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Abstract In this paper we present a systematic approach to
create smoothly varying images from a pair of photographs
to facilitate enhanced awareness of the depth structure of
a given scene. Since our system does not rely on sophis-
ticated display technologies such as stereoscopy or auto-
stereoscopy for depth awareness, it (a) is inexpensive and
widely accessible, (b) does not suffer from vergence - ac-
commodation fatigue, and (c) works entirely with monocu-
lar depth cues. Our approach enhances the depth awareness
by optimizing across a number of features such as depth per-
ception, optical flow, saliency, centrality, and disocclusion
artifacts. We report the results of user studies that examine
the relationship between depth perception, relative velocity,
spatial perspective effects, and the positioning of the pivot
point and use them when generating kinetic-depth images.
We also present a novel depth re-mapping method guided
by perceptual relationships based on the results of our user
study. We validate our system by presenting a user study that
compares the output quality of our proposed method against
other existing alternatives on a wide range of images.

1 Introduction

The kinetic-depth effect (KDE) is the perception of the three-
dimensional structure of a scene resulting from a rotating
motion. First defined by Wallach and O’Connell [53], the
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kinetic-depth effect has been used widely. Images that ex-
hibit KDE are commonly found online. These images are
variously called Wiggle images, Piku-Piku, Flip images, an-
imated stereo, and GIF 3D. We prefer to use the term Ki-
netic Depth Images (KDI), as they use the KDE to give the
perception of depth. In 2012, Gizmodo organized an online
competition to reward the KDI submission that best pro-
vided a sense of depth [55]. Recently, the New York Public
Library published a collection of animated 3D images online
[18]. Flickr has a large number of groups that discuss and
post animated 3D stereo images. Also, online community-
based galleries that focus on KDI can be found at the Start3D
website [8]. With the increasing availability of stereo and
lightfield cameras (such as the Lytro), the use of the KDE to
express depth on ordinary displays is rising rapidly.

Although the basic form of the KDE is trivial to implement
for a virtual environment where the 3D geometry and light-
ing is known, excessive motion and reduced depth percep-
tion mar the visual experience unless proper care is taken. In
fact, accomplishing a high-quality KDE from a pair of pho-
tographs is not trivial and has several interesting nuances, as
outlined in this paper, which should be useful for any prac-
titioner wishing to use this technique for facilitating depth
awareness. In this paper we describe an algorithm and its ac-
companying system, for facilitating depth awareness through
KDE using only a pair of photographs or images.

The use of the KDE is a viable alternative to the use of
stereoscopic and autostereoscopic displays: (i) the KDE pro-
vides monocular depth cues that allow us to experience depth,
even with one eye, which accommodates people who suffer
from various monocular disorders, (ii) the depth is perceived
due to the rotation of the object and does not require any spe-
cial device (glasses or lenses) to view; this works with any
display and can be easily shared online, (iii) unlike stereo-
scopic and auto-stereoscopic displays, KDE animations do
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Fig. 1 We first compute the optical flow and the depth map from the input images (generally a stereo pair). We then generate a triangulated depth
mesh using the re-mapped depth map which is guided by human perception. We also create an energy map of the image using depth, centrality,
and image saliency. By using the depth mesh and the energy map, we generate a high-quality animation to best experience the kinetic-depth effect.
Our system has been informed by and validated through user studies.

not suffer from vergence-accommodation conflicts, and (iv)
depth perception achieved by the KDE can exceed that of
the binocular depth perception as the disparity provided by
binocular vision is limited compared to the angular rotation
that can be produced by KDE [12,35].

Although there are a large number of KDE based images on-
line, most of them are manually created by the artist, require
tedious user input to create them, or suffer from visual ar-
tifacts introduced by the automated systems used to create
them. Manual creation of these images may seem simple,
but it is difficult for average users to make their own high
quality KDE based images. A lot of KDI suffer from arti-
facts caused by abrupt changes in motion, color, or intensity,
as well as alignment errors and excessive motion.

Our contributions in this paper are:

1. Given a stereo image or an image/depth pair as an in-
put, we automatically optimize a KDE based image se-
quence by taking human depth perception, optical flow,
saliency, radial components, and disocclusion artifacts
into consideration;

2. We report the results of a user study that examines the
relationship between depth perception, relative velocity,
spatial perspective effects, and the positioning of the pivot
point and use them to generate KDI;

3. We present a novel depth re-mapping method guided by
image saliency and the perceptual relationship found in
our user study to reduce excessive motion in KDI.

2 Background

The kinetic depth effect (KDE) is defined as the percep-
tion of the three-dimensional structural form of an object
when viewing it in rotational motion [12,53]. As an observer
moves, the nearby objects are seen from different angles.
To experience KDE, the optical-flow-driven motion cue has
been found to be very important [14,43,46] and can be ex-
perienced from just two photographs taken from different
views [11,26]. Another effect that gives the perception of
depth is the stereo kinetic effect (SKE). Although SKE and
KDE both give the perception of depth, they are quite differ-
ent. SKE gives a perception of depth when viewing a 2D pat-
tern as it is rotated in the view plane (fronto-parallel) [41],
whereas in KDE the depth perception arises from rotating
the object along an axis. Motion parallax is another monoc-
ular depth cue that is experienced through the relative mo-
tion of the near and far objects [12]. Generally, KDE is as-
sociated with the rotational viewing of objects whereas mo-
tion parallax is associated with the translational viewing of
objects. When an observer fixates on an object and makes
small rotational or translational motions, both KDE and mo-
tion parallax are similar [12].

3 Related Work

Although a few tools are available online to generate the
KDE from image pairs, we found them to be largely ad-hoc
techniques with variable quality. We have not come across
any previous work in the technical literature that systemat-
ically identifies the various competing constraints in build-
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ing such tools to achieve an aesthetically superior viewing
result. We next give an overview of the various online tools
we have come across on the Internet.

The New York Public Library has an online tool, Stereograni-
mator, that converts stereograms into animated 3D images
employing user input to align images [18]. The tool allows
users to manually rotate and translate stereo images to align
them and change animation speed to create animated GIF
images that switch between images. With carefully acquired
stereo images and with proper user input, the output of this
tool can produce good results. Otherwise the output may
contain artifacts created by the abrupt changes in motion,
color, or intensity, or through alignment errors.

Wiggle images follow the same principle and are created by
taking a pair of stereo images (or a sequence of images)
and flipping between them. With careful consideration dur-
ing the acquisition stage and a very precise manual align-
ment during the animation generation stage, a reasonably
good quality effect can be achieved. However, the process
is tedious and requires significant skill in photography and
image processing. Rather than relying on the number and
quality of input images, we use a judicious mix of computer
vision and rendering algorithms to create high-quality ani-
mations needed to experience the KDE from a pair of im-
ages.

Piku-Piku images from Start3D (www.start3d.com) pro-
vides an online tool for generating KDI. A user uploads an
image pair to the Start3D server, which then generates a se-
quence of intermediate images and provides a hyperlink to
view the resulting images on its server [8]. To the best of
our knowledge, the underlying algorithm for generation of
Piku-Piku images, their processing, and their viewing has
not been published. A careful study of the animation created
by Piku-Piku images shows that the intermediate frames be-
tween an input pair of stereo images are computed as a trans-
lation from one input image to other. This method does not
produce a good result if the input set of stereo images does
not happen to fall on the path suited for the KDE. Blending
artifacts are often seen and if the stereo images are not care-
fully acquired (for example, if shear or slant is present in the
stereo pair), then the output is often of a poor quality.

Another similar tool is the Stereo Tracer created by Triaxes
(www.triaxes.com). This uses an image-depth pair or
a stereo-image pair to generate intermediate views to create
animation for producing the KDE. To secure a good output
tedious manual adjustment is required. These adjustments
include (a) depth map adjustment, (b) image alignment, and
(c) manipulation of parameters that control parallax and the
plane of zero parallax.

Recently, Lytro Camera announced a perspective shift fea-
ture on their camera application [32]. Based on user input,
they allow users to change the camera perspective computed
using the captured light-field data. To our knowledge, the
underlying algorithm has not been published.

Zheng et al. [59] presented a method that focuses on auto-
matically creating a cinematic effect that exhibits the paral-
lax effect. They reconstruct the scene from a series of im-
ages, fill the occluded regions, and render the scene using
a camera path that attempts to maximize the parallax effect
while taking into account occluded regions. Rather than try-
ing to recreate cinematic effect, we try to maximize depth
perception based on KDE while reducing motion induced
artifacts. KDE uses rotational motion that is different from
the cinematic effects presented by Zheng et al. [59].

None of the above approaches take into account depth per-
ception, image saliency, identification of the best rotation
axis, identification of good pivot points for fixation, or depth
re-mapping to generate high-quality KDE that we have used
in our approach. Another significant departure in our ap-
proach has been the decoupling of the rendering camera
from the acquisition camera. This has allowed us signifi-
cantly greater freedom in using the standard angular camera
motion with substantially fewer visual artifacts as well as
using previously unexplored camera motions to achieve the
KDE.

4 Overview of our Approach

The input to our system is a pair of images that can generate
an approximate depth map. Our approach also works with
an image and a depth-map pair of the scene available from
a camera coupled with a depth sensor such as the Microsoft
Kinect.

We will refer to the cameras used in taking the initial images
as input cameras and the cameras used for generating the
animation (to simulate the KDE) as rendering cameras. Our
system is able to generate this animation through a series of
steps as shown in Figure 1. First, from the input stereo im-
age pair we compute the optical flow and a depth map. After
that, we compute parameters needed to generate a KDE by
taking into account depth, centrality, saliency, and optical
flow. Depth perceived by kinetic motion depends on the rel-
ative velocity. Using the result of the user study (that allows
us to map velocities to perceived depth which is explained
in Section 6) and image saliency, we re-map the depth and
create a depth mesh. This remapping reduces total motion
while enhancing the depth perception. Finally, we visualize
the depth mesh using any desirable rendering camera mo-
tions (such as angular or conical-pendulum) to generate the
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animation needed to experience the KDE. Details of our ap-
proach are described in the following sections.

5 Kinetic-Depth Effect Parameters

We generate KDI by calculating proper values for pivot point,
rotation axis (shown in Figure 2), magnitude of angular ro-
tation, and frequency. The pivot point is the look-at point of
the rendering cameras as they move about the rotation axis.
In this paper, we use two different types of camera motion
and each type uses the rotation axis in a slightly different
way. We discuss this further in Section 9. The pivot point is
also a position in the image through which the rotation axis
passes. This results in minimal optical flow near the region
around the pivot point when the final animation is created.

Fig. 2 The pivot point and the rotation axis of the scene are shown in
both 3D space and the projection space.

To create an effective kinetic-depth experience, we need to
determine the magnitude of angular rotation and frequency.
Wallach and O’Connell [53] used an angle of 42 degrees
at the rate of 1.5 cycles per second. Epstein [13] used an-
gles of 15 degrees and higher in his experiment and reported
that 15 degrees is sufficient to perceive the KDE. His experi-
ment used the projection of a shadow with no visible shading
and texture. Since we are using typical natural stereo images
with full texture, we have found that rotation as small as 0.5
degrees about the pivot point is sufficient. This is consis-
tent with human vision, where an average intra-ocular dis-
tance is 6.25 cm, which gives about 4 degrees separation
at a fixation point 1 meter away. For objects farther away
separation is much less. In our results, we perform rotations
between 0.5 to 2 degrees around the pivot point. The fre-
quency of rotation used in our system is 2 cycles per second
since this has been reported as the optimum temporal fre-
quency by Nakayama and Tyler [36], Caelli [3], and Rogers
and Grams [44] .

Although we keep the rotation at the pivot point small, ob-
jects that are close or far might exhibit much higher move-
ment, depending on the scene. According to Ujike et al. [50],
30 to 60 degrees/sec on each axis produces the highest mo-
tion sickness; roll produces more sickness than pitch and
yaw. Taking this into account, we keep the maximum rota-
tion over the entire scene low and keep the change in the
vertical axis to a minimum.

The positioning of the pivot point, frequency of rotation,
magnitude of angular rotation, and the scene depth range
all directly affect the velocity of the stimulus moving on the
screen. Gibson et al. [14] and Rogers and Grams [43] have
shown that depth perceived by kinetic motion depends on
the relative motion. Although some increase in relative mo-
tion enhances the perception of depth, excess motion causes
motion sickness and reduces the ability to smoothly track
objects. Robinson et al. [42] showed that while tracking ob-
jects with velocity of 5 degrees per second, the human eye
took about 0.22 seconds to reach the maximum velocity and
about 0.48 seconds to reach the target steady-state velocity.
In our experiment, the frequency of rotation is 2 or more cy-
cles, and therefore to maximize KDE and at the same time
reduce unwanted motion based artifacts, we keep motion be-
low 5 degrees per second. Using depth re-mapping based on
results obtained in Section 6, we minimize motion artifacts
while maximizing the perception of depth.

Several more variables are calculated when we optimize KDI.
They are described below.

Relative Distance: The relative distance between two ver-
tices v and w is defined by Rd(v,w) = ‖vd−wd‖2

Velocity: The velocity of a vertex v is computed by tak-
ing camera parameters, rendering motion, and viewing setup
into consideration. So, we first compute positions of v in the
screen space at times t0 and t1. We call them v̀t0 and v̀t1 . To
do this, we use camera motion parameters to generate a KDE
and project them on computer screen. Next, the velocity of v
in screen space is computed by equation V̀v =

v̀t1−v̀t0
t1−t0

. Then
the velocity V̀v is converted into angular velocity expressed
using view angle by equation Vv = V̀v

(
2∗tan−1(pixelSize∗.5)

viewingDistance

)
.

Relative velocity: Relative velocity between two vertices v
and w is defined by Rv(v,w) =Vv−Vw.

Disocclusion threshold: When viewing a depth mesh with
a moving camera, regions that were occluded from the input
camera used to create the depth mesh could become visible.
As we draw a triangulated depth mesh, these deoccluded
regions are filled by the stretched triangles (also known as
rubber sheets) that span the depth discontinuity from the
edge of the foreground object to the background [7,33]. To
minimize the disocclusion artifacts, the rendering camera
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placement and movement to experience the kinetic-depth ef-
fect should be constrained. However, even after performing
the optimizations some disocclusion artifacts remain due to
the structure of the scene. To quantify amount of percepti-
ble disocclusion when KDI is generated, we calculate dis-
occlusion estimates between two vertices v and w defined
by Oocc(v,w) = ‖v̀t − ẁt‖∞

∗Clab(vcol ,wcol) where the max-
imum screen space difference over the entire KDE anima-
tion is multiplied by the function Clab which computes color
difference in CIE LAB color space. To determine disocclu-
sion of the entire mesh OMeshOcc, we take k largest Oocc and
compute average as given by equation OMeshOcc =

1
k ∑k Oocc.

6 Experiment

We performed an experiment to determine the relationship
between velocities, positioning, and depth perception. Nu-
merous studies have been carried out to determine what causes
motion-based depth perception and its implications on seg-
mentation, depth ordering, and depth magnitude estimation
[12,14,26,36,37,44,43,52,56]. Most of them study motion
in isolation and focus only on relative velocities. Since we
generate a KDE based on stereo images, for us the relation-
ships between depth perception, spatial perspective, and the
positioning of the pivot point in the scene is very important.
All of these factors influence our depth perception generated
by KDE. To our knowledge, there has been no attempt thus
far in examining the aggregate relationship among these fac-
tors and KDE. Specifically, we examine the combined effect
on depth perception from the following factors: (a) the back-
ground and foreground of an object placed at the pivot point
move in opposite directions, while for an object distant from
the pivot point they move in the same direction, (b) the av-
erage velocities of the objects placed at the pivot point are
much lower than for objects that are distant from the pivot
point, (c) the relative velocity between the foreground and
the background of an object decreases considerably when
receding from both the view point and the pivot point due to
the perspective effect, and finally (d) the pivot point has no
motion.

We recruited volunteers from our campus and the local com-
munity for the experiment. All volunteers had normal or
corrected-to-normal vision and were able to perceive KDE.
The experiment was performed by following the university
IRB guidelines and the participants were compensated nom-
inally for their time and effort. The experiment was con-
ducted in a brightly lit lab using a Dell monitor 2407WFPH
with pixel pitch 0.270 mm. The distance between the partic-
ipant’s eye and the monitor was around 0.75 meters, which
is within the OSHA recommended range [51]. We showed
stimuli, which subtended around 20×20 degrees visual an-
gle, made of randomly generated dots with various depths.

(a) (b)

Fig. 3 The image (a) shows the side view of the object being displayed
in the experiment rendered with lighting for illustration purposes. The
image (b) shows the stimulus shown to the participants. Without KDE
motion, the structure is seen as a flat collection of points.

When motion was not present, the randomly generated dots
were perceived as a flat fronto-parallel plane (Figure 3(b)).

The experiment was done to study the relationship between
relative velocity, depth perception, and the positioning of
the pivot point. In this experiment, we rendered objects with
various depths using randomly generated dots. The objects
were composed of a plane with a box either going in or com-
ing out as shown in Figure 3. The variation of depth between
the front and the back of the object changes the relative ve-
locities between them. The objects were placed at various
distances from the pivot point, which changes rotational ve-
locity. The objects close to the pivot point experience less
velocity. The positioning of the pivot point, scene depth, and
spatial perspective affects the relative velocity of pixels on
the projected screen. For the study, the relative velocity be-
tween the foreground and the background was in the range
0.02 to 2.5 degrees visual angle per second. In this study, 11
volunteers participated.

Method: Each participant performed 40 trials with 3 second
intervals between trials. There was no restriction on time.
Participants were asked to estimate the size of the stimulus
using a slider. The specific instruction to them was: Use the
slider to show us how much depth you perceive. The users
were then supposed to move the slider from its origin to a
distance that visually corresponded to the depth that they
were perceiving.

Result: We found that the estimation of the perceived depth
between subjects varied dramatically. This is consistent with
the previous study [12], where the researchers reported a
high variation in perceived depth. However, when depth val-
ues are normalized per subject, a distinct pattern emerged.
We computed the average of the normalized depth for all
subjects for each distance from the pivot point, as shown
in Figure 4.The participants perceived increased depth be-
tween relative velocities of 0.2 to 1.25 degrees visual angle
per second; for higher relative velocities, the perceived depth
remained constant. Thus, we consider 1.25 as the maximum
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Fig. 4 The figure shows the mean and standard deviation of the nor-
malized depth perceived by subjects. When the objects are placed at
various distances from the pivot point, the perceived velocity of the ob-
ject changes. We show separate curves for each distance we tested and
list the midpoint velocity. Between relative velocities of 0.2 to 1.25 de-
grees visual angle per second, participants perceived increased depth.
For higher relative velocities, the perceived depth remained constant.

desirable relative velocity. This is taken into consideration
while generating the depth mesh. We performed a two-way
analysis of variance (ANOVA) between the distance from
the pivot point and the relative velocity in the field of view
(view angle). The results of ANOVA for the distance from
the pivot point are (F(3,400) = 3.16,P = 0.0248), the rela-
tive velocity are (F(9,400) = 108.94,P < 0.0001), and the
interactions between them are (F(27,400)= 0.96,P= 0.5208).
These values indicate that both the distance from the pivot
point and the relative velocity affect the perceived depth,
but there is no evidence of an interaction between the two.
Please look at the accompanying video for a visual explana-
tion of the results.

Perceptual Maps: Our experiment and previous studies
have shown that relative velocity is an important motion
cue to experience KDE [14,43,46]. By applying Gaussian
filter to smooth the results from this experiment, we com-
pute a set of curves that are used to map depth perception
to relative velocity and vice versa. We generated two sets
of curves to approximate the results from the experiment
as shown in Figure 4. The first set of curves maps the rel-
ative velocities to normalized depth perception (RV2NDP
map) and the second set maps the users’ normalized depth
perception to the relative velocities(NDP2RV map). The in-
verse of the RV2NDP map is the NDP2RV map. The curves
within each set show how the relation between relative ve-
locity and depth perception changes as the midpoint veloc-
ity is changed. This mapping gives an empirical relationship
between the normalized depth perception and the relative
velocity.

7 Energy Map Computation

As the pivot point experiences minimal optical flow, it is
preferable to locate the pivot point at a salient region of the
scene. If the pivot point salient region has text or a face,
it becomes easier to read or identify it when the region is
not exhibiting high optical flow due to the rendering camera
movement. It is also preferable to have the pivot point in the
middle of the scene to minimize the optical flow at the scene
boundaries. If the pivot point is chosen at a scene boundary
(as an extreme example), the opposite end of the scene will
exhibit excessive motion that can create visual discomfort
and can also give rise to significant disocclusion artifacts.

(a) (b) (c) (d) (e)

Fig. 5 Energy components. Here we show (a) the original image, (b)
the depth map, (c) the saliency component, (d) the radial component,
and (e) the final computed energy map. In these maps, yellow regions
are associated with lower energy. We choose the pixel with the lowest
energy to be the pivot point.

To quantify and incorporate such considerations, we deter-
mine the placement of the pivot point by computing an en-
ergy map. We seek a global minimum on the energy map to
determine the kinetic-depth parameters:

E(x,y) = Ed(x,y)+Es(x,y)+Er(x,y), (1)

where (x,y) refers to the position of the pivot point in the
original image (projection space) and Er(x,y), Ed(x,y) and
Es(x,y) are the radial, depth, and saliency energy functions,
respectively. Each energy function component is further dis-
cussed below.

Depth Energy: We use the depth energy to express a pref-
erence for positioning the pivot point on regions that are
close to the middle of the depth map. This minimizes the
visibility of the occluded regions during the rendering cam-
era movements and also lowers the amount of motion when
the final animation is generated. We obtain the depth map
of a given image set by calculating its optical flow using
Sun et al.’s [48] algorithm. Details about depth map cal-
culation are described in Section 8. After calculating the
depth map we can calculate the depth energy as: Ed(x,y) =
‖Pd(x,y)−Dm‖2 , where Pd(x,y) refers to the depth value of
the pixel at (x,y) and Dm is the median depth of the scene.
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The second image of Figure 5 shows the depth map used in
Pd(x,y).

Saliency Energy: As mentioned earlier, we desire to posi-
tion the pivot point on a salient region of the scene. These
salient regions are different in color, orientation, and inten-
sity from their neighbors and can be found using the image
saliency algorithm proposed by Itti et al. [21]. The saliency
map represents high saliency regions with high values. When
calculating the saliency energy of the pivot point, we invert
the saliency values so that the most salient regions are rep-
resented with the lowest values. Our equation for calculat-
ing the saliency energy is: Es(x,y) = [1−Ps(x,y)], where Ps
refers to the saliency value of the pixel. The third image in
Figure 5 illustrates the saliency map used in Ps(x,y).

Radial Energy: To express a preference for a centralized
pivot point, we use a radial energy function as one of the
energy components. Essentially, the closer the point is to the
center, the less radial energy is associated with it. The radial
energy is calculated as: Er(x,y) = Pr(x,y), where Pr refers
to the radial value of the pixel defined by the Euclidean dis-
tance between the point and the image center. The fourth
image in Figure 5 shows an example of the radial map.

The radial component Pr(x,y) depends upon the dimensions
of the image, but the saliency component Ps(x,y) and the
depth component Pd(x,y) depend upon the scene. To take
these factors into account, we can add weights while cal-
culating the energy function. Assigning a higher saliency
weight will increase the importance of the salient regions,
whereas higher depth weight and radial weight will give
greater priority to the image center and lower the total op-
tical flow between frames. Figure 5 shows an example of
energy map calculation. We compute the energy of all the
pixels and find the position (x,y) that has the lowest energy.
Then the pivot point is defined by the coordinate (x,y,Pd(x,y)).

8 Mesh Generation

We generate the depth mesh by first approximating the scene
depth, followed by an optimized compression for KDE. Then,
we perform re-mapping of the depth mesh by taking percep-
tion into account. Finally, we enhance the depth mesh so that
the motion is constrained to a desired range and disocclusion
artifacts are minimized.

8.1 Scene Depth Approximation

Generally the number of input images or photographs is
smaller than the desired number of views. Also, the param-
eters used by the rendering cameras are often different from

the input cameras. Due to these reasons, a number of ad-
ditional intermediate frames need to be generated. There
are numerous ways of generating intermediate frames, such
as basic interpolation between input images, flow-field in-
terpolation [61], image-based rendering [2,6], and struc-
ture approximation [1,5,15,17,31,34,38,45,58,60] to cre-
ate depth mesh.

In our approach, we use a depth-image-based rendering to
generate high-quality intermediate frames needed for achiev-
ing the KDE. This is computationally efficient and allows
sufficient flexibility in the choice of the rendering camera
parameters. For every pair of images, we first calculate the
depth map. Although there are numerous methods to com-
pute the depth map, we decided to approximate depth based
on the optical flow between the input image pair by using the
inverse relation defined as: d = f t

o , where d is the depth, f
is the focal length, t is the distance between the camera po-
sitions, and o is the the optical flow magnitude of the pixel.
Since we do not know the camera parameters f and t, we re-
cover depth up to a projective transformation. Optical flow
between images is a vector field. Objects at the zero plane
will have zero optical flow. Objects that are in front and be-
hind the zero plane will have optical flow vectors facing in
the opposite directions. Taking either the maximum or mini-
mum optical flow and adding it to the entire vector field will
shift the zero plane to either the closest or the furthest depth.
We then convert optical flow map to depth map.

8.2 Optimized depth compression

Depth range on a raw depth map is usually very high and
contains a lot of artifacts. Directly using a raw depth map
will cause excessive motion that is visually disconcerting.
One naı̈ve solution to this problem is to perform simple scal-
ing of the depth map to fit a certain range. However, this
will compress both important and unimportant regions of
the scene uniformly. Extensive amount of research has been
conducted in visual saliency and perceptual enhancements
[9,10,16,20,21,23,24,28,29,57], however, use of motion
makes our situation unique. We want the salient regions of
the scene to occupy a larger share of the depth range while
compressing non-salient regions and artifacts. An analogous
problem arises in stereo viewing and relief mapping, where
disparity or depth compression is needed [22,27,30,40,54].
In KDI, compression requires global consistency of the scene
depth as the depth mesh is viewed from different angles;
otherwise the depth inconsistencies will be perceived easily.
The disparity histogram and saliency map have been used by
Lang et al. [27] to compress disparity for stereo viewing. In
the slightly different problem of video retargeting, manual
constraints have been used to enforce feature preservation
while compressing the frames [25].
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We perform depth compression based on the image saliency
and use cues from carefully chosen edges to enforce fea-
ture preservation. Our approach for compressing depth is
similar to that of Lang et al. [27]. We would like to ac-
count for saliency in compressing depth. To compress depth,
we first divide the depth range of the mesh evenly into k
intervals {r0,r1, ....rk−1}. We would like to have a greater
compression for depth intervals that are largely empty or
have low-salience vertices. To achieve this, we build a his-
togram over the depth intervals, rx in which we use vertex
counts weighted by their respective saliencies (each vertex’s
saliency is in the range 0 to 1). Next, we compute a com-
pressed value sx for the interval rx as:

sx = min
(

hx

g∗max(h0,h1, ....hk−1)
,1.0

)
, (2)

where sx is the size of the interval x after using saliency com-
pression, and g is a constant which gives extra rigidity to
salient depth intervals. In practice, we found that g = 0.4
gives a proper balance between compression and rigidity of
depth intervals. This non-linear mapping compresses the in-
tervals that are less salient.

Only using saliency to compress the depth map will cause
features, such as lines and curves, to change. This is because
depth intervals are compressed non-linearly. Some constraints
have to be placed in order to preserve features. We use in-
formation of carefully chosen edges to enforce loose fea-
ture preservation. We first calculate edges in the image us-
ing Canny edge detection [4]. If needed, more sophisticated
edge detectors can be easily integrated. We filter edges that
are very short in length to remove noise. After that, we per-
form additional filtering to remove edges that lie at the bor-
der region of objects at various depths. This is done by re-
moving edges with very high gradient on their depth values.
This step is important because the depth map contains er-
rors/artifacts and the depth approximation close to the depth
boundaries is less reliable. Edges that are left after filter-
ing will be longer and will have more reliable depth values.
These edges are used for feature preservation. We find the
depth interval associated with each of these filtered edges

and uniformly distribute depth among them as s∗x =
∑

j
n=i sn
j−i ,

where s∗x is the new size of the depth interval x after using
saliency compression with feature preservation; i and j are
the depth interval associated with the two endpoints of a fil-
tered edge and x∈ [i, j]. Finally, using the compressed depth,
we create compressed depth mesh MComp.

8.3 Perceptual re-mapping

Mesh Re-mapping: We generate the re-mapped depth mesh
by taking depth perception into account. Since we would

(a) (b) (c)

Fig. 6 (a) the original image, the image set (b) is associated with the
raw depth, and the image set (c) shows the depth used to generate final
depth mesh after depth compression and perceptual enhancements. The
depths in (b) and (c) are normalized. In each set we are showing the
depth values and the optical flow after the camera motion to depict the
value of depth remapping.

like the viewers to perceive depth that is close to the 3D
structure we present, we use the relative depth (separation)
computed from the compressed depth mesh MComp as an in-
put for the NDP2RV map (from Section 6) to generate a rela-
tive velocity map needed to perceive the desired depth. This
step is done for each vertex v in MComp. For each v, let Vn be
the set of its four connected neighbors such that Vn⊆MComp.
We created four vertex-neighbor pairs (v,w) where w is in
the set Vn. Then for each pair (v,w), we compute the relative
depth Rd(v,w) between them. The relative depth is scaled
so that it is within the maximum depth range allowed in the
scene. At first, maximum depth range is initialized to the
depth range that results in a relative velocity that is equal to
the maximum desirable relative velocity which is explained
in Section 6. The scaled depth is then used as an input for the
NDP2RV map to get the relative velocity Vp(v,w) between
the pair. We call Vp(v,w) a perceptual relative velocity be-
cause it is based on the perceptual relationships explained
earlier. The Vp(v,w) between a vertex pair is necessary to
perceive the relative depth Rd(v,w) between them. In other
words, to perceive a depth that is equal to Rd(v,w) between
a vertex pair, we need the relative velocity between them to
be equal to Vp(v,w).

Using the perceptual relative velocities between vertices, we
can compute their separation (we call this perceptual sepa-
ration Sp(v,w)). We move one of the vertices in (v,w) along
the line of the view point and find separation Sp(v,w) that re-
sults in the desired Vp(v,w). The relative velocity between a
pair of vertices is computed by projecting each vertex on the
display screen using a standard projection matrix, then cal-
culating the instantaneous velocity (described in Section 5)
for each vertex, and finally finding the difference between
the velocities. This process is accelerated by a binary search
algorithm. Since this step is performed by only using lo-
cal data on the distances between neighbors (v,w), an extra
step to make a globally consistent mesh is required. This
is done by minimizing a 1D problem. We first discretize
depth of the scene into 255 bins. Then for each (v,w), we
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find associated discretized depths dv and dw based on their
depth in MComp. We then add a link between dv and dw
that specifies the Sp(v,w). This process can be pictured as a
spring mesh where the links added will act like a spring and
the discretized depths are the locations where the springs
are attached. Since the Sp(v,w) is locally consistent, some
links will try to contract the distance between the discretized
depths while some will try to expand them. We define
d(v,w) =| dv−dw |. For all (v,w), we find d(v,w) that min-
imizes ∑

∥∥d(v,w)−Sp(v,w)
∥∥

2 to perceptually re-map the
depth mesh MP to make it more globally consistent.

8.4 Depth Mesh Enhancement

In Sections 8.2 and 8.3, we have carried out local depth en-
hancement using local per-pixel neighborhoods. However,
this can cause the range of the motion for the entire image
to be too low or high. In this section we carry out a global
optimization for a more pleasant viewing experience. De-
pending on the rendering parameters and the depth range
of the scene, depth mesh can be compacted or expanded to
allow enhanced depth perception. Also, depth has to be ad-
justed to reduce disocclusion artifacts. In Section 6 we men-
tion that when using KDE, we have a limited perception of
depth, which is highly dependent on the relative velocity.
The relative velocity of objects depends on the relative dis-
tance between them, the placement of the pivot point, and
the camera movement. However, there is a tradeoff between
the amount of motion in the scene due to relative velocity
and perception of depth. The results of Section 6, give us
the maximum desirable relative velocity, taking into account
the tradeoff. Using the maximum desirable relative veloc-
ity, perceptual depth mesh, and placement of the pivot, we
find the maximum depth range DMax allowed in the scene.
In other words, given perceptual depth mesh and placement
of the pivot, we find depth range DMax which results in a rel-
ative velocity equivalent to the maximum desirable relative
velocity between the front and back extremes of the mesh.
This is done by searching for the depth range that results
in the desirable relative velocity. This process is accelerated
by a binary search algorithm. Then we define the minimum
depth range allowed in the scene DMin = DMax ∗0.5.

Once we find the depth range allowed, we focus our atten-
tion on finding the depth range that minimizes disocclusion
artifacts. In between vertices, we estimate disocclusion by
computing relative separation in pixel units between neigh-
boring vertices of the depth mesh when the camera move-
ment needed for KDI is performed. However, when colors
between the vertices are the same, disocclusion is not visible
and we can ignore disocclusion between these vertices. To
approximate the disocclusion of an entire scene OMeshOcc,
we take the mean of k-highest disocclusion estimates be-

tween vertices whose color is perceptually different as de-
scribed in Section 5. When the depth range is small, dis-
occlusion artifacts as well as the perception of depth is re-
duced. So, to find a proper balance, we compute the depth
range by

DFinal =


DMin, if (DOpt ≤ DMin)
DMax, if (DOpt ≥ DMax)
DOpt , otherwise

(3)

where DOpt is the depth range that has k-highest disocclu-
sion estimates that are less than a user-specified threshold
(here we use threshold value of 2). If the difference between
DFinal and the depth range of MP is small, we simply scale
the depth range of MP to match DFinal . However, if the depth
range is large, we modify the maximum depth range allowed
in the scene and start the perceptual re-mapping process
again. In Figure 6, we show a comparison between the raw
depth and the depth used to generate final depth mesh after
applying all the optimizations stated here.

9 Rendering Camera Motion

We make use of the pivot point and the rotation axis calcu-
lated earlier to compute the rendering camera motion in two
ways: angular motion and conical pendulum motion.

(a) Input Image (b) Depth Map

(c) Angular Motion (d) Conical Pendulum Motion

Fig. 7 An illustration using input image (a) and optimized depth map
(b) of the different types of camera movements : the angular motion (c)
where the camera swivels on a plane perpendicular to the rotation axis
while looking at the pivot point, and the conical pendulum motion (d)
where the camera rotates along a conical surface while looking at the
pivot point. Rotation axis is always vertical for the angular motion and
is perpendicular to the view-plane for the conical pendulum motion.

Angular motion to experience the KDE involves rotating
the camera on a plane perpendicular to the rotation axis while
looking at the pivot point as illustrated in Figure 7(c). The
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angular motion is close to most of the wiggle stereo images
found online. However, rather than just flipping between two
images and only relying on the sequence of images that were
captured by the camera, we generate the intermediate views
by rotating the rendering camera positions along an arc sub-
tending a fixed angle at the salient pivot position. Figure 8
shows our results using the angular motion.

Fig. 8 Representation of the angular camera motion

Conical pendulum motion involves rotating the camera along
a circle on a plane parallel to the view-plane, as the vec-
tor from the camera to the look-at pivot point traces out a
cone. Figure 7(d) illustrates the conical pendulum motion
performed by the camera.

10 Rendering and Interaction

The depth mesh, along with the camera motion described
earlier, is used for rendering the scene. The depth mesh is
kept static while the rendering camera moves to generate the
KDE. Since we compute the depth mesh, our method allows
us to add virtual objects or different layers into the scene
at user-specified depth locations. We can therefore use the
same camera parameters to render additional geometry at
the desired locations while also rendering the depth mesh.
This makes the kinetic-depth motion consistent for both the
depth mesh as well as the additionally-added geometry. Cur-
rently we do not attempt to make lighting and shading seam-
less and consistent between the virtual object and the scene,
but it would be an interesting exercise to attempt to achieve
it by estimating the lighting parameters or by using methods
such as Poisson Image Editing [39].

Although we compute the pivot point and the rotation axis
automatically as a default, our system also allows the user
to change these features as desired. This allows the user to
customize the output of the kinetic-depth movement accord-
ing to their needs. As mentioned earlier, the area around the
pivot point has less motion. If there is more than one region
that has low energy in a scene, being able to move the pivot
point to various locations is critical.

11 Results and Discussion

We have implemented our system in C++ and Matlab. For
all of our experiments, we use a Windows 7 64-bit machine
with an Intel Core i5 2.67 GHz processor, an NVIDIA GeForce
470 GTX GPU, and 8 GB of RAM. We calculate image
saliency using the graph-based visual saliency algorithm of
Harel et al. [16] implemented in MatLab and use Sun et
al.’s [48] code for optical flow calculations. The rendering of
KDI is done at interactive frame rates, however the creation
takes time. The optical flow and saliency approximation al-
gorithms takes majority of the computation time during cre-
ation. On average, one megapixel image takes about 4 min-
utes. However these pre-processing steps are not currently
optimized for speed.

11.1 Subjective Evaluation

In order to evaluate the perceptual quality of the generated
KDI images, we conducted a user study with 11 subjects
who also participated in the earlier user study. Each subject
performed 4 different tests to compare between 1) Wiggle
3D and our proposed method, 2) the naı̈ve method and our
proposed method, 3) Piku-Piku and our proposed method,
and 4) angular and conical camera motion. We presented 10
examples for each test selected randomly from a larger col-
lection of examples. Each example showed two images side
by side. Subjects were asked which image they preferred by
taking into account perceived depth and motion. The specific
question to the subjects was: Do you prefer the left image,
the right image, or have no preference for either?. The sub-
jects did not know which images were generated using our
method.

Naı̈ve vs. our method: The naı̈ve method uses a scaled
depth mesh (the magnitude of raw depth range scaled to the
same range as our method) with the pivot point selected at
the middle of the scene. The same camera motion in ren-
dering was used for both the naı̈ve method and our method.
Out of 110 examples, subjects selected the naı̈ve method 21
times, our method 83 times and had no preference 6 times.
In Figure 9(a), we show the user preference per subject.
We performed ANOVA with (F(1,20)= 53.24;P< 0.0001)
which shows that the difference is significant.

Wiggle 3D vs. our method: Generally, wiggle 3D images
are created by an artist by manually aligning the most salient
region of the images. To generate Wiggle 3D image, most
salient region of the images is calculated using image saliency
algorithm proposed by Itti et al. [21]. Then the zero plane
position is selected to coincide with the most salient part of
the scene usually located around the central region of the
scene. Out of 110 examples, subjects selected Wiggle 3D
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images 17 times, our method 84 times and had no preference
9 times. In Figure 9(b), we show the user preference results
per subject. We performed ANOVA to analyze the differ-
ence between user selection of Wiggle 3D and our method.
We got (F(1,20) = 34.21;P < 0.0001), which indicates that
the difference is significant.

(a) Naı̈ve vs. our method (b) Wiggle 3D vs. our method

(c) Piku-Piku vs. our method (d) Angular vs. conical motion

Fig. 9 The results of the subjective evaluation. Here we show the av-
erage user preference.

Piku-Piku vs. our method: Here we compared our method
with Piku-Piku images from Start3D. Out of 110 examples,
subjects selected Piku-Piku images 8 times, our method 87
times and had no preference 15 times. In Figure 9(c), we
show the selection results according to each type of camera
motion per subject. We performed ANOVA with (F(1,20)=
55.04;P< 0.0001) which indicates that the difference is sig-
nificant.

Angular vs. conical motion: We have compared images
generated by two camera motions to find which method sub-
jects preferred. Out of 110 examples, subjects selected an-
gular motion 51 times, conical motion 52 times and had no
preference 7 times. In Figure 9(d), we show the selection
results for each type of camera motion per subject. We per-
formed ANOVA with (F(1,20) = 0.02;P = 0.8987), which
indicates that the difference is not significant.

Discussion: We took a detailed look at the examples where
the subjects chose other alternative methods over our method.
In most of these examples, we found that the depth range
was low and the salient objects were already in the middle
of the scene. In these examples, all of these methods gen-
erated comparable output. Also, both our method and Piku-
Piku images rely on the computed depth maps. Any error in
depth maps will affect the final output.

Wiggle3D and Piku-Piku images are highly dependent on
the input pair of stereo images to generate the final render-

ing. They either switch or generate intermediate frames be-
tween the input images. Based on the angle of the input cam-
era, the images may contain scaling or shearing. The per-
ception of depth is reduced when noise, scaling, or shearing
appears in the animated images. This can be easily observed
when watching the animation. However, these subtle arti-
facts are difficult to show using the vector plot, so we would
like to request that the reviewers look at the accompanying
video.

11.2 Limitations of our Approach

Although the use of the KDE to help understand the three-
dimensional structure of a scene is valuable, it also has some
disadvantages. First, adding motion could be visually dis-
tracting and has the potential to induce motion-sickness. Al-
though this can be considerably reduced by making the cam-
era motion small and smooth and by depth re-mapping, it
cannot be completely eliminated. Second, the depth perceived
by the KDE is not the same as the depth perceived by binoc-
ular disparity. In fact, Durgin et al. [12] have shown in their
experiments that depth judgments based on binocular dis-
parity are more accurate compared to depth judgments based
on the KDE or motion parallax. However, binocular dispar-
ity perceived using stereoscopic displays has its own disad-
vantages such as the vergence and accommodation conflicts,
and visual fatigue [19,47]. To reduce the visual fatigue in
stereo displays, various techniques that compress the depth
are also used [19], and they too are likely to reduce the ac-
curacy of the depth judgments. Third, our algorithm relies
on computing approximated depth maps from a set of stereo
images. When the depth map calculation has a significant er-
ror, the quality of our animation could also suffer. Thus, both
ways of looking at 3D scenes have their own advantages and
disadvantages. However, the use of the KDE is simpler and
does not require any special devices.

12 Conclusions and Future Work

We have presented a method to automatically create smoothly
animated images necessary to experience the KDE. Given
a stereo image pair or an image-depth map pair as input,
we have presented an approach to automatically generate
animation that exhibits the KDE. Our approach allows de-
coupling of the input cameras from the rendering cameras
to give us greater flexibility in defining multiple rendering
camera motions. We have used two different ways of per-
forming rendering camera motions (angular and conic pen-
dulum motion) to view the resulting scene that minimize vi-
sual artifacts by taking into account depth perception, image
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saliency, occlusions, depth differences and user-specified pivot
points. We have reported the results of user studies that ex-
amine the relationship between depth perception, relative
velocity, spatial perspective effect, and positioning of the
pivot point when generating KDI. We have presented a novel
depth re-mapping method guided by perceptual relations based
on the results of our user study. And finally, we have pre-
sented a subjective evaluation of our method by comparing
it against other existing alternatives on a wide range of im-
ages.

At present, we have optimized one variable at a time to do
depth enhancement. A single optimization across all the pix-
els is likely to lead to superior results and would be worth
exploring. Another future direction is to explore the usage of
KDE on modern 3D games to enhance the perception of the
3D structures. KDI may very well become a popular 3D pre-
viewing tool for scientific visualization applications where
depth awareness is important (such as stereo microscopy)
and for consumer-entertainment applications including tech-
nology mediated social community sites. Another important
group that could benefit from KDI are the people that have
lost sight in one eye. Toyoura et al. [49] estimate that num-
ber to be around 300 million.

Acknowledgements

This work has been supported in part by the NSF grants
09-59979 and 14-29404, the State of Marylands MPower
initiative, and the NVIDIA CUDA Center of Excellence.
Any opinions, findings, conclusions, or recommendations
expressed in this article are those of the authors and do not
necessarily reflect the views of the research sponsors.

References

1. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.:
Building Rome in a day. In: International Conference on Com-
puter Vision, pp. 72–79 (2009)

2. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Un-
structured lumigraph rendering. In: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pp.
425–432. ACM (2001)

3. Caelli, T.: On the perception of some geometric properties of rotat-
ing three dimensional objects. Biological Cybernetics 33, 29–37
(1979)

4. Canny, J.: A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence 8,
679–698 (1986)

5. Chapiro, A., Heinzle, S., Aydın, T.O., Poulakos, S., Zwicker, M.,
Smolic, A., Gross, M.: Optimizing stereo-to-multiview conver-
sion for autostereoscopic displays. In: Computer Graphics Forum,
vol. 33, pp. 63–72. Wiley Online Library (2014)
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