n then L

d ::= ctype x = e | CAMLprotect(x)
f ::= function ctype f(ctype x, . . . , ctype x) d∗ s

| function ctype f(ctype x, . . . , ctype x)

p ::= f∗

Figure 5: Simplified C Grammar

We construct ΓI using the type translation function Φ given in Figure 4. In this definition, we implicitly assume
that mltypen is not constructed with →, i.e., that the arity of the function whose type is being translated is n.

In Figure 4, ρ gives unit and int both pure unboxed types, with no Σ component. Since unit is a singleton type,
we know its value is 0, and we assign it type (1, ∅). This is the same as the representational type for a degenerate
sum type with no non-nullary constructors and exactly one nullary constructor. This is correct because that one
nullary constructor has the same representation as unit. In contrast, int may represent any integer, and so it is not
compatible with any sum types.

The ρ function encodes mutable references as a boxed type with a single non-nullary constructor of size 1. Regular
function types are converted to mt function types. Finally, rather than give the general case for sums and products,
we illustrate the translation with two sample cases. Sum types are handled by counting the nullary constructors and
mapping each non-nullary constructor to a product type representing its arguments. In the definition of ρ in Figure 4,
we show the translation of a sum type with one nullary constructor and one non-nullary constructor. Product types
are handled by making an appropriate boxed type with no nullary constructors and a single non-nullary constructor
of the appropriate size.

3.2 C Source

After we have applied the rules in Figure 4 to the OCaml source code, we begin the second phase of our system,
which infers types for C source code using the information gathered in the first phase. We present our algorithm
for the C-like language shown in Figure 5, based on the intermediate representation of CIL [18], which we used to
construct our implementation. In this language, expressions e are side-effect free and contain the usual constructs.
We include pointer arithmetic e1 +p e2 for computing the address of offset e2 from the structured block pointed to by
e1. Pointer arithmetic can be distinguished from other forms using standard C type information. Our system allows
values to be treated directly as pointers, though in actual C source code they are first cast to value *. Our system
includes type casts (ct) e, which casts e to type ct . Our formal system only allows certain casts to and from value

types; other casts are modeled using heuristics in the implementation. We include as primitives the Val int and
Int val conversion functions. Note that we omit the address-of operation &. Variables whose address is taken are
treated as globals by the implementation, and uses of & that interact with * are simplified away by CIL. L-values
lval are the restricted subset of expressions that can appear on the left-hand side of an assignment.

Statements s can be associated with a label L. We include as primitives three conditional tests for inspecting
a value at run time. The conditional if sum tag(x) tests the runtime tag of a structured block pointed to by x.
Similarly, the conditional if int tag(x), used for nullary constructors, tests the runtime value of unboxed variable
x. In actual C source code, these tests are made by applying Tag val or Int val, respectively, and then checking the
result. The conditional if unboxed(x) checks to see whether x is not a pointer.

Statements also include the special form CAMLreturn for returning from a function, releasing all variables registered
with the garbage collector. This statement should be used in place of return if and only if local variables have been
registered by declaring them with CAMLprotect, our formalism for CAMLlocal and CAMLparam.

Programs p consist of a sequence of function declarations and definitions f . We omit global variables, since our
implementation forbids values from being stored in them (see Section 5.1). We assume all local variables are defined
at the top-level of the function.

5

3.3 Type Inference for C Source Code

The second phase of our type inference system takes as input C source code and the initial environment ΓI from
the first phase of the analysis (Section 3.1). Recall the example code in Figure 2 for testing the tags of a value. In
order to analyze such a program, we need to track precise information about values of integers, offsets into structured
blocks, and dynamic type tags for sum types. Thus our type system infers types of the form ct [B{I}]{T}, where B
tracks boxedness (i.e., the result of if unboxed), I tracks an offset into a structured block, and T tracks the type tag
or value of an integer. In our type system, B, I, and T are computed flow-sensitively, while ct is flow-insensitive. B,
I, and T are given by the following grammar:

B ::= boxed | unboxed | > | ⊥
I, T ::= n | > | ⊥

I and T are lattices with order ⊥ v n v >, and we extend arithmetic on integers to I as > aop I = >, ⊥ aop I =
⊥, and similarly for T . B also forms a lattice with order ⊥ v boxed v > and ⊥ v unboxed v >. We define
ct [B{I}]{T} v ct ′[B′{I ′}]{T ′} if ct = ct ′, B v B′, I v I ′, and T v T ′. We use t to denote the least upper bound
operator, and we extend t to types similarly. Notice that B, I, and T do not appear in the grammar for ct in
Figure 3, and thus our analysis does not try to track them for values stored in the heap. In our experience, this is
sufficient in practice. In our type rules, we allow T to form constraints with Ψ from our representational types; the
main difference between them is that Ψ may be a variable.

The meaning of ct [B{I}]{T} depends on ct . If ct is value, then B represents whether the data is boxed or
unboxed. If B is unboxed, then T represents the value of the data (which is either an integer or nullary constructor),
and I is always 0. If B is boxed, then T represents the tag of the structured block and I represents the offset into
the block. For example, on line 8 of Figure 2, x would have type ct [boxed{0}]{1} since it represents constructor C.

Otherwise, if ct is int, then B is >, I is 0, and T tracks the value of the integer, either ⊥ for unreachable code, a
known integer n, or an unknown value >. For example, the C integer 5 would have type int[>{0}]{5}. Finally, for
all other ct types, B = T = > and I = 0.

We say that a value is safe if it is either unboxed or a pointer to the first element of a structured block, and we
say that any other ct that is not value is also safe. Intuitively, a safe value can be used directly at its type, and
for boxed types the header can be checked with our regular dynamic tests. This is not true of a value that points
into the middle of a structured block. Our type system only allows offsets into OCaml data to be calculated locally
within a function, and so we require that any data passed to another function or stored in the heap is safe. Notice
that in our system, data with a type where I = 0 is safe. Additionally, none of our type rules allow I = >, and if
that occurs during iteration the program will not type check.

Type environments Γ map variables to types ct [B{I}]{T}. Judgments also include a protection set P , which
contains those variables that have been registered with the garbage collector by CAMLprotect. We split the type
inference rules into expressions and statements, and discuss each in turn.

3.3.1 Expressions

Figure 6 gives our type rules for expressions. This system proves judgments of the form Γ, P ` e : ct [B{I}]{T},
meaning that in type environment Γ, the C expression e has type ct , boxedness B, offset I, and value/tag T .

We discuss the rules briefly. In all of the rules, we assume that the program is correct with respect to the standard
C types, and that full C type information is available. Thus some of the rules apply to the same source construct
but are distinguished by the C types of the subexpressions.

The rule (Int Exp) gives an integer the appropriate type, and (Var Exp) is standard. (Val Deref Exp) extracts
a field from a structured block. To assign a type to the result, the sum must have a known tag m and offset n,
and we use unification to extract the field type. Notice that the resulting B and T information is >, since they are
unknown, but the offset is 0, since we will get back safe OCaml data. This rule, however, cannot handle the case
when records or tuples that are not part of sums are passed to functions, because their boxedness is not checked
before dereferencing. We use (Val Deref Tuple Exp) in this case, where B is >. This rule requires that the type have
one, non-nullary constructor. Note that since this rule generates more restrictive constraints than (Val Deref Exp),
fixpoint iteration still converges. Our implementation includes similar rules for using pointer arithmetic or reading
unboxed data without a boxedness test, which we omit due to lack of space.

The rule (C Deref Exp) follows a C pointer. Notice that the resulting B and T are >. (AOP Exp) performs the
aop operation on T and T ′ in the types. (Add Val Exp) is similar to (Val Deref Exp). Notice that it must be possible
to dereference the resulting pointer. While this is not strictly necessary (we could wait until the actual dereference
to enforce the size requirement), it seems like good practice not to form invalid pointers.

6

Int Exp

Γ, P ` n : int[>{0}]{n}

Var Exp
x ∈ dom(Γ)

Γ, P ` x : Γ(x)

Val Deref Exp
Γ, P ` e : mt value[boxed{n}]{m} mt = (ψ, π0 + · · ·+ πm + σ) πm = α0 × . . .× αn × π ψ, πi, σ, αi, π fresh

Γ, P ` *e : αn value[>{0}]{>}

Val Deref Tuple Exp
Γ, P ` e : mt value[>{n}]{T} mt = (0, σ) σ = α0 × · · · × αn × π σ, αi, π fresh

Γ, P ` *e : αn value[>{0}]{>}

C Deref Exp
Γ, P ` e : ct *[>{0}]{>}
Γ, P ` *e : ct [>{0}]{>}

AOP Exp
Γ, P ` e1 : int[>{0}]{T} Γ, P ` e2 : int[>{0}]{T ′}

Γ, P ` e1 aop e2 : int[>{0}]{T aop T ′}

Add Val Exp
Γ, P ` e1 : mt value[boxed{n}]{n′}

Γ, P ` e2 : int[>{0}]{m} mt = (ψ, π0 + · · ·+ πn′ + σ) πn′ = α0 × · · · × αn+m × π ψ, πi, σ, αi, π fresh

Γ, P ` e1 +p e2 : (ψ,mt) value[boxed{n+m}]{n′}

Add C Exp
Γ, P ` e1 : ct *[>{0}]{>} Γ, P ` e2 : int[>{0}]{T}

Γ, P ` e1 +p e2 : ct *[>{0}]{>}

Custom Exp
Γ, P ` e : ct *[>{0}]{>}

Γ, P ` (value)e : ct * custom value[>{0}]{>}

Val Cast Exp
Γ, P ` e : mt value[B{I}]{T} mt = ct custom

Γ, P ` (ct) e : ct [>{0}]{>}

Val Int Exp
Γ, P ` e : int[>{0}]{T} T + 1 ≤ ψ ψ, σ fresh

Γ, P ` Val int e : (ψ, σ) value[unboxed{0}]{T}

Int Val Exp
Γ, P ` e : mt value[unboxed{0}]{T}

Γ, P ` Int val e : int[>{0}]{T}

App
Γ, P ` f : ct ′1 × · · · × ct ′n →GC′ ct

Γ, P ` ei : cti[Bi{0}]{Ti} cti = ct ′i i ∈ 1..n
Γ, P ` cur func : · →GC · GC′ v GC gc v GC ⇒ (ValPtrs(Γ) ∩ live(Γ)) ⊆ P

Γ, P ` f(e1, . . . , en) : ct [>{0}]{>}

Figure 6: Type Inference for C Expressions

7

Seq Stmt
Γ, G, P ` s1,Γ′ Γ′, G, P ` s2,Γ′′

Γ, G, P ` s1 ; s2,Γ′′

Lbl Stmt
G(L), G, P ` s,Γ′ Γ v G(L)

Γ, G, P ` L: s,Γ′

Goto Stmt
G := G[L 7→ G(L) t Γ]

Γ, G, P ` goto L, reset(Γ)

Ret Stmt
Γ, P ` e : ct [B{0}]{T}
Γ ` cur func : · →· ct ′

ct = ct ′ P = ∅
Γ, G, P ` return e, reset(Γ)

CAMLReturn Stmt
Γ, P ` e : ct [B{0}]{T}

Γ, P ` cur func : · →· ct ′

ct = ct ′ P 6= ∅
Γ, G, P ` CAMLreturn(e), reset(Γ)

If Stmt
Γ, P ` e : int[>{0}]{T}
G := G[L 7→ G(L) t Γ]

Γ, G, P ` if e then L,Γ

LSet Stmt
Γ, P ` *(e1 +p n) : ct [>{0}]{>}

Γ, P ` e2 : ct ′[B{0}]{T}
ct = ct ′

Γ, G, P ` *(e1 +p n) := e2,Γ

VSet Stmt
Γ, P ` e : ct [B{I}]{T}

Γ, G, P ` x := e,Γ[x 7→ ct [B{I}]{T}]

CAMLProtect Var
Γ, P ` x : ct [B{I}]{T}

P := P ∪ {x}
Γ, G, P ` CAMLprotect(x),Γ

If unboxed Stmt
Γ, P ` x : mt value[B{0}]{T}

Γ′ = Γ[x 7→ mt value[unboxed{0}]{T}]
G := G[L 7→ G(L) t Γ′]

Γ, G, P ` if unboxed(x) then L,Γ[x 7→ mt value[boxed{0}]{T}]

Var Decl
Γ, P ` e : ct [B{I}]{T} ct = η(ctype)

Γ, P ` ctype x = e,Γ[x 7→ ct [B{I}]{T}]

If int tag Stmt
Γ, P ` x : mt value[unboxed{0}]{T} mt = (ψ, σ)
n+ 1 ≤ ψ Γ′ = Γ[x 7→ mt value[unboxed{0}]{n}]

G := G[L 7→ G(L) t Γ′] ψ, σ fresh

Γ, G, P ` if int tag(x) == n then L,Γ

Fun Decl
let ct = η(ctype1)× . . .× η(ctypen) → η(ctype)

f ∈ dom(Γ) ⇒ ct = Γ(f)

Γ ` function ctype f(ctype1 x, . . . , ctypen x),Γ′[f 7→ ct]

If sum tag Stmt
Γ, P ` x : mt value[boxed{0}]{T}

mt = (ψ, π0 + · · ·+ πn + σ)
Γ′ = Γ[x 7→ mt value[boxed{0}]{n}]

G := G[L 7→ G(L) t Γ′] ψ, πi, σ fresh

Γ, G, P ` if sum tag(x) == n then L,Γ

Fun Defn
Γ0 = Γ[xi 7→ η(ctypei)[>{0}]{>}, cur func 7→ Γ(f)]
Γi−1, P ` di,Γi i ∈ 1..m P fresh P := ∅

∀L ∈ body of f,G′(L) := reset(Γm) Γm, G
′, P ` s,Γ′

Γ ` function ctype f(ctype1 x1, . . . , ctypen xn)d1 . . . dm; s,Γ

Figure 7: Type Inference for C Statements

(Custom Exp) casts C pointer to a value type, and the result is given a ct custom value type with unknown
boxedness and tag. (Val Cast Exp) allows a custom type to be extracted from a value of a known type ct . Notice
that this is the only rule that allows casts from value, which are otherwise forbidden. We omit other type casts from
our formal system; they are handled with heuristics in our implementation (Section 5.1).

(Val Int Exp) and (Int Val Exp) translate between C integers and OCaml integers. When a C integer is turned
into an OCaml integer with Val int , we do not yet know whether the result represents an actual int or whether it
is a nullary constructor. Thus we assign it a fresh representational type (ψ, σ), where T + 1 ≤ ψ. This constraint
models the fact that e can only be a constructor of a sum with at least T nullary constructors.

The (App) rule models a function call. Technically, function calls are not expressions in our grammar, but we put
this rule here to make the rules for statements a bit more compact. To invoke a function, the actual types and the
formal types are unified; notice that the Bi and Ti are discarded, but we require that all actual arguments are safe.
Additionally, we require that GC′ v GC, since if f might call the garbage collector, so might the current function.

The last hypothesis in this rule is a constraint that requires that if the function may call the garbage collector,
every variable which points into the OCaml heap and is still live must have been registered with a call to CAMLprotect.
Here ValPtrs(Γ) is the set of all variables in Γ with a type (Ψ,Σ) value where |Σ| > 0, i.e., the set of all variables
that are pointers into the OCaml heap. (These sets are computed after unification is complete.) The set live(Γ) is
all variables live at the program point corresponding to Γ. We omit the computation of live, since it is standard.

3.3.2 Statements

Judgments for statements are flow-sensitive, which we model by allowing the type environment to vary from one
statement to another, even in the same scope. Intuitively, this allows us to track dataflow facts about local variables.
In order to support branches, our rules will use a label environment G mapping labels to type environments. In

8

particular, G(L) is the type environment at the beginning of statement L. As inference proceeds, the type rules may
update G, which we write with the := operator; our analysis iteratively applies the type rules to a function body
until G has reached a fixpoint.

Since type environments are flow-sensitive, some of our type rules will need to constrain type environments to be
compatible with each other. We define Γ v Γ′ if Γ(x) v Γ′(x) for all x ∈ dom(Γ) ∪ dom(Γ′), and we define Γ t Γ′ as
Γ(x) t Γ′(x) for all x ∈ dom(Γ) ∪ dom(Γ′). For the fall-through case for an unconditional branch our rules need to
reset all flow-sensitive information to ⊥. We define reset(Γ)(x) = ct [⊥{⊥}]{⊥} where Γ(x) = ct [B{I}]{T}.

Finally, recall that only plain ctypes are available in the source code. Hence, analogously to Φ in Figure 4, we
define a function η to translate ctypes to cts:

η(void) = void

η(int) = int

η(value) = α value α fresh
η(ctype *) = η(ctype) *

We do not translate C function types because they are not first class in our language.
Figure 7 gives our type rules for statements, which prove judgments of the form Γ, G, P ` s,Γ′, meaning that in

type environment Γ, label environment G, and protection set P , statement s type checks, and after statement s the
new environment is Γ′.

The (Seq Stmt) rule is straightforward, and the (Lbl Stmt) rule constrains the type environment G(L) to be
compatible with the current environment Γ. The (Goto Stmt) rule updates G if necessary. If G is updated at L, we
add L to our standard fixpoint worklist so that we continue iterating. (Ret Stmt) unifies the type of e with the return
type of the current function. We also require that e is safe and that P be empty so that any variables registered
with the garbage collector are released. (CAMLReturn Stmt) is identical to (Ret Stmt) except that we require P
to be non-empty. In each of (Goto Stmt), (Ret Stmt), and (CAMLReturn Stmt), we use reset to compute a new,
unconstrained type environment following these statements, since these are unconditional branches.

The rule (If Stmt) models a branch on a C integer. (If unboxed Stmt) models one of our three dynamic tag tests.
At label L, we know that local variable x is unboxed, and in the else branch (the fall-through case), we know x is
boxed. We can only apply if unboxed to expressions known to be safe expressions. In particular, in the else branch
we must know the offset of the boxed data is 0, which will enable us to do further tag tests.

Similarly, in (If sum tag) we set x to have tag n at label L. Notice that this test is only valid if we already know
(e.g., by calling if unboxed) that x is boxed and at offset 0, since otherwise the header cannot be read. In the else
branch, nothing more is known about x. In either case, we require that if this test is performed, then mt must have
at least n possible tags. (We could also omit this last requirement.) In (If int tag Stmt), variable x is known to
have value n at label L. Analogously with the previous rule, we require x to be unboxed, and with the constraint
n+ 1 ≤ ψ we require that x must have at least n+ 1 nullary constructors (ψ is the count of the constructors, which
are numbered from 0).

(LSet Stmt) typechecks writes to memory. We abuse notation slightly and allow e2 on the right-hand side to be
either an expression or a function call, which is checked with rule (App) in Figure 6. Notice that since we do not
model such heap writes flow-sensitively, we require that the type of e2 is safe and that the output type environment
is the same as the input environment. In contrast, (VSet Stmt) models writes to local variables, which are modeled
flow-sensitively. Again, we abuse notation and allow the right-hand side to be a function application checked with
(App). (CAMLProtect Var) takes a variable in the environment and adds it to the protection set P . Recall that this
can only occur at the top-level of a function, and therefore P is constant throughout the body of a function.

Finally, rules (Var Decl), (Fun Decl), and (Fun Defn) bind names in the environment. All of these rules use
our mapping η to generate ct types from ctypes. Notice that in (Fun Defn), the function type is not added to the
environment; for simplicity, we assume all functions are declared before they are used. We also assume that all
parameters are safe, which is enforced in (App). The label environment G′ is initialized to fresh copies of Γm for each
label in the function body, and P is initialized to the empty set.

3.3.3 Applying the Type Inference Rules

We apply the type rules in Figures 6 and 7 to C source code beginning in type environment ΓI from phase one. There
are three components to applying the type rules. First, the rules generate equality constraints ct = ct ′ and mt = mt ′,
which are solved with ordinary unification. When solving a constraint (Ψ, ·) = (Ψ′, ·), we require that Ψ and Ψ′ are
the same, i.e., n does not unify with >. We are left with constraints of the form T + 1 ≤ Ψ from (Val Int Exp) and
(If int tag). Recall that these ensure that nullary constructors can only be used with a sum type that is large enough.
Thus in this constraint, if T is negative, we require Ψ = >, since negative numbers are never constructors. After

9

1 // x : α value[>{0}]{>}
2 if unboxed(x) { // α = (ψ, σ) value
3 // x : α value[unboxed{0}]{>}
4 if int tag(x) == 0 // 1 ≤ ψ
5 /* B */ // x : α value[unboxed{0}]{0}
6 if int tag(x) == 1 // 2 ≤ ψ
7 /* D */ // x : α value[unboxed{0}]{1}
8 } else {
9 // x : α value[boxed{0}]{>}
10 if sum tag(x) == 0 // σ = π0 + σ′

11 /* A */ // x : α value[boxed{0}]{0}
12 if sum tag(x) == 1 // σ′ = π1 + σ′′

13 /* C */ // x : α value[boxed{0}]{1}
14 } // x : α value[>{0}]{>}

Figure 8: Example with types

unification and fixpoint iteration (see below), we can simply walk through the list of these constraints and check
whether they are satisfied.

Next, when computing Γ ` f,Γ′ for a function definition f , recall that label environment G may be updated.
When this happens for G(L), we add L to a worklist of statements. We iterative re-apply the type inferences rules
to statements on the worklist until we reach a fixpoint. This computation will clearly terminate because updates
monotonically increase facts about B, I, and T , and those lattices have finite height, and because re-applying the
type inference rules produces strictly more unification constraints.

Finally, we are left with constraints GC v GC′. These atomic subtyping constraints can be solved via graph
reachability. Intuitively, we can think of the constraint GC v GC′ as an edge from GC to GC′. Such edges form a
call graph, i.e., there is an edge from GC to GC′ if the function with effect GC is called by the function with effect
GC′. To determine whether a function with effect variable γ may call the garbage collector, we simply check whether
there is a path from gc to γ in this graph, and using this information we ensure that any conditional constraints from
(App) are satisfied for gc functions.

3.4 Example

In Figure 8, we present the example from Section 2 written in our grammar. To enhance readability we omit labels
and jumps, and instead show control-flow with indentation. We have annotated the example with the types assigned
by our inference rules. The variable x begins on line 1 with an unknown type α value. Upon seeing the if unboxed

call, α unifies with the representational type (ψ, σ). On the true branch, we give x an unboxed type but still an
unknown tag. Line 4 checks the unboxed constructor for x and adds the constraint that 1 ≤ ψ. Thus on line 5, x is
now fully known and can be safely used as the nullary type constructor B. Similarly, on line 7, x is known to be the
constructor D.

On the false branch of the if unboxed test, our rule gives x a boxed type with offset 0. After testing the tag of x
against 0 on line 10, we know that x has at least one non-nullary constructor, which we enforce with the constraint
σ = π0 + σ′. On line 11, then, x can be safely treated as the constructor A, and if we access fields of x in this branch
they will be given types according to π0. Similarly, on line 13 we know that x has constructor C. At line 14, we join
all of the branches together and lose information about the boxedness and tag of x, and we have α = (ψ, π0 +π1 +σ′′)
with 2 ≤ ψ, which correctly unifies with our original type t. When this unification takes place, we will also discover
σ′′ = ∅.

4 Soundness

We now sketch a proof of soundness for a slightly simplified version of our multi-lingual type system that omits
function calls, casting operations, and CAMLprotect and CAMLreturn. Full details are presented in the appendix. We
believe these features can be added without difficulty, though with more tedium. Thus our proof focuses on checking
the sequence of statements that forms the body of a function, with branches but no function calls.

The first step is to extend our grammar for expressions to include C locations l, OCaml integers {n}, and OCaml
locations {l+n} (a pointer on the OCaml heap with base address l and offset n). We write {l+−1} for the location
of the type tag in the header block. We define the syntactic values v to be these three forms plus C integers n. As

10

is standard, in our soundness proof we overload Γ so that in addition to containing types for variables, it contains
types for C locations and OCaml locations. We also add the empty statement () to our grammar for statements.

Our operational semantics uses three stores to model updatable references: SC maps C locations to values, SML

maps OCaml locations to values, and V maps local variables to values. In order to model branches, we also include
a statement store D, which maps labels L, to statements s. Due to lack of space, we omit our small-step operational
semantics, which define a reduction relation of the form

〈SC , SML, V, s〉 → 〈S′
C , S

′
ML, V

′, s′〉

Here, a statement s in state SC ,SML, and V , reduces to a new statement s′ and yields new stores S′
C , S′

ML, and V ′.
We define →∗ as the reflexive, transitive closure of →.

To show soundness, we require that upon entering a function, the stores are compatible with the current type
environment:

Definition 1 (Compatibility) Γ is said to be compatible with SC , SML, and V (written Γ ∼ 〈SC , SML, V 〉) if

1. dom(Γ) = dom(SC) ∪ dom(SML) ∪ dom(V)

2. For all l ∈ SC there exists ct such that Γ ` l : ct *[>{0}]{>} and Γ ` SC(l) : ct [>{0}]{>}.
3. For all {l + n} ∈ SML there exist Ψ, Σ, j, k, m, Π0, . . . ,Πj , mt0, . . . ,mtk such that

• Γ ` {l + n} : (Ψ,Σ) value[boxed{n}]{m}
• Σ = Π0 + · · ·+ Πj , m ≤ j

• Πm = mt0 × · · · ×mtk, n ≤ k

• Γ ` SML({l + n}) : mtn value[>{0}]{>}
• SML({l +−1}) = m

4. For all x ∈ V , Γ ` V (x) : Γ(x)

Definition 2 A statement store D is said to L-compatible with a label environment G, written D ∼L G, if for all
L ∈ D there exists Γ such that G(L), G ` D(L),Γ.

Definition 3 D is said to be well formed if for all L ∈ D, D(L) is a statement of the form L : s.

The standard approach to proving soundness is to show that reduction of a well-typed term does not become
stuck. In our system, this corresponds to showing that every statement either diverges or eventually reduces to (),
which we prove in the appendix.

Theorem 1 (Soundness) If Γ ` s,Γ′, Γ ∼ 〈SC , SML, V 〉, D ∼L G and D is well formed, then either 〈SC , SML, V, s〉
diverges, or 〈SC , SML, V, s〉 →∗ 〈S′

C , S
′
ML, V

′, ()〉.

5 Implementation and Experiments

5.1 Implementation

We have implemented the inference system described in Section 3. Our implementation consists of two separate tools,
one for each language.

The first tool, based on the camlp4 preprocessor, analyzes OCaml source programs and extracts the type signatures
of any foreign functions. Because ultimately C foreign functions will see the physical representations of OCaml types,
the tool resolves all types to a concrete form. In particular, type aliases are replaced by their base types, and
opaque types are replaced by the types they hide (when available). As each OCaml source file is analyzed, the
tool incrementally updates a central type repository with the newly extracted type information, beginning with a
pre-generated repository from the standard OCaml library. Once this first phase is complete, the central repository
contains the equivalent of the initial environment ΓI , which is fed into the second tool.

The second tool, built using CIL [18], performs the bulk of the analysis. This tool takes as input the central type
repository and a set of C source programs to which it applies the rules in Figures 6 and 7. The tool uses syntactic
pattern matching to identify tag and boxedness tests in the code.

One feature of C that we have not fully discussed is the address-of operator. Our implementation models address-
of in different ways, depending on the usage. Any local variable with an integer type (or local structure with a integer
field) that has its address computed is given the type int[>{0}]{>} everywhere. This conservatively models the fact
that the variable may be updated arbitrarily through other aliases. It has been our experience that variables used

11

Program C loc OCaml loc Time (s) Errors Warnings False Pos Imprecision

apm-1.00 124 156 1.3 0 0 0 0
camlzip-1.01 139 820 1.7 0 0 0 1

ocaml-mad-0.1.0 139 38 4.2 1 0 0 0
ocaml-ssl-0.1.0 187 151 1.5 4 2 0 0

ocaml-glpk-0.1.1 305 147 1.3 4 1 0 1
gz-0.5.5 572 192 2.2 0 1 0 1

ocaml-vorbis-0.1.1 1183 443 2.8 1 0 0 2
ftplib-0.12 1401 21 1.7 1 2 0 1
lablgl-1.00 1586 1357 7.5 4 5 140 20

cryptokit-1.2 2173 2315 5.4 0 0 0 1
lablgtk-2.2.0 5998 14847 61.3 9 11 74 48

Total 24 22 214 75

Figure 9: Experimental Results

for indexing into value types rarely have their address taken, so this usually does not affect our analysis. Similar, we
produce a warning for any variable of type value whose address is taken (or any variable containing a field of type
value), as well as for any global variable of type value. When encountering a call through an unknown C function
pointer, our tool currently issues a warning and does not generate typing constraints on the parameters or return
type.

We also treat unsafe type casts specially in our implementation. Our system tries to warn programmers about
casts involving value types, but in order to reduce false positives we use heuristics rather than be fully sound. For
instance, any cast through a void * type is ignored, as well as any differences in the sign of a type.

In addition to the types we have described so far, OCaml also includes objects and polymorphic variants. Our
implementation treats object types in the same way as opaque types, with no subtyping between different object
types. We have not seen objects used in FFI C code. Our implementation does not handle polymorphic variants,
which are used in FFI code, and this leads to some false positives in our experiments (Section 5.2).

Finally, recall that our analysis of C functions is monomorphic. Thus we cannot infer quantified types for C
functions that are polymorphic in OCaml value parameters. Instead, we allow them to be hand-annotated as
polymorphic. Such C functions appear to be rare in practice, as we only added these annotations 4 times in our
benchmark suite.

5.2 Experiments

We ran our tool on several programs that utilize the OCaml foreign function interface. The programs we looked at
are actually glue libraries that provide an OCaml API for system and third-party libraries. All of the programs we
analyzed were from a tested, released version, though we believe our tool is also useful during development.

Figure 9 gives a summary of our benchmarks and results. For each program, we list the lines of C and OCaml
code, and the running time (three run average) for our analysis on a 2GHz Pentium IV Xeon Processor with 2GB
of memory. Recall from Section 3.1 that we do not directly analyze OCaml function bodies. Thus the bulk of the
time is spent analyzing C code. Also, our analysis is done as the program is compiled, so these figures also include
compilation time.

The next three columns list the number of errors found, the number of warnings for questionable programming
practice, and the number of false positives, i.e., warnings for code that appears to be correct. The last column shows
the number of places where the implementation warned that it did not have precise flow-sensitive information (see
below). The total number of warnings is the sum of these four columns.

We found a total of 24 outright errors in the benchmarks. One source of errors was forgetting to register C
references to the OCaml heap before invoking the OCaml runtime. This accounts for one error in each of ftplib,
lablgl, and lablgtk. Similarly, the one error in each of ocaml-mad and ocaml-vorbis was registering a local parameter
with the garbage collector but then forgetting to release it, thus possibly leaking memory or causing subtle memory
corruption.

The 19 remaining errors are type mismatches between the C code and the OCaml code. For instance, 5 of the
lablgtk errors and all ocaml-glpk and ocaml-ssl errors were due to using Val int instead of Int val or vice-versa.
Another error was due to one FFI function mistreating an optional argument as a regular argument by directly
accessing the option block as if it were the expected type rather than an option sum type. Thus, the C code will
most likely violate type safety. The other type errors are similar.

12

In addition to the 24 errors, our tool reported 22 warnings corresponding to questionable coding practices. A
common mistake is declaring the last parameter in an OCaml signature as type unit even though the corresponding
C function omits that parameter in its declaration. While this does not usually cause problems on most systems,
it is not good practice, since the trailing unit parameter is placed on the stack. The warnings reported for ftplib,
ocaml-glpk, ocaml-ssl, lablgl, and lablgtk were all due to this case.

The warning in gz is an interesting abuse of the OCaml type system. The gz program contains an FFI function
to seek (set the file position) on file streams, which have either type input channel or output channel. However,
instead of taking a sum type as a parameter (to allow both kinds of arguments), the function is declared with the
polymorphic type ’a as its parameter. Clearly this is very dangerous, because OCaml will allow any argument to be
passed to this function. In this case, however, only the right types are passed to the function, and it is encapsulated
so no other code can access the function, and so we classify this as questionable programming practice rather than
an error.

Our tool also reported a number of false positives, i.e., warnings for code that seems correct. One source of false
positives is due to polymorphic variants, which we do not handle. The other main source of false positives is due to
pointer arithmetic disguised as integer arithmetic. Recall that the type value is actually a typedef for long. Therefore
if v has type t ∗ custom, then both ((t∗)v + 1) and (t∗)(v + sizeof(t∗)) are equivalent. However, our system infers v
to have a custom pointer type in the first case, and a custom integer type in the second case, creating a unification
error.

Finally, in several of the benchmarks there are a number of places where our tool issues a warning because it
does not have precise enough information to compute a type. For instance, this may occur when computing the
type of e1 +p e2 if e2 has the type int[>{0}]{>}, since the analysis cannot determine the new offset. We also classify
warnings about global value types and the use of function pointers as imprecision warnings. However, these did not
occur very often, only 10 and 8 times respectively. One interesting direction for future work would be eliminating
these warnings and instead adding run-time checks to the C code for these cases.

6 Related Work

Most languages include a foreign function interface, typically to C, since it runs on many platforms. For languages
with semantics and runtime systems that are close to C, “foreign function” calls to C can typically be made using
simple interfaces. For languages that are further from C, FFIs are more complicated, and there are many interesting
design points with different tradeoffs [3, 7, 13, 14, 15]. For example, Blume [3] proposes a system allowing arbitrary
C data types to be accessed by OCaml. Fisher et al [8] have developed a framework that supports exploration of
many different foreign interface policies. While various interfaces allow more or less code to be written natively (and
there is a trend towards more native code rather than glue code), the problem of validating usage of the interface on
the foreign language side still remains. As far as we are aware, our paper is the first that attempts checking richer
properties on the foreign language side between two general purpose programming languages.

Recently, researchers have developed systems to check that dynamically-generated SQL queries are well-formed
[5, 6, 9]. In a sense, these systems are checking a foreign-function interface between SQL and the source language.
In order to model SQL queries, the systems focus on string manipulations rather than standard type structure, and
so they are considerably different than our type system.

Trifonov and Shao [20] use effects to reason about the safety of interfacing multiple safe languages with different
runtime resource requirements in the same address space. Their focus is on ensuring that code fragments in the
various languages have access to necessary resources while preserving the languages’ semantics, which differs from
our goal of checking types and GC properties in FFIs.

Systems like COM [10] and SOM [11] provide interoperability between object-oriented frameworks. Essentially,
they are foreign function interfaces that incorporate an object model. Typically these systems include dynamic type
information that is checked at runtime and used to find methods and fields. We leave the problem of statically
checking such object FFIs to future work.

Our type system bears some resemblance to systems that use physical type checking for C [4, 17], in that both
need to be concerned with memory representations and offsets. However, our system is considerably simpler than
full-fledged physical type checking systems simply because OCaml data given type value is typically only used in
restricted ways.

One way to avoid foreign function interfaces completely is to compile all programs down to a common intermediate
representation. For example, the Microsoft common-language runtime (CLR) [12, 16] includes a strong type system
and is designed as the target of compilers for multiple different languages. While this solution avoids the kinds of
programming difficulties that can arise with FFIs, it does not solve the issue of interfacing with programs in non-CLR

13

languages or with unmanaged (unsafe) CLR code.

7 Conclusion

We have presented a multi-lingual type inference system for checking type and GC safety across the OCaml-to-C
foreign function interface. Our system embeds the types of each language into the other, using representational
types to model the overlapping physical representations in C of different OCaml types. Our type inference algorithm
uses a combination of unification to infer OCaml types and dataflow analysis to track offset and tag information.
We use effects to track garbage collection information and to ensure that C pointers to the OCaml heap registered
with the garbage collector. Using an implementation of our algorithm, we found several errors and questionable
coding practices in a small benchmark suite. We think our results suggest that multi-lingual type inference can be
an important part of foreign function interfaces, and we believe these same techniques can be extended and applied
to other FFIs.

References

[1] ANSI. Programming languages – C, 1999. ISO/IEC 9899:1999.

[2] N. Benton and A. Kennedy, editors. BABEL’01: First International Workshop on Multi-Language Infrastructure and
Interoperability, volume 59 of Electronic Notes in Theoretical Computer Science, Firenze, Italy, Sept. 2001. http://www.
elsevier.nl/locate/entcs/volume59.html.

[3] M. Blume. No-Longer-Foreign: Teaching an ML compiler to speak C “natively”. In Benton and Kennedy [2]. http:
//www.elsevier.nl/locate/entcs/volume59.html.

[4] S. Chandra and T. W. Reps. Physical Type Checking for C. In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, pages 66–75, Toulouse, France, Sept. 1999.

[5] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise Analysis of String Expressions. In R. Cousot, editor, Static
Analysis, 10th International Symposium, volume 2694 of Lecture Notes in Computer Science, pages 1–18, San Diego, CA,
USA, June 2003. Springer-Verlag.

[6] R. DeLine and M. Fähndrich. The Fugue Protocol Checker: Is your software Baroque? Technical Report MSR-TR-2004-07,
Microsoft Research, Jan. 2004.

[7] S. Finne, D. Leijen, E. Meijer, and S. P. Jones. Calling hell from heaven and heaven from hell. In Proceedings of the fourth
ACM SIGPLAN International Conference on Functional Programming, pages 114–125, Paris, France, Sept. 1999.

[8] K. Fisher, R. Pucella, and J. Reppy. A framework for interoperability. In Benton and Kennedy [2]. http://www.elsevier.
nl/locate/entcs/volume59.html.

[9] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically Generated Queries in Database Applications. In
Proceedings of the 26th International Conference on Software Engineering, pages 645–654, Edinburgh, Scotland, UK, May
2004.

[10] D. N. Gray, J. Hotchkiss, S. LaForge, A. Shalit, and T. Weinberg. Modern Languages and Microsoft’s Component Object
Model. Communications of the ACM, 41(5):55–65, May 1998.

[11] J. Hamilton. Interlanguage Object Sharing with SOM. In Proceedings of the Usenix 1996 Annual Technical Conference,
San Diego, California, Jan. 1996.

[12] J. Hamilton. Language Integration in the Common Language Runtime. ACM SIGPLAN Notices, 38(2):19–28, Feb. 2003.

[13] L. Huelsbergen. A Portable C Interface for Standard ML of New Jersey. http://www.smlnj.org//doc/SMLNJ-C/smlnj-c.ps,
1996.

[14] X. Leroy. The Objective Caml system, Aug. 2004. Release 3.08, http://caml.inria.fr/distrib/ocaml-3.08/ocaml-3.
08-refman.pdf.

[15] S. Liang. The Java Native Interface: Programmer’s Guide and Specification. Addison-Wesley, 1999.

[16] E. Meijer, N. Perry, and A. van Yzendoorn. Scripting .NET using Mondrian. In J. L. Knudsen, editor, ECOOP 2001
- Object-Oriented Programming, 15th European Conference, volume 2072 of Lecture Notes in Computer Science, pages
150–164, Budapest, Hungary, June 2001. Springer-Verlag.

[17] G. Necula, S. McPeak, and W. Weimer. CCured: Type-Safe Retrofitting of Legacy Code. In Proceedings of the 29th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 128–139, Portland, Oregon, Jan.
2002.

[18] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate Language and Tools for Analysis and Transfor-
mation of C Programs. In R. N. Horspool, editor, Compiler Construction, 11th International Conference, volume 2304 of
Lecture Notes in Computer Science, pages 213–228, Grenoble, France, Apr. 2002. Springer-Verlag.

[19] D. Rémy. Typechecking records and variants in a natural extension of ML. In Proceedings of the 16th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 77–88, Austin, Texas, Jan. 1989.

[20] V. Trifonov and Z. Shao. Safe and Principled Language Interoperation. In D. Swierstra, editor, 8th European Symposium
on Programming, volume 1576 of Lecture Notes in Computer Science, pages 128–146, Amsterdam, The Netherlands, Mar.
1999. Springer-Verlag.

14

v ::= n | l | {n} | {l + n}
e ::= v | x | ∗e | e aop e | e+p e

| Val int e | Int val e

lval ::= x | ∗(e+p n)

s ::= () | L: s | s ; s | goto L
| lval := e | if e then L
| if sum tag(x) == n then L

| if int tag(x) == n then L

| if unboxed(x) then L

Figure 10: Simplified Grammar for Expressions and Statements

R ::= [] | ∗R | R aop e | v aop R | R+p e

| v +p R | Val int R | Int val R

| R ; s | if R then L

| R := e | v :=R

Figure 11: Reduction Context

A Soundness Proof

In this appendix we develop a proof of soundness for a slightly simplified version of our multi-lingual type system. Our
modified source language is shown in Figure 10. We have removed functions, casting operations, and CAMLprotect

and CAMLreturn. We believe these features can be added without difficulty, though with more tedium. Thus we
focus on checking the sequence of statements that forms the body of a function, with branches but no function calls.
We have added to our grammar the empty statement () and a new non-terminal v for syntactic values, which are C
integers n, C pointers l, OCaml integers {n}, and OCaml pointers {l+n} (a pointer to base address l on the OCaml
heap and offset n).

Our small-step semantics uses three stores SC , SML, and V to model updatable references. Here, SC maps C
pointers l to values, SML maps OCaml pointers {l + n} to values, and V maps variables x to values. Recall that a
pointer into the OCaml heap points to a structured block just past the header. We therefore extend the definition of
SML so that SML({l +−1}) is defined to be the runtime tag of the block pointed to by l. We define a configuration
to be a tuple 〈SC , SML, V, s〉, meaning that statement s is being evaluated in the context of stores SC , SML, and
V . In order to enhance readability, we also allow configurations to contain expressions: 〈SC , SML, V, e〉. To model
branches, we define a mapping D from labels to the sequence of statements beginning at that label. Thus a branch
to a label L results in the program evaluating statement D(L) next.

As is standard, we define reduction contexts R in Figure 11 to specify the order of evaluation in our semantics.
Here, each expression contains a hole [] which shows what must be evaluated next. We therefore use the notation
R[e] to mean the reduction context R where the hole is replaced by e.

Our small-step operational semantics are shown in Figure 12. These rules define a reduction relation of the form

〈SC , SML, V, s〉 → 〈S′
C , S

′
ML, V

′, s′〉

Here, a statement s paired with stores SC ,SML, and V , reduces to a new statement s′ and yields new stores S′
C ,

S′
ML, and V ′. Note that in Figure 12(a) reducing expressions does not yield any new stores since expressions in our

language are side-effect free. We define →∗ to be the reflexive, transitive closure of →.
Most of the rules in Figure 12 are straightforward. In order to preserve soundness, we only allow trivial pointer

arithmetic on C pointers in o-c-add and o-c-assign. In rules o-ifsum and o-ifsum2, recall that SML({l + −1})

15

represents the run-time type tag of a structured block at location l.
We will prove soundness of the type checking versions of our rules shown in Figures 13 and 14. In Figure 13,

we have added rules to type check C locations l, OCaml integers {n}, and OCaml locations {l + n}. Since these are
checking rules, we assume that a label environment G has already been computed. In order to maintain soundness,
we have also restricted e2 to have value 0 in Add C Exp, since SC does not track the sizes of C memory blocks.

Our soundness proof will follow the usual pattern, showing subject reduction lemmas for statements and expres-
sions. In our proof, as is standard, we will overload Γ so that in addition to containing types for variables, it will
also contain types for C locations and ML locations. We define a compatibility relationship to define when a type
environment Γ assigns correct types to the values stored in SC , SML, and V :

Definition 4 (Compatibility) Γ is said to be compatible with SC , SML, and V (written Γ ∼ 〈SC , SML, V 〉) if

1. dom(Γ) = dom(SC) ∪ dom(SML) ∪ dom(V)

2. For all l ∈ SC there exists ct such that Γ ` l : ct *[>{0}]{>} and Γ ` SC(l) : ct [>{0}]{>}.

3. For all {l + n} ∈ SML there exist Ψ, Σ, j, k, m, Π0, . . . ,Πj, mt0, . . . ,mtk such that

• Γ ` {l + n} : (Ψ,Σ) value[boxed{n}]{m}
• Σ = Π0 + · · ·+ Πj, m ≤ j

• Πm = mt0 × · · · ×mtk, n ≤ k

• Γ ` SML({l + n}) : mtn value[>{0}]{>}
• SML({l +−1}) = m

4. For all x ∈ V , Γ ` V (x) : Γ(x)

We begin by showing that given any well typed expression that is not a value, one of the reduction rules from
Figure 12(a) applies and the result of the reduction preserves the type of the expression.

Lemma 1 (Subject Reduction for Expressions) If Γ ` e : ct [B{I}]{T} and Γ ∼ 〈SC , SML, V 〉, then either e is
a value or there exists e′ such that

(1) 〈SC , SML, V, e〉 → 〈SC , SML, V, e
′〉, and

(2) Γ ` e′ : ct [B{I}]{T}

Proof: Proceed by induction on the structure of e:

case n, l, {n}, {l + n}: These are values, so there is nothing to prove.

case x: Since Γ ` x : ct [B{I}]{T}, x must be in the domain of Γ. Since Γ ∼ 〈SC , SML, V 〉, x is also in the domain
of V . Therefore we can apply the rule o-var to show (1), letting e′ = V (x). And then by compatibility,
Γ ` V (x) : ct [B{I}]{T}, showing (2).

case *e1: Note that either the type rule C Deref Exp or Val Deref Exp may apply. First consider the former
case. Since Γ ` *e1 : ct [B{I}]{T}, C Deref Exp states that B = T = >, I = 0, and Γ ` e1 : ct *[>{0}]{>}.
If e1 is not a value, then by induction there exists e2 such that 〈SC , SML, V, e1〉 → 〈SC , SML, V, e2〉 and
Γ ` e2 : ct *[>{0}]{>}. So taking e′ = *e2, we have satisfied (1). Also, by applying the type rule C Deref
Exp to *e2, we see that Γ ` *e2 : ct [>{0}]{>} and thus (2) is satisfied. For the remaining cases in this proof we
can make a similar argument for the inductive case, and so rather than repeat this argument we will implicitly
assume that all sub-expressions are values.

Now consider the case where C Deref Exp applies and e1 is a value. Recall that Γ ` e1 : ct *[>{0}]{>}
and by examining the type rules, we see that the only rule which applies to a value with type ct * is Loc
Exp. Therefore e1 must be a location l and the rule o-c-deref applies. Thus if we set e′ = SC(l), then
(1) is satisfied. Also, since Γ ∼ 〈SC , SML, V 〉 and Γ ` l : ct *[>{0}]{>} then Γ ` SC(l) : ct [>{0}]{>} by
compatibility. Therefore Γ′ ` e′ : ct [>{0}]{>} and (2) is satisfied.

Finally, consider the case where Val Deref Exp applies and e1 is a value. Here, Val Deref Exp states

Γ ` e1 : (Ψ,Σ) value[boxed{n}]{m} Σ = Π0 + · · ·+ Πk m ≤ k Πm = mt0 × · · · ×mtj n ≤ j

Γ ` *e1 : mtn value[>{0}]{>}

16

(o-var) 〈SC , SML, V,R[x]〉 → 〈SC , SML, V,R[v]〉 V (x) = v
(o-ml-add) 〈SC , SML, V,R[{l + n1}+p n2]〉 → 〈SC , SML, V,R[{l + n}]〉 n = n1 + n2

(o-c-add) 〈SC , SML, V,R[l +p 0]〉 → 〈SC , SML, V,R[l]〉
(o-c-deref) 〈SC , SML, V,R[∗l]〉 → 〈SC , SML, V,R[v]〉 SC(l) = v
(o-ml-deref) 〈SC , SML, V,R[∗{l + n}]〉 → 〈SC , SML, V,R[v]〉 SML({l + n}) = v
(o-aop) 〈SC , SML, V,R[n1 aop n2]〉 → 〈SC , SML, V,R[n]〉 n = n1 aop n2

(o-valint) 〈SC , SML, V,R[Val int n]〉 → 〈SC , SML, V,R[{n}]〉
(o-intval) 〈SC , SML, V,R[Int val {n}]〉 → 〈SC , SML, V,R[n]〉

(a) Small-step Semantics for Expressions

(o-label) 〈SC , SML, V, L : s; s′〉 → 〈SC , SML, V, s; s
′〉

(o-goto) 〈SC , SML, V, goto L; s〉 → 〈SC , SML, V,D(L)〉
(o-c-assign) 〈SC , SML, V, ∗(l +p 0) := v; s〉 → 〈SC [l 7→ v], SML, V, s〉
(o-ml-assign) 〈SC , SML, V, ∗({l + n}) := v; s〉 → 〈SC , SML[{l + n} 7→ v], V, s〉
(o-var-assign) 〈SC , SML, V, x := v; s〉 → 〈SC , SML, V [x 7→ v], s〉
(o-if) 〈SC , SML, V, if n then L; s〉 → 〈SC , SML, V,D(L)〉 if n 6= 0
(o-if2) 〈SC , SML, V, if n then L; s〉 → 〈SC , SML, V, s〉 if n = 0
(o-ifsum) 〈SC , SML, V, if sum tag(x) == n then L; s〉 → 〈SC , SML, V,D(L)〉 if (SML({l +−1})) = n

V (x) = {l + 0}
(o-ifsum2) 〈SC , SML, V, if sum tag(x) == n then L; s〉 → 〈SC , SML, V, s〉 if (SML({l +−1})) 6= n

V (x) = {l + 0}
(o-ifi) 〈SC , SML, V, if int tag(x) == n2 then L; s〉 → 〈SC , SML, V,D(L)〉 if n1 = n2 V (x) = {n1}
(o-ifi2) 〈SC , SML, V, if int tag(x) == n2 then L; s〉 → 〈SC , SML, V, s〉 if n1 6= n2 V (x) = {n1}
(o-iflong) 〈SC , SML, V, if unboxed(x) then L; s〉 → 〈SC , SML, V,D(L)〉 V (x) = {n}
(o-iflong2) 〈SC , SML, V, if unboxed(x) then L; s〉 → 〈SC , SML, V, s〉 V (x) = {l + 0}

(b) Small-step Semantics for Statements

Figure 12: Small-step Semantics Rules

Since e1 has a boxed value type, it must be an ML location {l + n} by the ML Loc Exp type rule. By
compatibility, {l + n} ∈ dom(SML), and hence the rule o-ml-deref applies. Setting e′ = SML({l + n}), (1) is
satisfied. Also by compatibility, SML({l + −1}) = m and Γ ` SML({l + n}) : mtn value[>{0}]{>}, and thus
(2) is satisfied.

case e1 +p e2: Here, the either Add C Exp or Add Val Exp may apply. In the former case, we see that Γ `
e1 : ct *[>{0}]{>} and Γ ` e2 : int[>{0}]{0}. Therefore by inspecting the type rules, the only value with
a pointer type is a location l and thus e1 = l and similarly, e2 = 0. Therefore the rule o-c-add applies
and 〈SC , SML, V, e1 +p e2〉 → 〈SC , SML, V, l〉 and thus we have satisfied (1). Also, by Add C Exp, Γ ` l :
ct *[>{0}]{>} and thus we have satisfied (2).

Now assume that Add Val Exp applies. Therefore, Γ ` e1 : (Ψ,Σ)[boxed{n}]{n1} and Γ ` e2 : int[>{0}]{m}.
By examining the type rules, the only value with a boxed type is an ML location, so e1 must be of the form
{l+ n}. Similarly, e2 must be an integer m. Therefore the rule o-ml-add applies and 〈SC , SML, V, e1 +p e2〉 →
〈SC , SML, V, {l + n′}〉 where n′ = n+m and we have satisfied (1). By again examining the type rules, we see
that Γ ` {l + n′} : (Ψ,Σ)[boxed{n′}]{n1} and thus (2) is satisfied.

case e1 aop e2: By examining the type rules, we see that the only rule that applies is AOP Exp and thus Γ `
e1 aop e2 : int[>{0}]{T}, Γ ` e1 : int[>{0}]{T1} and Γ ` e2 : int[>{0}]{T2} where T = T1 aop T2. By
again looking at the type rules, we see that the only values which have type int are integer values by Int Exp,
therefore e1 and e2 must be some values n1 and n2, respectively, with n1 v T1 and n2 v T2. Thus the rule
o-aop applies and we can let e′ = n where n = n1 aop n2 and (1) is satisfied. Also, the rule Int Exp again
applies since n v T and thus Γ ` n : int[>{0}]{T} and (2) is satisfied.

17

Int Exp
0 v I n v T

Γ ` n : int[>{I}]{T}

Loc Exp
Γ(l) = ct *[>{I}]{>} 0 v I

Γ ` l : Γ(l)

ML Int Exp
n+ 1 ≤ Ψ unboxed v B 0 v I n v T

Γ ` {n} : (Ψ,Σ) value[B{I}]{T}

ML Loc Exp
Γ({l + n}) = (Ψ,Σ)[B{I}]{T}

boxed v B n v I m v T Σ = Π0 + · · ·+ Πj m ≤ j Πm = mt0 × · · · ×mtk n ≤ k

Γ ` {l + n} : Γ({l + n})

Var Exp
x ∈ dom(Γ)

Γ ` x : Γ(x)

Add Val Exp
Γ ` e1 : (Ψ,Σ) value[boxed{n}]{n′}

Γ ` e2 : int[>{0}]{m} Σ = Π0 + · · ·+ Πk n′ ≤ k Πn′ = mt0 × · · · ×mtj n+m ≤t otj

Γ ` e1 +p e2 : (Ψ,Σ) value[boxed{n+m}]{n′}

Add C Exp
Γ, P ` e1 : ct *[>{0}]{>} Γ, P ` e2 : int[>{0}]{0}

Γ, P ` e1 +p e2 : ct *[>{0}]{>}

Val Deref Exp
Γ ` e1 : (Ψ,Σ) value[boxed{n}]{m} Σ = Π0 + · · ·+ Πk m ≤ k Πm = mt0 × · · · ×mtj n ≤ j

Γ ` *e : mtn value[>{0}]{>}

C Deref Exp
Γ ` e : ct *[>{0}]{>}
Γ ` *e : ct [>{0}]{>}

AOP Exp
Γ ` e1 : int[>{0}]{T} Γ ` e2 : int[>{0}]{T ′}

Γ ` e1 aop e2 : int[>{0}]{T aop T ′}

Val Int Exp
Γ ` e : int[>{0}]{T} T + 1 ≤ Ψ

Γ ` Val int e : (Ψ,Σ) value[unboxed{0}]{T}

Int Val Exp
Γ ` e : mt value[unboxed{0}]{T}

Γ ` Int val e : int[>{0}]{T}

Figure 13: Type Checking Rules for C Expressions

18

Empty Stmt

Γ, G ` (),Γ

Seq Stmt
Γ, G ` s1,Γ′ Γ′, G ` s2,Γ′′

Γ, G ` s1 ; s2,Γ′′

Lbl Stmt
G(L), G ` s,Γ′ Γ v G(L)

Γ, G ` L: s,Γ′

Goto Stmt
Γ v G(L)

Γ, G ` goto L, reset(Γ)

If Stmt
Γ ` e : int[>{0}]{T} Γ v G(L)

Γ, G ` if e then L,Γ

If unboxed Stmt
Γ, G ` x : mt [B{0}]{T}

Γ′ = Γ[x 7→ mt value[unboxed{0}]{T}] Γ′ v G(L)

Γ, G ` if unboxed(x) then L,Γ[x 7→ mt value[boxed{0}]{T}]

If sum tag Stmt
Γ ` x : mt value[boxed{0}]{T}
mt = (C,Π0 + · · ·+ Πn + Σ)

Γ′ = Γ[x 7→ mt value[boxed{0}]{n}] Γ′ v G(L)

Γ, G ` if sum tag(x) == n then L,Γ

If int tag Stmt
Γ ` x : mt value[unboxed{0}]{T} mt = (Ψ,Σ)

n+ 1 ≤ Ψ Γ′ = Γ[x 7→ mt value[unboxed{0}]{n}]
Γ′ v G(L)

Γ, G ` if int tag(x) == n then L,Γ

LSet Stmt
Γ ` *(e1 +p n) : ct [>{0}]{>} Γ ` e2 : ct [B{0}]{T}

Γ, G ` *(e1 +p n) := e2,Γ

VSet Stmt
Γ ` e : ct [B{I}]{T}

Γ, G ` x := e,Γ[x 7→ ct [B{I}]{T}]

Figure 14: Type Checking Rules for C Statements

case Val int e1: By inspecting the type rules, we see that the only rule that applies is Val Int Exp:

Γ ` e1 : int[>{0}]{T} T + 1 ≤ Ψ

Γ ` Val int e1 : (Ψ,Σ) value[unboxed{0}]{T}

Therefore since e1 is a value, it must be some number n with n v T by Int Exp. Thus the rule o-valint

applies with e′ = {n} and (1) is satisfied. If T is >, then Ψ must be ∞ and we can show Γ ` {n} :
(∞,Σ) value[unboxed{0}]{>} by ML Int Exp. If T is some number m then Int Exp states that n = m.
Therefore we can show Γ ` {n} : (Ψ,Σ) value[unboxed{0}]{n} by ML Int Exp. Note that T can not be ⊥
since it is a value. Therefore we have exhausted all cases for T and (2) is satisfied.

case Int val e1: By inspecting the type rules, we see that the only rule that applies is Int Val Exp:

Γ ` e1 : mt value[unboxed{0}]{T}
Γ ` Int val e1 : int[>{0}]{T}

Since e1 is a value, it must have the form {n} by ML Int Exp. Therefore the rule o-intval applies and setting
e′ = n satisfies (1). If T = > then clearly Γ ` n : int[>{0}]{>} by Int Exp. If T = m then ML Int Exp
states that n = m and thus Γ ` n : int[>{0}]{n}. Note that T can not be ⊥ since it is a value. Therefore we
have exhausted all cases for T and (2) is satisfied.

2

We next show subject reduction for statements. Recall that typing judgments for statements include label envi-
ronments G. Thus we introduce a notion of compatibility of G with our statement store D, similar to the ∼ relation
defined above:

Definition 5 (L-Compatibility) A statement store D is said to L-compatible with a label environment G, written
D ∼L G, if for all L ∈ D there exists Γ such that G(L), G ` D(L),Γ.

As we said above, whenever we branch to a label L, the next statement to be evaluated is D(L). This is only
valid if the statement to which D maps L is a labeled statement. Formally:

Definition 6 (Well Formedness of D) D is said to be well formed if for all L ∈ D, D(L) is a statement of the
form L : s.

19

Recall from Section 3.3.2 that we define Γ v Γ′ if Γ(x) v Γ′(x) for all x ∈ dom(Γ)∪ dom(Γ′). Since compatibility
is an important property to preserve in our subject reduction lemma for statements, we first present a result that
shows that store compatibility follows this relation.

Lemma 2 If Γ1 v Γ2 and Γ1 ∼ 〈SC , SML, V 〉 then Γ2 ∼ 〈SC , SML, V 〉

Proof: Let l ∈ dom(SC). Then by compatibility, there exists ct such that Γ1 ` SC(l) : ct [>{0}]{>}. Since Γ1 v Γ2,
then Γ2 ` SC(l) : ct [>{I}]{>} where 0 v I. Since SC maps locations to values, SC(l) could be one of n, l, {n}, or
{l+n}. By examining the type rules, we see that Int Exp, Loc Exp, and ML Int Exp can assign I = 0 in the first
three cases. Therefore consider when SC(l) = {l′ + n}. Since Γ1 ` {l′ + n} : ct [>{0}]{>}, then n = 0 by ML Loc
Exp. Therefore Γ2 ` {l′ + 0} : ct [>{0}]{>} by ML Loc Exp. Thus Γ2 is compatible with SC .

Let {l + n} ∈ dom(SML). Then by compatibility, there exists ct such that Γ1 ` SML({l + n}) : ct [>{0}]{>}.
Since Γ1 v Γ2, then Γ2 ` SML({l + n}) : ct [>{I}]{>} where 0 v I. Since SML maps locations to values, I = 0 by
a parallel argument to the above case and thus Γ2 ` SML({l + n}) : ct [>{0}]{>}. Since Γ1 and Γ2 only differ in
the tags which they assign {l+ n} and not the ct type, we see that Γ2 trivially satisfies the remaining compatibility
requirements with SML.

Finally, let x ∈ dom(V). Since Γ1 is compatible with V , there exists ct , B, I, T such that Γ1 ` x : ct [B{I}]{T}
and Γ1 ` V (x) : ct [B{I}]{T}. Since Γ1 v Γ2, Γ2 ` x : ct [B′{I ′}]{T ′} where B v B′, I v I ′, and T v T ′. Since
V maps variables to values, V (x) must be one of n, {n}, l, or {l + n}. If V (x) = n, then Int Exp applies and
B = B′ = >. Since I v I ′ and 0 v I, then 0 v I ′. Similarly, since T v T ′ and n v T then n v T ′. Therefore
Int Exp again applies and we see that Γ2 will assign a compatible type. If V (x) = l, then Loc Exp applies and
B = B′ = T = T ′ = >. Since 0 v I and I v I ′, then 0 v I ′ and thus Γ2 will again assign a compatible type in this
case. If V (x) = {n} then ML Int Exp applies and since unboxed v B and B v B′, then unboxed v B′. Similarly
0 v I ′ and n v T ′ and thus Γ2 will assign a compatible type. Finally, if V (x) = {l + n}, then since boxed v B and
B v B′, then boxed v B′. Similarly 0 v I ′ and n v T ′. Thus in all cases Γ2 will assign a compatible type to V (x).

2

Several of our statements given in Figure 10 contain a label L which the program may branch to. Therefore we
first present a lemma for this common case:

Lemma 3 If Γ1 ∼ 〈SC , SML, V 〉, D ∼L G, D is well formed, and Γ1 v G(L), then for any statement s such that
Γ1, G ` s,Γ2 and

〈SC , SML, V, s〉 → 〈S′
C , S

′
ML, V

′, D(L)〉

there exist Γ3, s
′ such that

(I) 〈SC , SML, V, s〉 → 〈SC , SML, V, L : s′〉,

(II) G(L) ∼ 〈SC , SML, V 〉, and

(III) G(L), G ` L : s′,Γ3

Proof: Since D is well formed, there exists s′ such that

〈SC , SML, V, s〉 → 〈SC , SML, V, L : s′〉

thus showing (I). Also, since D ∼L G, there exists Γ3 such that G(L), G ` L : s′,Γ3 satisfying (II). Since Γ1 v G(L)
then by Lemma 2, G(L) ∼ 〈SC , SML, V 〉. (3). 2

Finally, we show subject reduction for statements. All of our statements will be reduced in one of three ways
which correspond to the three possible conclusions below. Either the statement contains a sub-expression which can
be reduced, the statement is part of a sequence s1; s2 and reduces to the second statement, or the statement makes
a branch to a label. Note that certain statements may support more than one conclusion (if a sequence contains a
label statement), which is allowed since we only require at least one conclusion to hold. Each conclusion is similar in
that it ensures that at every step of the program: (a) it is possible to take a step, (b) the stores are still compatible
with the type environments at that step, and (c) the new statement is still well typed.

Lemma 4 (Subject Reduction for Statements) If s is a statement, Γ1, G ` s,Γ2, Γ1 ∼ 〈SC , SML, V 〉, D ∼L G,
and D is well formed then either s = () or s = s1; s2 and one of the following must hold:

(1) There exist Γ′
1, s

′
1 such that

(a) 〈SC , SML, V, s1; s2〉 → 〈SC , SML, V, s
′
1; s2〉

20

(b) Γ′
1 ∼ 〈SC , SML, V 〉

(c) Γ′
1, G ` s′1; s2,Γ2

(2) There exist Γ′
1, S

′
C , S

′
ML, V

′ such that

(a) 〈SC , SML, V, s1; s2〉 → 〈S′
C , S

′
ML, V

′, s2〉
(b) Γ′

1 ∼ 〈S′
C , S

′
ML, V

′〉
(c) Γ′

1, G ` s2,Γ2

(3) There exist Γ4, s3 such that

(a) 〈SC , SML, V, s1; s2〉 → 〈SC , SML, V, L : s3〉
(b) G(L) ∼ 〈SC , SML, V 〉
(c) G(L), G ` L : s3,Γ4

Proof: By induction on the structure of s1:

case L: s′ In this case, the rule o-label applies and thus

〈SC , SML, V, L : s′; s2〉 → 〈SC , SML, V, s
′; s2〉

and so we are in case (1) and (a) has been satisfied. Further, the type rule Lbl Stmt applies and thus Γ1 v G(L)
and

G(L), G ` s′,Γ2

Thus selecting Γ′
1 = G(L) satisfies (c). Note also that since Γ1 v Γ′

1, Γ′
1 ∼ 〈SC , SML, V 〉 by Lemma 2 and (b)

is satisfied.

case goto L In this case, the rule o-goto applies and thus

〈SC , SML, V, goto L; s2〉 → 〈S′
C , S

′
ML, V

′, D(L)〉

Note also that the type rule Goto Stmt applies and thus Γ1 v G(L). Therefore by Lemma 3 we have shown
conclusion (3).

case e1 := e2 In this case, we have several sub-cases depending on whether e1 or e2 is a value or not and which type
rule applies. First consider the case where e2 is not a value and thus we will show (1). Note that either VSet
Stmt or LSet Stmt can apply. First consider the case where the rule VSet Stmt applies. Here, there must
exist ct , B, I, T such that Γ1 ` e2 : ct [B{I}]{T}. Since e2 is not a value, Lemma 1 states there exists an e′2
such that 〈SC , SML, V, e2〉 → 〈SC , SML, V, e

′
2〉 with Γ1 ` e′2 : ct [B{I}]{T}. Therefore

〈SC , SML, V, e1 := e2; s
′〉 → 〈SC , SML, V, e1 := e

′
2; s

′〉

and we have satisfied (a). Since Γ1 ` e′2 : ct [B{I}]{T} then Γ1, G ` e1 := e′2; s′,Γ2 and thus we have shown (b).
(1) can also be shown when LSet Stmt applies (and e2 not a value) by a parallel argument.

Now we will consider the cases when e2 is a value. Note that according to our grammar e1 can either be of the
form x or *(e3 +p n).

If e1 = x then we will show conclusion (2). Here, the rule o-var-assign applies and thus

〈SC , SML, V, x := v; s〉 → 〈SC , SML, V
′, s〉

where V ′ = V [x 7→ v] and so conclusion (a) is satisfied.

Furthermore, the type rule VSet Stmt applies and thus there exist ct , B, I, T such that Γ1 ` e2 : ct [B{I}]{T}.
The rule also states that Γ1, G ` x := e2,Γ

′
1 where Γ′

1 = Γ1[x 7→ ct [B{I}]{T}. Therefore Γ′
1 ` V ′(x) : Γ′

1(x).
Since SC and SML are unchanged, then Γ′

1 ∼ 〈SC , SML, V
′〉 and we have shown (b).

Recall from our hypothesis that Γ1, G ` s1; s2,Γ2 and thus Γ1, G ` x := e2; s2,Γ2. Here, the type rule Seq
Stmt applies and since Γ1, G ` x := e2,Γ

′
1, then Γ′

1, G ` s2,Γ2 and thus we have shown (c).

21

Now consider the case where e1 has the form of *(e3 +p n). If e3 is not a value, then we can show that (1) holds
by a parallel argument to the case where e2 was not a value. If e3 is a value, then the rule LSet Stmt applies
and we will show (2). Recall that LSet Stmt states that there exists ct such that Γ1 ` *(e3+pn) : ct [>{0}]{>}.
By examining the type rules, we see that either C Deref Exp or Val Deref Exp may apply.

First consider the case when C Deref Exp applies and therefore Γ1 ` (e3 +pn) : ct *[>{0}]{>}. The only type
rule which applies to (e3 +p n) is Add C Exp and therefore Γ1 ` e3 : ct *[>{0}]{>} and Γ1 ` n : int[>{0}]{0}.
By again examining the type rules, the only value with a C pointer type is a location l and therefore since e3
is a value, e3 = l. Similarly, we see that n must be 0. Therefore the rule o-c-assign applies and thus

〈SC , SML, V, *(l +p 0) := e2; s
′〉 → 〈S′

C , SML, V, s
′〉

where S′
C = SC [l 7→ e2] and thus we have shown (a). Since Γ1 ` e2 : ct [B{0}]{T} then Γ1 ` e2 : ct [>{0}]{>}.

Since SML and V are unchanged then Γ1 ∼ 〈Sc, SML, V 〉 and thus we have shown conclusion (b).

Recall from our hypothesis that Γ1, G ` s1; s2,Γ2 and thus Γ1, G ` *(e3 +p n) := e2; s2,Γ2. Here, the type
rule Seq Stmt applies and since Γ1, G ` *(e3 +p n) := e2,Γ1, then Γ1, G ` s2,Γ2 and thus we have shown (c),
concluding the case where C Deref Exp applies.

Finally, consider the case where e1 has the form *(e3 +p n), e3 is a value, and Val Deref Exp applies to
*(e3 +p n). Here, we will show conclusion (2). Recall type rule Val Deref Exp:

Γ1 ` (e3 +p n) : (Ψ,Σ) value[boxed{n1}]{m}
Σ = Π0 + · · ·+ Πk m ≤ k Πm = mt0 × · · · ×mtj n1 ≤ j

Γ1 ` *(e3 +p n) : mtn1 value[>{0}]{>}

(and thus ct = mtn1). Therefore, by LSet Stmt, Γ1 ` e2 : mtn1 value[B{0}]{T}. Note that the only rule
which applies to (e3 +p n) in this situation is Add Val Exp:

Γ1 ` e3 : (Ψ,Σ) value[boxed{n2}]{m}
Γ1 ` n : int[>{0}]{n} Σ = Π0 + · · ·+ Πk m ≤ k Πm = mt0 × · · · ×mtj n+ n2 ≤ j

Γ1 ` e3 +p n : (Ψ,Σ) value[boxed{n2 + n}]{m}

(and note n1 = n + n2). By again examining the type rules, we see that the only value with an ML pointer
type is an ML location, and thus e3 = {l + n2}. Therefore the rule o-ml-assign applies and thus

〈SC , SML, V, *(e3 +p n) := e2; s
′〉 → 〈SC , S

′
ML, V, s

′〉

where S′
ML = SML[{l + n1} 7→ e2] and thus we have shown (a).

Since Γ1 ` e2 : mtn1 [B{0}]{T}, then all of the bullets in requirement (3.) of compatibility are still satisfied
except for the fourth. However, Since Γ1 ` e2 : ct [B{0}]{T} then clearly Γ1 ` e2 : ct [>{0}]{>} and thus Γ1 is
compatible with S′

ML. Therefore, since SC and V have not changed, Γ1 ∼ 〈SC , S
′
ML, V 〉 and thus (b) holds.

Recall from our hypothesis that Γ1, G ` s1; s2,Γ2 and thus Γ1, G ` *(e3 +p n) := e2; s2,Γ2. Here, the type rule
Seq Stmt applies and since Γ1, G ` *(e3 +p n) := e2,Γ1, then Γ1, G ` s2,Γ2 and thus we have shown (c).

case if e then L Note that the type rule If Stmt applies and thus Γ1 v G(L) and there exists T such that
Γ1 ` e : int[>{0}]{T} . If e is not a value, then we are in case (1). By Lemma 1 there exists e′ such that
Γ1 ` e′ : int[>{0}]{T} and

〈SC , SML, V, e〉 → 〈SC , SML, V, e
′〉

Therefore Γ1, G ` if e′ then L,Γ2 and

〈SC , SML, V, if e then L; s′〉 → 〈SC , SML, V, if e
′ then L; s′〉

and thus we have shown conclusion (a). Since Γ1 ` e′ : int[>{0}]{T}, then Γ1, G ` if e′ then L; s′,Γ1 which
satisfies (c). Since our output environment is unchanged, then clearly (b) is satisfied.

If e is a value, then by inspecting the type rules, the only values with type int are numbers, so e must be some
number n. If n 6= 0 then the rule o-if applies and thus

〈SC , SML, V, if e then L; s′〉 → 〈SC , SML, V,D(L)〉

22

Since we have Γ1 v G(L) from above, Lemma 3 can be applied and conclusion (3) is satisfied.

If n = 0 then the rule o-if2 applies and we will show (2). Since o-if2 applies, then

〈SC , SML, V, if e then L; s′〉 → 〈SC , SML, V, s
′〉

which satisfies (a). Since s1 has not updated the environment, then (b) holds trivially. Finally, since Γ1, G `
s1; s2,Γ2, and Γ1, G ` if e then L,Γ1, then Γ1, G ` s2,Γ2 by Seq Stmt and thus (2) is satisfied.

case if sum tag(x) == n then L Note that the type rule If sum tag Stmt applies and thus Γ′
1 v G(L). Also by

If sum tag Stmt, there exist mt , T such that Γ1 ` x : mt value[boxed{0}]{T}. Since Γ1 is compatible with
V , then Γ1 ` V (x) : mt value[boxed{0}]{T}. Since V (x) must be value, then by inspecting the type rules, the
only values with type mt value[boxed{0}]{T} are ML locations, so V (x) must be some location {l + 0}. Also,
note that {l + 0} ∈ SML and thus SML({l +−1}) = m by compatibility.

If m = n then since Γ′
1 ` x : mt value[boxed{0}]{n}, then Γ′

1 ∼ 〈SC , SML, V 〉. Also the rule o-ifsum applies
and thus

〈SC , SML, V, if sum tag(x) == n then L; s′〉 → 〈SC , SML, V,D(L)〉

Since we showed Γ′
1 v G(L) above and Γ′

1 ∼ 〈SC , SML, V 〉, we can apply Lemma 3 and thus conclusion (3) is
satisfied.

If m 6= n then the rule o-ifsum2 applies and thus

〈SC , SML, V, if sum tag(x) == n then L; s′〉 → 〈SC , SML, V, s
′〉

and (2a) is satisfied. Since s1 has not updated the environment, compatibility holds trivially and thus (2b)
is satisfied. Finally, recall from our hypothesis that Γ1, G ` s1; s2,Γ2 and thus Γ1, G ` if sum tag(x) ==
n then L; s2,Γ2. Here, the type rule Seq Stmt applies and since Γ1, G ` if sum tag(x) == n then L,Γ1, then
Γ1, G ` s2,Γ2 and thus we have shown (2c).

case if int tag(x) == n then L Note that the type rule If int tag Stmt applies and thus Γ′
1 v G(L) and

there exist mt , T such that Γ1 ` x : mt value[unboxed{0}]{T}. Also Γ1 ` V (x) : mt value[unboxed{0}]{T}
by compatibility. Since V (x) must be a value, then by inspecting the type rules, the only values with type
mt value[unboxed{0}]{T} are ML numbers, so V (x) must be some number {m}. If n = m then since Γ′

1 ` x :
mt value[unboxed{0}]{n}, then Γ′

1 ∼ 〈SC , SML, V 〉. Also, the rule o-ifi applies and thus

〈SC , SML, V, if int tag(x) == n then L; s′〉 → 〈SC , SML, V,D(L)〉

Since Γ′
1 v G(L) and Γ′

1 ∼ 〈SC , SMl, V 〉, then we can apply Lemma 3 and thus conclusion (3) is satisfied.

If n 6= m then the rule o-ifi2 applies and thus

〈SC , SML, V, if int tag(x) == n then L; s′〉 → 〈SC , SML, V, s
′〉

and thus conclusion (2a) is satisfied. Since s1 has not updated the environment, then conclusion (2b) hold
trivially. Finally, recall from our hypothesis that Γ1, G ` s1; s2,Γ2 and thus Γ1, G ` if int tag(x) == n then

L; s2,Γ2. Here, the type rule Seq Stmt applies and since Γ1, G ` if int tag(x) == n then L,Γ1, then
Γ1, G ` s2,Γ2 and thus we have shown (2c).

case if unboxed(x) then L Note that the type rule If unboxed Stmt applies and thus there exist mt , B, T such
that Γ1 ` x : mt value[B{0}]{T}. Also, Γ1 ` V (x) : mt value[B{0}]{T} by compatibility. Since V (x) must
be a value, then by inspecting the type rules, the only values with type mt value[B{0}]{T} are ML numbers
and ML locations. Therefore V (x) must be either a number {n} or a location {l + 0}. If V (x) = {n} then
since Γ′

1 ` x : mt value[unboxed{0}]{T} then Γ′
1 is compatible with V by the type rule ML Int Exp and thus

Γ′
1 ∼ 〈SC , SML, V 〉. Also, the rule o-iflong applies and thus

〈SC , SML, V, if unboxed(x) then L; s′〉 → 〈SC , SML, V,D(L)〉

23

Since we showed Γ1 v G(L) by If unboxed Stmt, we can apply Lemma 3 and thus conclusion (3) is satisfied.

If V (x) = {l + 0} then let
Γ′′

1 = Γ1[x 7→ mt value[boxed{0}]{T}]

By examining the type rules, we see that Γ′′
1 ` V (x) : Γ′′

1 (x) by ML Loc Exp and thus Γ′′
1 ∼ 〈SC , SML, V 〉

which satisfies conclusion (2b). Also, the rule o-iflong2 applies and thus

〈SC , SML, V, if unboxed(e) then L; s′〉 → 〈SC , SML, V, s
′〉

which satisfies (2a). Finally, recall from our hypothesis that Γ1, G ` s1; s2,Γ2 and thus Γ1, G ` if unboxed(x) then
L; s2,Γ2. Here, the type rule Seq Stmt applies and since Γ1, G ` if unboxed(x) then L,Γ′′

1 , then Γ′′
1 , G ` s2,Γ2

and thus we have shown (2c).

2

The standard approach to proving soundness is to show that if e →∗ v, then v is not stuck. Since statements in
our language do not reduce to values, the only statement which is not stuck is the empty statement, (). Therefore it
is sufficient to show that every statement either diverges or eventually reduces to ().

Theorem 2 (Soundness) If Γ ` s,Γ′, Γ ∼ 〈SC , SML, V 〉, D ∼L G and D is well formed, then either 〈SC , SML, V, s〉
diverges, or 〈SC , SML, V, s〉 →∗ 〈S′

C , S
′
ML, V

′, ()〉.

Proof: By Lemma 4 we can continually reduce the statement and reestablish our compatibly assumptions. Therefore
either this process will continue forever, or there exists s′ such that 〈SC , SML, V, s〉 →∗ 〈S′

C , S
′
ML, V

′, s′〉 and for all
s′′, 〈SC , SML, V, s

′〉 6→ 〈S′
C , S

′
ML, V

′, s′′〉. Since s′ is well typed by Lemma 4, it must be () or else we could apply
Lemma 4 again and produce s′′. 2

24

