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Abstract. We propose a technique for performing view-dependent sim-
plifications for level-of-detail-based renderings of complex models. Our
method is based on exploiting frame-to-frame coherence and is tolerant
of various commonly found degeneracies in real-life polygonal models.
The algorithm proceeds by preprocessing the input dataset into a binary
tree of vertex collapses. This tree is used at run time to generate the
triangles for display. Dependencies to avoid mesh foldovers in manifold
regions of the input object are stored in the tree in an implicit fashion.
This obviates the need for any extra storage for dependency pointers and
suggests a potential for application to external memory prefetching algo-
rithms. We also propose a distance metric that can be used to unify the
geometry and genus simplifications with the view-dependent parameters
such as viewpoint, view-frustum, and local illumination.

1 Introduction

Interactive visualization of large geometric datasets in computer graphics is a
challenging task due to several reasons. One of the main reasons is that the
sizes of several present geometric datasets are one or more orders of magnitude
larger than what the current graphics hardware can display at interactive rates.
Further, the rate of growth in the complexity of such geometric datasets has out-
paced the advances in the graphics hardware rendering capabilities. As a result,
several algorithmic solutions have been proposed to bridge this gap between the
actual and desired rendering performances on such large datasets. These include
visibility-based culling, geometric multiresolution hierarchies, levels of detail in
illumination and shading, texture mapping, and image-based rendering. The fo-
cus of this paper is on defining geometric multiresolution hierarchies to enable a
view-dependent simplification of the geometry as well as topology of the model
for interactive walkthroughs of high complexity polygonal datasets.

For some graphics systems such as those used in mechanical tolerancing and
medical volume visualization preservation of the topology of the input dataset is
an important criterion. However, for a wide variety of real-time graphics appli-
cations where interactivity is essential, preservation of the topology of the input
polygonal dataset is often not a requirement. For such applications geometry sim-
plification has been shown to yield significantly lower complexity approximations
if performed with genus simplification than without. In this paper we demon-
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Fig. 1. Genus-simplification based on light direction

strate a technique for performing topology simplifications in a view-dependent
manner. In our approach a hierarchy of vertex-pair collapses is identified to form
a view dependence tree. Appropriate levels of detail are selected from this tree
at runtime to generate view-dependent simplifications. We also propose a dis-
tance metric that uses the coordinates and the normals of vertices, to define
view- and light-dependent topology and geometry simplifications for polygonal
environments in a unified manner.

2 Related Work

Related work on geometry simplification has been well surveyed in several recent
papers [2,3,6,9,12]. In this paper we shall overview the related work in genus
simplifications and view-dependent simplifications. These two categories have
almost no overlap with the notable exception of [13].

2.1 Genus Simplifications

Rossignac and Borrel’s algorithm [16] uses a global grid to subdivide a model.
Then the vertices of one cell are collapsed to a single vertex and the polygonal
mesh is appropriately updated. This approach can simplify the topology if the
desired simplification regions fall within a grid cell. He et al [8] have used an
low-pass filter to perform a controlled simplification of the genus of a volumetric
objects. However, polygonal objects need to be voxelized. El-Sana and Varshney
[5] perform genus simplification by extending the concept of a-hulls from points
and spheres to triangles. Their approach is based on convolving individual trian-
gles with a L, cube of side a and then computing their union. The convolution
operation effectively eliminates all holes that are less than size a.

Several algorithms for topology simplification are based on vertex-pair col-
lapse method, though not in the context of view-dependent renderings. Schroeder
[18] has introduced vertex-split and vertex-merge operations on polygonal meshes
for modifying the topology of polygonal models. The simplification is based on
the Euclidean distance and the vertex splits are performed along feature lines
and at corners. Garland and Heckbert [6] present a quadric error metric that
can be used to perform genus as well as geometric simplifications. The error at a



vertex v is stored in the form a 4 x 4 symmetric matrix. The algorithm proceeds
by performing vertex-pair collapses and the error is accumulated from one ver-
tex to the other by summing these matrices. Popovié¢ and Hoppe [15] introduce
the operator of a generalized vertex split to represent progressive changes to the
geometry as well as topology for triangulated geometric models. Progressive use
of this operator results in representation of a geometric model as a progressive
simplicial complexz.

2.2 View-Dependent Simplifications

Most of the previous work on generating multiresolution hierarchies for LOD-
based rendering has concentrated on computing a fixed set of view-independent
levels of detail. At runtime an appropriate level of detail is selected based on
viewing parameters and displayed. Such methods are overly restrictive and do
not take into account finer image-space feedback such as light position, visual
acuity, silhouettes, and view direction. Recent advances to address some of these
issues in a view-dependent manner take advantage of the temporal coherence to
adaptively refine or simplify the polygonal environment from one frame to the
next. Since most of the work in view-dependent simplifications is closely related
to the concept of progressive meshes we briefly overview them next.
Progressive meshes have been introduced by Hoppe [9] as an elegant solu-
tion for a continuous resolution representation of polygonal meshes. Progressive
meshes are based upon two fundamental operators — edge collapse and its dual,
the vertex split, as shown in Figure 2. In this example the vertices ng ...ng com-
prise the neighborhood of the edge pc. A polygonal mesh M = M* is simplified
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Fig. 2. Edge collapse and vertex split
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applying a sequence of edge collapses. One can retrieve the successively higher
detail meshes from the simplest mesh M° by using a sequence of the dual trans-
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Merge trees have been introduced by Xia et al [19] as a data-structure built
upon progressive meshes to enable real-time view-dependent rendering of an
object. Let the vertex p in Figure 2 be considered the parent of the vertex c
(as c¢ is created from p through a vertex split). The merge tree is constructed in



a bottom-up fashion from the high-detail mesh M to a low-detail mesh M° by
storing these parent-child relationships in a hierarchical manner over the surface
of an object.

View-dependent simplification is achieved by performing edge-collapses and
vertex-splits on the triangulation used for display depending upon view-dependent
parameters such as lighting (detail is directly proportional to intensity gradient),
polygon orientation, (high detail for silhouettes and low detail for backfacing re-
gions) and screen-space projection. Since there is a high temporal coherence the
selected levels in the merge tree change only gradually from frame to frame.
Unconstrained edge-collapses and vertex-splits during runtime can be shown to
result in mesh foldovers resulting in visual artifacts such as shading disconti-
nuities. To avoid these artifacts Xia et al propose the concept of dependencies
or constraints that necessitate the presence of the entire neighborhood of an
edge before it is collapsed (or its parent vertex is split). Thus, for the example
shown in Figure 2, the neighborhood of edge pc should consist exactly of vertices
nyg - - . ng for ¢ to collapse to p. Similarly, for the vertex p to split to ¢, the vertices
adjacent to p should be exactly the set ng...ng.

View-Dependent Progressive Meshes Hoppe [10] has independently devel-
oped an algorithm that is similar to Xia et al [19]. Whereas Xia et al use the
Euclidean distance metric and collapse the shortest edge first to construct the
merge tree, Hoppe proceeds in a top-down fashion by minimizing an energy
function first defined in [9]. Hoppe uses screen-space projection and orientation
of the polygons to guide the run-time view-dependent simplification. Like the
approach of Xia et al, this approach also requires constraints to prevent mesh
foldovers. However, unlike [19], Hoppe [10] empirically observes that for some
distance metrics (such as the energy minimization function described there), the
vertex-split/edge-collapse constraints limited to only the four faces fo, f3, fy,
and fs as shown in Figure 2 are adequate. However, this in general is not a
sufficient requirement for other distance metrics, such as the shortest-edge-first,
for which the entire neighborhood has to be stored as a constraint for vertex-
split/edge-collapse. In Section 4.2 we propose to define these constraints in an
implicit manner thereby obviating the need to store them explicitly.

Guérziec et al [7] have developed a surface partition algorithm for a progressive
encoding scheme for surfaces in the form of a directed acyclic graph (DAG). The
DAG represents the partial ordering of the edge collapses with path compression.
De Floriani et al [4] have introduced the multi-triangulation(MT). The change
of level of detail in MT is achieved through a set of local operators that affect
fragments of the mesh. The dependencies between the fragments of the mesh are
used to construct a DAG of these fragments. This DAG is used at run time to
guide the change of the resolution of each fragment.

Schilling and Klein [17] have introduced a refinement algorithm that is tex-
ture dependent. They measure the texture distortion in the simplified mesh by
mapping the triangulation into the texture space and then measuring the er-
ror at vertices and edge intersections. In the vertex hierarchy they store the
sequence of the simplification operations and the texture distortion with each



operation. Klein et al [11] have developed an illumination-dependent refinement
algorithm for multiresolution meshes. The algorithm stores maximum deviation
from Phong interpolated normals and introduces correspondence between the
normals during the simplification algorithm. In order to avoid aliasing artifacts
they recompute the normals at the vertices. In the vertex hierarchy they store
the geometric error and maximum normal deviation at each triangle.

2.3 View-Dependent Topology Simplifications

Luebke and Erikson [13] use a scheme based on defining a tight octree over the
vertices of the given model to generate hierarchical view-dependent simplifi-
cations. In a tight octree, each node of the octree is tightened to the smallest
axis-aligned bounding cube that encloses the relevant vertices before subdividing
further. If the screen-space projection of a given cell of an octree is too small,
all the vertices in that cell are collapsed to one vertex. Adaptive refinement
is performed analogously. Marshall et al [14] have developed a view-dependent
topology simplification algorithm based on a clustering approach and simplifi-
cation metric. The simplification metric minimizes changes to the final image
rather than changes to the input model.

3 Overview

We present a technique for performing geometry and genus simplifications in a
view-dependent manner. We first construct a hierarchy of vertex-pair collapses
to construct a view dependence tree. We would like to note here that the view
dependence tree differs from trees constructed in the previous literature [10, 19] in
that it allows genus simplifications and it does not store any explicit constraints.
Details of how we construct the view dependence tree are given in Section 4.
In general for n vertices O(n?) vertex pairs are candidates for collapse. In our
current implementation we only consider O(nlogn) candidate vertex pairs by
constructing an octree and considering only the nearest neighbors across adjacent
cells as candidates.

We have tried several distance metrics and have found that the combination
of the vertex coordinates with the normals yields the most acceptable results.
We discuss this multi-attribute metric further in Section 5. Almost all view-
dependent simplification criteria make use of vertex normals. We discuss how
tests for backfacing regions, view-frustum, foveation, and local illumination can
be performed in a natural fashion by using our distance function. Our algorithm
that makes use of these criteria results in a visually better view-dependent sim-
plification of a scene, than purely Euclidean-distance metrics. We discuss these
criteria further in Section 5.

4 View Dependence Tree Construction

A view dependence tree is a generalization of the merge tree introduced by Xia et
al in two important ways. First, a view dependence tree is capable of performing



genus-reducing simplifications whereas a merge tree can only perform genus-
preserving geometric simplifications. Second, a view dependence tree does not
store any explicit constraints. Instead implicit constraints are used to ensure
runtime consistency in the generated triangulations. We next describe these two
important differences.

4.1 Simplifying Genus

An edge collapse combines two vertices that are connected by an edge. A vertex-
pair collapse is a generalization of an edge collapse that combines any two ver-
tices. For a dataset with n vertices, O(n?) vertex pairs are possible. An algorithm
that selects from amongst these in a sorted order would take time O(n?logn) —
too slow for most practical applications.

To generate the candidate vertex pairs more rapidly we construct an octree
over the vertices of the object. For each cell C; of the octree we include the closest
pair of vertices (P1, P2) such that P4 lies in Cj, and Py lies in C}, where C; and
C; share a common subdividing plane II;;. This results in O(nlogn) candidate
vertex pairs. We have found that this method works better than selecting vertex
pairs based on Delaunay tetrahedralizations or grid-based methods.

Once the vertex pairs have been selected, these together with all the edges
of the model are considered for possible collapses to build the view dependence
tree in the shortest-edge-first order. The distance metric that we have used to
compute the shortest edge is given by Equation 1 in Section 5. The resulting
view dependence tree is constructed much along the lines of a merge tree, except
for handling of constraints that is discussed next.

4.2 Implicit Constraints

In construction of a view dependence tree we keep track of the identification
numbers of the vertices. If the model has n vertices at the highest level of detail
they are assigned vertex-ids 0,1,...,n — 1. Every time a vertex pair is collapsed
to generate a new vertex, the id of the new vertex is assigned to be one more
than the greatest vertex-id thus far. This process is continued till the entire view
dependence tree has been built. The order of the selection of vertex pairs to
collapse is made on the basis of the following criteria:

1. Shortest Distance First: We store all candidate vertex pairs in a priority
heap and select the vertex pair that has the shortest distance based on some
distance metric. For our current implementation we use a multi-attribute
distance metric defined by Equation 1.

2. Awvoid Mesh Foldover: If the vertex pair collapse occurs along an edge (i.e.
is non-genus-reducing), and performing this collapse does not result in the
normals of any of the final triangles from being “flipped” with respect to
the pre-collapse triangles then we flag this collapse as valid, otherwise we go
back and test criteria (1) above with the next shortest edge.



For certain applications in which long and thin sliver triangles are not desirable
an additional test can be added to the above list that will flag a vertex pair
collapse as invalid if it results in creation of sliver triangles. All of the above
tests are done during the preprocessing stage; they are too costly to be performed
at runtime to determine view-dependent triangulations. The outcomes of these
tests are represented in the sequence in which the vertices are collapsed during
the preprocessing and are reflected in the vertex ids.

4.3 Runtime Traversal

The list of vertices that are used for display at any frame i is defined as the set
of active vertices for that frame. Active vertices for display in frame i + 1 are
determined by collapsing or splitting from amongst the active vertices for frame
i based on the view-dependent criteria. The list of triangles that are displayed
in frame 7 comprise the set of active triangles for that frame. The determination
of active triangles for frame ¢ + 1 proceeds in an interleaved fashion with the
determination of active vertices for frame ¢ + 1 from frame i. Every time a
display vertex of frame i collapses or splits in frame ¢ + 1 we simply delete and
add appropriate triangles to the list of active triangles. For frame 0 we initialize
the lists of active vertices and active triangles to be the entire set of vertices and
triangles, respectively, in the model.

Before a vertex is split or collapsed at runtime we make a few simple checks
based on vertex ids to ensure the consistency of the generated triangulations and
avoid mesh foldovers. These can be simply stated as:

— Vertex Split: A vertex p can be safely split at runtime if its vertex-id is
greater than the vertex-ids of all its neighbors.

— Vertex Pair Collapse: A vertex pair (p,c) can be collapsed if the vertex-id
of the resulting vertex is less than the vertex-ids of the parents of the union
of the neighbors of vertices p and c.

The two above checks can be efficiently implemented by storing two values with
every active vertex — (a) the maximum vertex-id of all its neighbors and (b) the
minimum vertex-id of the parents of all its neighbors. During each frame each
active vertex is visited once to evaluate its potential to split or collapse. If an
active vertex passes the view-dependent tests outlined in Section 5 these two
values stored locally at the vertex can be used to determine whether it will be
safe to split/collapse. These values are updated only when an active vertex or
one of its neighbors actually splits or collapses.

5 Unifying Geometry and Topology

One of the important issues in combining genus simplification with geometry
simplification is quantifying and prioritizing the changes in the genus of an object
relative to changes in its geometry. Consider for example the object shown in
Figure 3(a). Using simple Euclidean-distance-based metrics we find that the



distance between A and B is larger than that between B and C. The decision
to collapse vertices B and C will be topology-modifying whereas the collapse of
A and B will be a geometry simplification.
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(a) Geometry and topology simplification (b) View-dependent simplifciaction
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Fig. 3. View-dependent topology simplifications

Currently there are two techniques for deciding which collapse to perform
first: (a) Geometry First: Perform as many genus-preserving geometry simpli-
fications as possible. When it is no longer possible to perform any geometry
simplifications any further for a given error bound, perform genus-reducing sim-
plification. This is the approach taken in [18,5]; (b) Equal Preference: Treat
genus-preserving and genus-reducing simplifications on an equal basis and make
decisions based only by the spatial distance in R3. This is the approach taken
in [6,13].

We would like to be able to prioritize genus-preserving and genus-reducing
simplifications between the two above extremes. We observe that genus-reducing
simplifications are almost always characterized by a large difference in the nor-
mals of the surfaces that are merged. This suggests the use of the following
distance function between two points Pg = (vg,ng) and Py = (vq,n1):

. ||V0 — Vi ||2

dZSt(P(), Pl) = (1 n 110.111) Te (1)
where vi = (2;,¥:,2;) and n; = (ng,,n;,,n;,) denote the position and normal
respectively of point P; and € is a user-specified preference factor that prioritizes
the genus-preserving and genus-reducing simplifications. As an example, when
e = 0.1, genus-preserving geometry simplifications (that involve collapsing two
similarly oriented vertices) would be preferred over distances 21 times greater
than genus-reducing simplification (that involve collapsing two oppositely ori-
ented vertices).

As shown in Figure 3(b) most of the view-dependent simplifications can be
cast in terms of computing the distance between two points with coordinate
positions and normals. Let us assume that the eye is located at position e and
has associated with it a vector n. that is the oppositely oriented with respect
to the look-at vector.

— Triangle Position and Orientation: This involves computing the distance
between (v,ny) and (e,ne). If the triangle is backfacing, this will yield a



large value assisting in backface simplification. If the triangle is near the
center of the screen and facing the viewer, Equation 1 yields a small value
of the distance assisting in implementing foveation, i.e. high detail in the
direction the eye is looking at. Foveation can be used to mimic the high
visual acuity at the center of the human retina [1].

— Lighting-based Adaptive Simplification: If the triangle under consideration is
front facing we use the minimum of the distance between (v,ny) and (1, n;)
and the distance between (v, ny) and (e, ne) to compute the requisite level
of detail for illumination.

6 Results and Discussion

We have implemented our approach on a SGI Onyx2 with Infinite Reality graph-
ics and tested it on several models. The times for preprocessing appear in Table 1.
We would like to point out that our code has not yet been particularly optimized.
The results of our approach for the above models appear in the Figures 1- 6.

Dataset|Vertices| Triangles Preprocessing Time
View-Dependent Tree| Octree
Bunny | 35947 | 69451 10.3 s 14s
Pipes | 107754 | 206352 58.1s 87.5s
AMR | 173042 | 339444 1m55s 5m10s
Torp |464720 | 736516 12 m 46 s 19m12s
Table 1. Preprocessing times for various models

Figure 1 shows the results of lighting-dependent, genus simplification. Figure 4
shows the results of view-frustum-guided simplifications. The yellow rectangle
in the center of each image shows the outline of the screen-space projection of
the view frustum. As can be seen the detail outside the view frustum has been
considerably simplified in Figure 4(b). Figure 5 shows the original and two pro-
gressively lower levels of detail of the Auxilliary Machine Room dataset from
a notional submarine dataset. We would like to point out that on an average
traversal of the view dependence tree takes up only 8 — 10% of the time to
draw each frame; rest of the time is being taken up in drawing the triangles
that have been determined. Figure 6 shows view-dependent simplifications for
a procedurally generated model of pipes. Most of the simplification in this case
is because of genus-reducing simplifications. This might be an appropriate place
to compare our work with that of Luebke and Erikson’s [13] as two instances of
view-dependent topology simplification work. In Luebke and Erikson’s [13] ap-
proach fine control over the simplification of the topology is not easy to achieve.
For example, a hole that exists on the border of three or more cells may become
larger as result of the collapse of the vertices of the adjacent cells. Since our
primitive operation of a vertex-pair collapse is simpler than that of collapsing



(a) Original model: 86.5K triangles (b) Simplified model: 21K triangles

Fig. 4. View-frustum-guided genus simplification

all vertices in an octree cell, we believe that our method will be able to provide
a finer level of control for more realistic rendering. However, identification of
candidate vertex pairs takes more time than simply constructing an octree over
input vertices.

(a) Original 340K tris (b) 140K tris

Fig. 5. Three LODs from the view dependence tree for Auxilliary Machine Room

We have observed several advantages in making the split and collapse con-
straints implicit and storing the values to be checked locally:

1. Local Accesses: Explicit constraints the way they are stored in previous work
[10,19] result in several non-local accesses resulting in unnecessary paging
for large datasets or on computers with less memory. Implicit constraints
overcome these drawbacks and suggest possibilities for developing external
memory algorithms for view-dependent visualization of datasets that do not
even fit into the main memory of the visualization workstation.

2. Change-Sensitive Processing: Explicit constraints need to visit every neigh-
bor of an active vertex to determine whether or not it can split/collapse.
This might result in visiting of a node several times, once from each of its
neighbors, often unnecessarily. With implicit constraints, the way we have
defined them, the algorithm needs to visit a node of the view dependence
tree only when its associated active vertex actually splits or collapses. Thus
the processing time is now proportional to the actual number of changes as
opposed to potential changes.



3. Memory Savings: Implicit constraints require only two integers to be stored
per node of the view dependence tree as opposed to a pointer to every vertex
in the neighborhood. This results in a modest savings of about 30% in the
storing of the tree.

7 Conclusions and Future Work

We have presented the concept of view-dependence trees to perform genus-
reducing simplifications for large polygonal datasets. These trees are more com-
pact, faster to navigate, and easier to build than prior work. Further, we have also
introduced a distance metric that can be used for prioritizing genus-reducing sim-
plifications with respect to geometry-reducing simplifications in a view-dependent
manner. This metric is particularly useful in that it is able to unify the distance
function being used in genus-preserving versus genus-reducing simplifications
with the other criteria in defining view-dependent simplifications.

We see scope for future work in designing external memory algorithms for
visualization of datasets whose sizes exceed that of the main memory, by taking
advantage of the localized and compact structure of view dependence trees.
Also, there is scope for better defining the normal and coordinate values of a
new vertex as a result of vertex pair collapse by using methods similar to those
of Garland and Heckbert [6]; we currently use the average normal and average
coordinate values of the two vertices.

(a) Original model: 25.7K triangles (b) Simplified model: 7.2K triangles

Fig. 6. View-dependent simplification of the procedural pipe model
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