
Optimizing Triangle Strips for Fast Rendering

Francine Evans Steven Skiena Amitabh Varshney

State University of New York at Stony Brook

Abstract

Almost all scientific visualization involving surfaces is currently
done via triangles. The speed at which such triangulated sur-
faces can be displayed is crucial to interactive visualization and
is bounded by the rate at which triangulated data can be sent to
the graphics subsystem for rendering. Partitioning polygonal mod-
els into triangle strips can significantly reduce rendering times over
transmittingeach triangle individually.

In this paper, we present new and efficient algorithms for con-
structing triangle strips from partially triangulated models, and ex-
perimental results showing these strips are on average15% better
than those from previous codes. Further, we study the impact of
larger buffer sizes and various queuing disciplines on the effective-
ness of triangle strips.

1 Introduction

Interactive display rates are crucial to exploratory scientific visu-
alization and virtual reality. The speed of high-performance ren-
dering engines on triangular meshes in computer graphics can be
bounded by the rate at which triangulation data is sent into the ma-
chine. Obviously, each triangle can be specified by three vertices,
but to maximize the use of the available data bandwidth, it is de-
sirable to order the triangles so that consecutive triangles share an
edge. Using such an ordering, only the incremental change of one
vertex per triangle need be specified, potentially reducing the ren-
dering time by a factor of three by avoiding redundant lighting and
transformation computations. Besides, such an approach also has
obvious benefits in compression for storing and transmitting mod-
els.

2 4

1

6 8

753

Figure 1: A Triangle Strip

Consider the triangulation in Figure 1. Without using triangle
strips, we would have to specify the six triangles with three vertices
each. By using triangle strips, as supported by the OpenGL graph-
ics library [11, 12], we can describe the triangulation using the strip
(1; 2; 3; 4; 5; 6; 7; 8), and assuming the convention that theith tri-
angle is described by theith, (i + 1)st, and(i + 2)nd vertices of
thesequentialstrip. Such a sequential strip can reduce the cost to
transmitn triangles from3n to n+ 2 vertices.

In this paper, we consider the problem of constructing good
triangle strips from polygonal models. Often such models are

c1996 IEEE, reprinted with permission from IEEE Visualization 96
Proceedings, pages 319 – 326, October 1996

not fully triangulated, and contain quadrilaterals and other non-
triangular faces, which must be triangulated prior to rendering. The
choice of triangulation can significantly impact the cost of the re-
sulting strips. For example, Figure 2 demonstrates that one triangle
strip suffices to represent a cube, provided it is triangulated in a
particular manner. Although we have shown that the problem of
triangulating a polygonal model for optimal strips is NP-complete
[7], here we provide heuristics which exploit the freedom to trian-
gulate these faces to produce strips that are on average15% better
than those of previous codes. Our linear-time algorithm manages
to achieve this by exploiting both the local and the global structure
of the model. Our analysis of the global structure of a geometric
model is done via a non-geometric technique we termpatchifica-
tion, which we believe is of general interest as an efficient tool for
logically partitioning polygonal models.

1342

76 8 5

6

2

4 3

1

5

Start

End

Strip: 4 3 7 8 5 3 1 4 2 7 6 5 2 1

Figure 2: Triangulating a cube for one sequential strip.

To allow greater freedom in the creation of triangle strips, a
“swap” command permits one to alter the FIFO (first-in, first-out)
queuing discipline in a triangle strip [13]. A swap command swaps
the order of the two latest vertices in the buffer so that instead of
vertexi replacing the vertex(i � 2) in a buffer of size2, vertexi
replaces the vertex(i � 1). This allows for a single triangle strip
representation of the collection of triangles shown in Figure 3, as
(1; 2; 3; SWAP; 4; 5; 6). This form of a triangle strip that includes
swap commands is referred to as ageneralized triangle strip.

The swap command gives greater freedom in the creation of tri-
angle strips at the cost of one bit per vertex. Although the swap
command is supported in the GL graphics library [13], keeping
portability considerations in mind it was decided to not support it in
OpenGL [8]. With OpenGL gaining rapid acceptance in the graph-
ics software community, the one-bit-per-vertex cost model that was
appropriate for a swap command in GL is now outdated. A more ap-
propriate cost for such a swap command under the OpenGL model
is a penalty of one vertex as explained next. One can simulate a
swap command in OpenGL by re-transmitting the vertex that had

to be swapped. This results in an empty triangle two of whose ver-
tices are the same. This is illustrated in Figure 3, where we simu-
late(1; 2; 3; SWAP; 4; 5; 6) by (1; 2; 3; 2; 4; 5; 6). Note that, even
though a swap costs one vertex in the OpenGL model, it is still
cheaper than starting a new triangle strip that costs two vertices. In
this paper, we evaluate all algorithms for both the GL and OpenGL
cost models.

1

5 6

3

2 4

1 2 3 Swap 4 5 6 = 1 2 3 2 4 5 6

Figure 3: Replacing a swap requires an extra vertex.

Special-purpose rendering hardware is needed to fully exploit
the advantages of triangle strips, by maintaining a buffer with thek
previously transmitted vertices as determined by a certain queuing
discipline. Although current rendering engines use a buffer of size
of k = 2 and FIFO queuing discipline, there has been recent inter-
est in studying the impact of larger buffer sizes, for both rendering
[3] and geometric compression [6]. The decomposition of a trian-
gular mesh into a triangle strip data structure that back-references
the previousk vertices,k � 2 is referred to as ageneralized tri-
angle mesh[6]. Towards this end, we provide extensive analysis
of the impact of buffer size and queuing discipline on triangle strip
performance. We demonstrate that relatively small buffer sizes are
sufficient to achieve most of the potential benefits of triangle strips,
making for a desirable tradeoff between increasing hardware cost
versus the speedup in rendering time.

In Section 2, we summarize previous work on triangular strips.
In Section 3, we describe our local and global algorithms for con-
structing quality triangle strips from polygonal meshes. Experi-
mental results are presented in Section 4. In Section 5, we study
the impact of buffer size on triangle strip performance. Conclusions
and plans for future work are discussed in Section 6.

2 Previous Work

The problem of constructing quality triangle strips has received
attention from both the graphics and the computational geometry
communities.

Akeley, Haeberli, and Burns have written a program that con-
verts triangle meshes to triangle strips [1]. We discuss the approach
in this program in greater details in Section 3. Deering has pro-
posed the use of generalized triangle meshes for compressing con-
nectivity information in geometric polygonal models [6]. He has
proposed maintaining a stack of sizek = 16 to store16 previ-
ous vertices. A vertex for a new triangle is specified either through
back-referencing one of the existing vertices on the stack, or by
reading-in a new vertex and replacing an existing vertex on the
stack. Although a novel idea, no algorithms have been proposed
there to suggest how one can decompose polygonal models into
generalized triangle meshes for a given buffer sizek. An interest-
ing alternative to compressing connectivity information is presented
by Hoppe in [9] where vertex-split/edge-collapse information is en-
coded efficiently with respect to its neighbors. Although not as ef-
ficient as generalized triangle meshes for a single resolution model,

this approach has the advantage of being able to encode multireso-
lution models compactly.

Within computational geometry, interest has focused on con-
structing and recognizing Hamiltonian and sequential triangula-
tions. A triangulation isHamiltonian if its dual graph contains a
Hamiltonian cycle. Hamiltonian triangulations can be represented
by using generalized triangle strips (triangle strips with swaps).
Arkin, et.al. [2] proved that every point set has a Hamiltonian trian-
gulation. Further, they showed that the problem of testing whether a
triangulation is Hamiltonian is NP-complete. They gave anO(n2)
algorithm for constructing a Hamiltonian triangulation of a polygon
that has since been improved toO(n lg n) by Narasimhan [10].

A triangulation issequentialif its dual graph contains a Hamil-
tonian cycle whose turns alternate left-right. Sequential triangu-
lations can be represented by using one triangle strip without any
swaps. A Hamiltonian triangulation is sequential if three consecu-
tive edges do not share a common vertex. Arkin, et.al. [2] proved
that for anyn � 9 there exists a set ofn points in general position
that do not admit a sequential triangulation. Although linear time
suffices to test whether a triangulation is sequential, we [7] have
shown that problem of finding a sequential triangulation of a par-
tially triangulated surface is NP-complete using a reduction from
3-satisfiability. Hence, heuristics such as those described in this
paper are required to find good sequential strips.

A simple path in the dual of a triangulation identifies a sequence
of triangles that form a “strip” or a (triangular) “ribbon” . Bhat-
tacharya and Rosenfeld [4] have studied geometric and topological
properties of ribbons. The Hamiltonian triangulation problem can
be considered that of identifying if a set of points or a polygon has
a triangulation that consists of a single strip (triangular ribbon).

Bose and Toussaint [5] have recently studied a set of problems
involving quadrangulationof point sets, and have obtained several
interesting results. A quadrangulation of a point setS is a decom-
position of the convex hull into quadrilaterals, such thateach point
of S is a vertex of some quadrilateral. In particular, they have ap-
plied the notion of Hamiltonian triangulations to this problem, and
they have obtained an alternate method of computing Hamiltonian
path triangulations.

By Euler’s theorem on graphs, the number of triangles in a trian-
gulation is at most twice the number of vertices, and on average we
will have to send each vertex twice to the renderer using sequential
triangle strips and a buffer of size 2. Bar-Yehuda and Gotsman [3]
studied the extent to which we can increase the stack (buffer) size
to reduce this duplication of vertices. This yields a time-versus-
space tradeoff; for as we increase memory usage, rendering time
will decrease. Bar-Yehuda and Gotsman have shown that a buffer
of size13:35

p
n is sufficient to render any mesh onn vertices in

the optimal timen, and that a buffer size of1:649
p
n is necessary

for optimal rendering in the worst-case. They show the problem
of minimizing the buffer-size for a given mesh is NP-hard, using
a reduction from the problem of finding minimum separators of a
planar graph.

3 Constructing Triangle Strips

In this section, we propose several heuristics for constructing trian-
gle strips from polygonal models. There are at least three different
objectives such heuristics might reasonably seek to achieve:

� Maximize the length of each strip– since each strip of lengths
representss� 2 triangles, maximizing strip length minimizes
this overhead.

� Minimizing swaps– since each swap costs one additional ver-
tex in the OpenGL cost model.

� Minimizing the number of singleton strips– since each trian-
gle left isolated after removing a strip creates a singleton strip,
we should seek to begin and end our strips on low-degree
faces of the triangulation.

The best previous code for constructing triangle strips which we
are aware of is [1], implementing what we will call the SGI algo-
rithm. The SGI algorithm seeks to create strips that tend to min-
imize leaving isolated triangles. It is a greedy algorithm, which
always chooses as the next triangle in a strip the triangle that is adja-
cent to the least number of neighbors (i.e. minimizes the number of
adjacencies). When there is more than one triangle with the same,
least number of neighbors, the algorithm looks one level ahead to
its neighbors’ neighbors, and chooses the direction of minimum de-
gree, choosing arbitrarily if there is again a tie. After starting from
an arbitrary lowest degree triangle, it extends its strips in both direc-
tions, so that each strip is as long as possible. There is no reluctance
to generate swaps, and understandably so, since this algorithm was
aimed at generating triangle strips for Iris GL. A fast, linear-time
implementation is obtained by using hash tables to store the ad-
jacency information, linked to a priority queue maintaining strip
length to choose which triangle starts a new strip.

Figure 4 illustrates how the algorithm breaks ties. Starting with
a face of lowest adjacency (of degree 1 on the upper center of the
figure), the algorithm always selects the lower degree face as the
next triangle in the strip to peel off the marked strip. At the face of
degree 3 it turns left because a neighbor to the left adjacent face is
of degree 1 as opposed to 2.

1
2

3 2
12

1
2

Figure 4: Adjacency counts in the SGI algorithm

The SGI algorithm uses strictly local adjacency information in
constructing the triangle strips. However, fully exploiting the free-
dom to triangulate quads seems to require a more global approach.
We have experimented with several variants of local and global al-
gorithms, as discussed in the following two sections.

3.1 Local Algorithms

Our class of local heuristics starts from the same basic idea as the
SGI algorithm – to use least adjacencies as the basis for choosing
the next face in a strip. However, we have tried to improve upon
their algorithm by dynamic triangulation and alternate tie-breaking
procedures.

We have considered three different approaches to triangulating
faces:

� Static triangulation– In this approach, we triangulate all
quads and larger faces in our model as a pre-processing step
before we begin finding strips. We use alternate left-right
turns, as shown in Figure 5(b) because such a triangulation is
inherently sequential, as opposedto the simpler and more con-
ventional fan triangulation. The SGI algorithm accepts only
triangulated models as input. Therefore, to compare their ap-
proach with ours we pre-triangulate all non-triangulated mod-
els using this static triangulation approach and then run their
algorithm.

a b

Figure 5: Fan vs sequential triangulation of a polygonal face.

� Dynamic whole-face triangulation– A second approach com-
pletely triangulates each face when we first enter it via some
edge on a strip. After using one of the tie-breaking procedures
described below to determine the exit edgee, we can triangu-
late the face as sequentially as possible while exiting ate. If
the surface normals do not vary across a face, then whole face
triangulation has the additional advantage of encoding fewer
normal transitions.

� Dynamic partial-face triangulation– Partial-face triangula-
tion provides the freedom to triangulate and walk only part
of a face before exiting it. This approach canunder certain
conditions provably perform better than the whole-face trian-
gulation, as is seen in the example where we represent a cube
using a single sequential triangle strip. After identifying the
exit edgee of the face with the minimum number of adjacen-
cies, we sequentially triangulate the smallest portion possible
of the face from the input edge to exit ate. This is illustrated
in Figure 6.

Whole

1
2

12

Partial

1
2

122

1
2

1

13 2

Input

Figure 6: Examples of partial and whole-face triangulation.

We have considered several different approaches in breaking ties
when there is more than one polygon that has the least number of
adjacencies to the current face. Such ties often occur since the pos-
sible number of adjacencies ranges only over 1, 2, and 3. In partic-
ular, we tried:

� Arbitrary – meaning that we use the first face found among
the low-adjacency faces.

� Look-ahead– this is the same approach that SGI algorithm
takes, as described above.

� Alternate– this rule tries to alternate directions in choosing
the next polygonal face. To motivate this option, note that
sequential strips alternate directions.

� Random– chooses the next face randomly from those that
were tied.

� Sequential– chooses the next face that will not produce a
swap, and picks randomly if there is no such face.

To quickly identify the lowest adjacency face to start from, we
maintain a priority queue ordered by the number of adjacent poly-
gons to each face. The faces in the priority queue are linked to the
adjacency list data structure representing the dual graph of the tri-
angulation. This enables fast lookup to find and delete faces when
forming the triangle strips.

3.2 Global Algorithms

Although the problem of finding the strip-minimal triangulation is
NP-complete, we perform a global analysis of the structure of a
polygonal model using a technique we callpatchification, which
we believe is of independent interest.

In typical polyhedral models, there are many quadrilateral faces,
often arranged in large connected regions. We attempt to find large
“patches”, rectangular regions consisting only of quadrilaterals, as
illustrated in Figure 7. Figure 8 shows the largest patches in a typ-
ical model. These patches can be triangulated sequentially along
each row or column, although there is a cost of either 3 swaps per
turn or 2 vertices to stop and restart each strip at the end of a row or
column.

Figure 7: A rectangular patch of quadrilaterals.

Figure 8: The six largest patches in a triceratops model.

Efficient patchification requires computing the number of poly-
gons to the east, west, north, and south of each face, and making
sure that when forming the patches, the polygons in the patch are
all adjacent. Hence, we have to “walk” through the faces and cal-
culate the number of adjacent polygons to them in each orientation.
Each “walk” only visits each face exactly 2 times: once for the
north-south direction and once for the east-west direction; once we
visit a face in a walk, that face does not require visiting again. To
avoid generating too many small patches, we keep apatch cutoff

sizewhich is the area of the smallest patch we would like to gener-
ate. Since we generate patches in decreasing order of size, we can
conveniently stop the process once the areas of the patches being
generated falls below this cutoff size. This approach takes us time
O(pn) wherep is the number of patches found. In our studiesp
was much smaller thann and therefore this approach demonstrated
a linear behavior.

We tried two different approaches for exploiting the coherence
identified in large patches:

� Row or column strips– After selecting all patches whose
size was greater than a specified cutoff size, we partitioned
the patches into sequential strips along rows or columns
(whichever direction yielded larger strips) and deleted them
from the model. Next, a local algorithm (using whole-face
triangulation) was used on the remaining model. By gener-
ating one strip along each row or column, we minimize the
number of swaps needed.

� Full-patch strips– Each patch larger than the cutoff size was
converted into one strip, at a cost of 3 swaps per turn. Further,
every such strip was extended backwards from the starting
quadrilateral and forwards from the ending quadrilateral of
the patch to the extent possible. As before, the local algorithm
was used on the model left after removing the patches and
their forward and backward extensions.

4 Experimental Results

We have exhaustively tested our local and global algorithms on sev-
eral datsets and compared them with the best known triangle strip
code [1]. For our local approaches there were ten different options
for each data file that we ran our experiments on: (a) whole-face tri-
angulation and (b) partial-face triangulation, for each of the five tie
breaking methods – (i) arbitrary, (ii) look-ahead, (iii) alternate, (iv)
random, and (v) sequential. For our global approaches there were
ten different options for each data file that we ran our experiments
on: (a) row/column strips and (b) full-patch strips, for each of five
different patch cutoff sizes of – 5, 10, 15, 20, and 25.

Table 1 shows the results of comparison of our best option, which
was the global row/column strips with a patch cutoff size of 5,
against the SGI algorithm. The cost columns show the total number
of vertices required to represent the dataset in a generalized triangle
strip representation under the OpenGL cost model (we are counting
each vertex and swap that needs to be sent to the renderer).

Data File Num Num Cost Savings
Verts Tris SGI Ours

plane 1508 2992 4005 3509 12%
skyscraper 2022 3692 5621 4616 18%
triceratops 2832 5660 8267 6911 16%
power lines 4091 8966 12147 10621 13%

porsche 5247 10425 14227 12367 11%
honda 7106 13594 16599 15075 9%

bell ranger 7105 14168 19941 16456 17%
dodge 8477 16646 20561 18515 10%
general 11361 22262 31652 27702 12%

Table 1: Comparison of triangle strip algorithms.

Figure 9 shows the performance comparisons between our best
local and best global algorithms against the SGI algorithm for (a)
GL and (b) OpenGL cost models. The models sorted by number of
triangles are along thex-axis and the cost of generalized triangle
strip representation is along they-axis in this figure.

Observations include:

� Little if any savings seems possible by sophisticated algo-
rithms under the GL model. However, under the more real-
istic model the combined local/global algorithm can save up
to about 20% over the SGI algorithm.

� Our results are close to the theoretical lower bound of the
number of triangles + (the number of connected components
in the model * 2), so there is limited potential for better algo-
rithms.

� Although the number of swaps required is sensitive to the
composition of the model, the total cost grows linear in the
size of the model.

Our times for execution of these algorithms behaved linearly
with respect to the input size. The timings for our local algo-
rithms were about a factor of two slower than those generated by
SGI. Thus, for example, dynamic partial-face method with sequen-
tial triangulation took around8 seconds on the22K triangle model
general whereas the SGI code took around4 seconds.

For local algorithms under the GL cost model whole-face trian-
gulations worked better than those with partial-face triangulations;
under the OpenGL cost model the reverse was true. Partial-face tri-
angulations produce less swaps than whole-face triangulations be-
cause the former have a greater choice in selecting the next face
in a strip, and are therefore more likely to be able to select faces
that do not require a swap. For global algorithms, full-patch strips
with cutoff size of 25 have the best performance under the GL cost
model whereas row/column strips with a cutoff size of 5 have the
best performance under the OpenGL cost model. This is because a
cutoff size of 5 generates more patches than a cutoff size of 25 and
more patches means lesser number of swaps.

5 Impact of Buffer Size

The benefits realized by using triangle strips could be further
enhanced by special-purpose hardware that has additional buffer
space (beyond the usual storage for two vertices) and alternate
queuing disciplines. In this section, we study the impact of such
resources on performance, to provide guidance for future hardware
design.

Increasing the buffer size from a capacity of two vertices natu-
rally decreases the cost of transmission, since we can now specify
which of the previousk vertices in the buffer defines the next tri-
angle. The cost of specification becomesdlg ke bits, instead of
number of bits representing one vertex, thus enabling us to poten-
tially represent polygonal models at a cost of less than one vertex
per triangle. In our paper, we will ignore the costs of these index
bits, since we only seek to determine an upper bound potential im-
provement in rendering time to assess whether it might be worth the
increase in hardware costs.

We considered two different queuing disciplines for maintaining
the buffer:

� First-in, first-out (FIFO) – This implies that there is no re-
arrangement of the vertices in the buffer, excluding swaps.
FIFO is easiest to implement in hardware, and would thus be
preferable if performance is comparable.

� Least recently used (LRU)– LRU dynamically rearranges the
vertices in the buffer, by placing a vertex that was used most
recently into the spot in the buffer that holds the most recently
admitted vertex. The least recently used vertex is eliminated
when a new vertex is added to the queue. LRU provides the
benefit that popular vertices are held in the buffer in the hope
that they will likely be used in the near future.

The results of running our tests on several datasets using the
whole-face local triangulation method with buffer size ofk � 2
are presented in Figure 10. A larger buffer size implies that we
are reusing more of the vertices that were previously transmitted.
These figures show the cost of the LRU and FIFO queuing disci-
plines versus the dataset sizes. As can be seen the advantages to
be gained from larger buffer sizes diminish rapidly beyond a buffer
size of about8. For buffer sizes less than8, LRU performs better
than the FIFO scheme by a factor of about10%.

6 Conclusions and Future Work

We have explored a total of twenty different local and global al-
gorithms in our quest for an effective triangle strip generation al-
gorithm that can perform well under the prevalent OpenGL cost
model. Our conclusion is that the best approach for the OpenGL
cost model is global row/column strips with a patch cutoff size of
5.

As can be seen from the results of Table 1, we are able to outper-
form the SGI algorithm significantly. We typically produce a sig-
nificantly lower number of strips than they do (usually 60%-80%
less strips using the local whole-triangulation algorithm), resulting
in an average cost savings of about 15% less than SGI algorithm
under the OpenGL model. Further, our cost averages just 10%
more than the theoretical minimum of using one sequential strip
with no swaps, when using the global full-patch strips algorithm
with a patch cutoff size of 5, as shown in Figure 9.

We have found that using global algorithms for detecting large
strips of quads proves very effective for reducing swaps. This has
proved to be quite useful for generating efficient triangle strips for
the OpenGL cost model where every swap costs one vertex.

All our algorithms run in linear time. Although the SGI algo-
rithm does have a slightly better running time, we do not believe
this to be a serious drawback of our approach since the triangle-
strip generation phase is typically done off-line before interactive
visualization.

The results of our experiments with larger buffer sizes offer only
limited room for optimism. As we increase the buffer-size the sav-
ings do increase, however the improvements diminish very quickly.
LRU seems to work much better than FIFO in the smaller buffers,
although this must be contrasted with the time and hardware needed
to maintain a LRU buffer. The theoretical minimum of using larger
buffers is the number of vertices in the model, since each vertex
would only have to be transmitted exactly one time, and then could
remain in the buffer forever to be used again, provided the buffer
is large enough. However, in our implementation we had been as-
suming that the buffer gets flushed between renderings of different
generalized triangle meshes, i.e. a generalized triangle mesh can-
not take advantage of the buffer references left behind by a pre-
vious mesh. Even if we do not make this assumption, achieving
close to the minimum requires a prohibitively large buffer, which is
not feasible for hardware implementation. Further, as the result of
Bar-Yehuda and Gotsman [3] shows, to achieve this minimum for a
mesh of sizen a buffer of size1:649

p
n is necessary, thus making

the size of the buffer depend on the size of the input mesh. All of
these factors combined with our results seem to make a choice of a
small buffer size, say around8, attractive.

Future work includes:

� Investigate other ways to globally analyze a model prior to
finding triangle strips. Currently we only find patches con-
sisting of quadrilaterals, however we can also seek large se-
quential patches of other polygons, such as triangles. We can
experiment with running other local options on the remain-
ing model, although we predict that there will only be slight
differences.

Costs to the renderer for GL

SGI

Whole sequential

Full patch 25

Lower Bound

COST x 103

3TRIANGLES x 102.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

21.00

22.00

23.00

24.00

5.00 10.00 15.00 20.00

Costs to the renderer for OpenGL

SGI data

Partial sequential data

Extended cutoff 5

Lower Bound

COST x 103

3TRIANGLES x 102.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

5.00 10.00 15.00 20.00

(a) GL Cost Model (b) OpenGL Cost Model

Figure 9: GL and OpenGL cost model comparisons.

� Creating and distributing a robust and efficient utility for cre-
ating strips for polygonal models, based on the algorithms de-
scribed in this paper.

� Perform a careful study of algorithms for constructing triangle
strips from fully triangulated models, since this work exploits
freedom which is not present in this common situation.

� Our current cost function has been motivated by systems that
are bandwidth limited or perform all transformations sequen-
tially. However, on many multi-processor graphics systems
the triangles/second curve levels-off as the system approaches
its parallel processing and cache memory limits. For such a
system, if most of the peak performance is achieved by strips
of length, say16 triangles, then rendering two strips of lengths
30 and2 will be slower than rendering two strips of lengths
16 each. Our current cost model does not account for this and
we plan to explore this further.

Acknowledgements

We would like to acknowledge several valuable discussionswe have
had on triangle strips with Joe Mitchell, Martin Held, Estie Arkin,
Jarek Rossignac, Josh Mittleman, and Jim Helman. We would also
like to thank the anonymous referees for their helpful comments.
The datasets that we have used have been provided by Viewpoint
DataLabs. Francine Evans is supported in part by a NSF Graduate
Fellowship and a Northrop Grumman Fellowship. Steven Skiena
is supported by ONR award 400x116yip01. Amitabh Varshney is
supported in part by NSF Career Award CCR-9502239.

References

[1] K. Akeley, P. Haeberli, and D. Burns. tomesh.c : C Program
on SGI Developer’s Toolbox CD, 1990.

[2] E. Arkin, M. Held, J. Mitchell, and S. Skiena. Hamiltonian
triangulations for fast rendering. InSecond Annual Euro-
pean Symposium on Algorithms, volume 855, pages 36–47.
Springer-Verlag Lecture Notes in Computer Science, 1994.

[3] R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for
polygon mesh rendering.ACM Transactions on Graphics,
1996. (to appear).

[4] P. Bhattacharya and A. Rosenfeld. Polygonal ribbons in two
and three dimensions. Technical report, Department of Com-
puter Science, University of Maryland, 1994.

[5] J. Bose and G. Toussaint. No quadrangulation is extremely
odd. Technical Report 95-03, Department of Computer Sci-
ence, University of British Columbia,1995.

[6] M. Deering. Geometry compression.Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH,
pages 13–20, 1995.

[7] F. Evans, S. Skiena, and A. Varshney. Completing sequential
triangulations is hard. Technical report, Dept of Computer
Science, State University of New York at Stony Brook, NY
11794-4400, 1996.

[8] J. Helman. Personal Communication.

[9] H. Hoppe. Progressive meshes.Computer Graphics Proceed-
ings, Annual Conference Series, ACM SIGGRAPH, 1996. (to
appear).

[10] G. Narasimhan. On hamiltonian triangulations in simple poly-
gons. InProceedings of the Fifth MSI-Stony Brook Workshop
on Computational Geometry, page 15, October 1995.

[11] Open GL Architecture Review Board.OpenGL Reference
Manual. Addison-Wesley Publishing Company, Reading,
MA, 1993.

Effects of changing the buffer sizes for plane

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for sky

LRU

FIFO

Lower bound

COST x 103

BUFFER-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

3.80

4.00

4.20

4.40

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for tricer

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for power

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for porsche

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for honda

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for bell

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for dodge

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for general

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

10.00 20.00 100.00 1000.00

Figure 10: Cost versus buffer size for nine models.

[12] Open GL Architecture Review Board, J. Neider, T. Davis, and
M. Woo. OpenGL Programming Guide. Addison-Wesley
Publishing Company, Reading, MA, 1993.

[13] Silicon Graphics, Inc. Graphics Library Programming Guide,
1991.

