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Abstract
We propose a technique for performing view-dependent geometry and topology simplifications for level-of-detail-
based renderings of large models. The algorithm proceeds by preprocessing the input dataset into a binary tree, the
view-dependence treeof general vertex-pair collapses. A subset of the Delaunay edges is used to limit the number
of vertex pairs considered for topology simplification. Dependencies to avoid mesh foldovers in manifold regions of
the input object are stored in the view-dependence tree in an implicit fashion. We have observed that this not only
reduces the space requirements by a factor of two, it also highly localizes the memory accesses at run time. The
view-dependence tree is used at run time to generate the triangles for display. We also propose a cubic-spline-based
distance metric that can be used to unify the geometry and topology simplifications by considering the vertex positions
and normals in an integrated manner.

1. Introduction

Recent advances in three-dimensional shape acquisition, sim-
ulation, and design technologies have led to generation of
datasets that are beyond the interactive rendering capabilities
of the current graphics hardware. To bridge the increasing gap
between hardware capabilities and graphics dataset sizes, the
complexity of the graphics dataset is reduced such that its
visual appearance is similar to the original. This reduction
is achieved through several algorithms and techniques such
as level-of-detail rendering with multi-resolution hierarchies,
occlusion culling, and image-based rendering. Preserving the
topology of the input dataset is an important criterion for some
graphics application such as tolerancing, drug design, geolog-
ical, and medical volume visualization. However, for several
real-time graphics applications where interactivity is essential
and preserving the topology is not required, topology simpli-
fication has been shown to yield significant benefits with little
difference in visual appearance7.

Recently, view-dependent simplifications have been intro-
duced to enable various levels of detail to seamlessly co-exist
over different regions of the same surface. These levels of de-
tail depend on parameters such as view location, illumination,
and speed of motion and are determined per-frame. However,
most of these view-dependent simplification algorithms, with
the notable exception of the work by Luebke and Erikson19,
are based on edge-collapse, which by itself is inadequate for
topology simplification. In order to be able to change the topol-
ogy of a model we should be able to merge different objects,

hence, vertices which are not connected via an edge. This leads
us to the first issue that we address in this paper – how can one
limit the potentiallyn2 such vertex pairs under consideration
(wheren is the number of vertices of the model).

Second, we propose a unified distance metric that allows
measurement of the distance between two vertices taking into
account their coordinates as well as normals. Our spline-based
distance metric can also be used to provide a reasonable mea-
sure of the distance from the view point to the vertices of the
object. Since our metric handles the normals and the coordi-
nates in a unified manner, we can use the same distance func-
tion during construction of the vertex hierarchy as we use dur-
ing the run-time view-dependent simplifications. This was not
possible in the past.

Dependencies lists were introduced by Xiaet al 24 and im-
proved later by Hoppe16 in order to prevent foldovers at run
time. But they are expensive to store and to test at run time
due to the memory overhead and several non-local accesses.
These non-local accesses lead to unnecessary paging for large
datasets or on computers with less memory. In addition, it is
very hard to extend explicit dependencies lists to handle the
view-dependent topology simplification. In this paper we in-
troduce the concept ofimplicit dependenciesthat ensure run-
time consistency in the generated triangulations, with a very
small memory overhead and purely local accesses. We expect
implicit dependencies to be useful for view-dependent visu-
alization applications dealing with networks external memory
prefetching as well as over networks.

c The Eurographics Association and Blackwell Publishers 1999. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.



2. Related Work

Since related work on geometry simplification has been well
surveyed in several recent papers15; 9; 5 in this paper we shall
overview only the related work in the areas of topology and
view-dependent simplifications.

2.1. Topology Simplification

Rossignac and Borrel21 use a global grid to subdivide a model.
This approach can simplify the topology if the desired simpli-
fication regions fall within a grid cell. Heet al14 used low-pass
filtering to perform a controlled simplification of the topology
of volumetric datasets; however polygonal objects need to be
voxelized. El-Sana and Varshney7 perform genus simplifica-
tion by extending the concept ofα-hulls to triangles. Their ap-
proach is based on convolving individual triangles with aL1
cube of sideα and computing their union. The convolution
operation effectively eliminates all holes less thanα.

Several edge-collapse-based schemes have been proposed
for topology simplification, though not in the context of view-
dependent renderings. Schroeder23 has introduced vertex-split
and vertex-merge operations on polygonal meshes for modify-
ing the topology of polygonal models. Vertex splits are per-
formed along feature lines and at corners. Garland and Heck-
bert9 present a quadric error metric that can be used to perform
genus as well as geometric simplifications by using vertex-
pair collapses. Popovi´c and Hoppe20 introduce the operator of
a generalized vertex split to represent progressive changes to
the geometry as well as topology.

2.2. View-Dependent Simplification

Adaptive, view-dependent levels of detail were first introduced
in the context of terrains by Grosset al 11. Grosset al de-
fine wavelet space filters that allow changes to the quality of
the surface approximations in locally-defined regions. Several
other researchers have since then presented other methods for
view-dependent rendering of terrains. However, keeping with
the focus of this paper, we shall only overview previous work
done in the area of view-dependent simplifications of general-
ized meshes.

Progressive meshes have been introduced by Hoppe15 to
provide a continuous resolution representation of polygonal
meshes. Progressive meshes are based upon two fundamental
operators – edge collapse and its dual, the vertex split as shown
in Figure 1. A polygonal mesĥM = Mk is simplified into suc-
cessively coarser meshesMi by applying a sequence of edge
collapses. The sequence(M0

;fsplit0;split1; : : : ;splitk�1g) is
referred to as aprogressive meshrepresentation.

Merge trees have been introduced by Xiaet al 24 as a data-
structure built upon progressive meshes to enable real-time
view-dependent rendering of an object. These trees encode the
vertex splits and edge collapses for an object in a hierarchical
manner. The edge collapses are performed using the shortest-
edge-first heuristic. Each vertex stores the distance from the
user beyond which it will be collapsed to its parent and a dis-
tance at which it will be split. The distance metric is defined

using view position, view angle, variations in surface normal,
local illumination, silhouettes, and front/back-facing regions.

Hoppe16 has independently developed a view-dependent
simplification algorithm. This algorithm proceeds to construct
a vertex hierarchy over a progressive mesh in a top-down fash-
ion by minimizing an energy function. Screen-space projec-
tion and orientation of the polygons is then used to guide
the run-time view-dependent simplifications. Guéziecet al 13

demonstrate a surface partition scheme for a progressive en-
coding scheme for surfaces in the form of a directed acyclic
graph (DAG). The DAG represents the partial ordering of the
edge collapses with path compression. De Florianiet al.6 have
introduced the multi-triangulation(MT). The decimation and
refinement in MT is achieved through a set of local operators
that affect fragments of the mesh. Then the dependencies be-
tween these fragments are used to construct a DAG of these
fragments. This DAG is used at run time to guide the change
of the resolution of each fragment.

Klein et al 18 have developed an illumination-dependent
refinement algorithm for multiresolution meshes. The algo-
rithm stores maximum deviation from Phong interpolated nor-
mals and introduces correspondence between the normals dur-
ing the simplification algorithm. Schilling and Klein22 have
introduced a refinement algorithm that is texture dependent.
Their algorithm measures the texture distortion in the simpli-
fied mesh by mapping the triangulation into the texture space
and then measuring the error at vertices and edge intersections.
Gianget al 10 have presented a method to produce a hierarchy
of triangle meshes that can be used to blend different levels of
detail in a smooth fashion.

Luebke and Erikson19 use a scheme based on defining a
tight octreeover the vertices of the given model to generate hi-
erarchical view-dependent simplifications. This approach can
simplify topology if the desired simplification regions fall
within one cell. However, fine control over the simplification
of the topology is not easy to achieve.

3. Our Approach

We present an algorithm that enables geometry and topology
simplification in a view-dependent fashion. In the preprocess-
ing stage we construct a hierarchy of vertex-pair collapses to
build a view-dependence tree. Among then2 vertex-pair can-
didates we choose the vertex pairs that are connected by the
mesh edges and an additional set of vertex pairs determined us-
ing a Voronoi diagram (details are in section 4). Details of how
the view-dependence tree is constructed are given in section 5.
Our view-dependence tree differs from previous work24; 16 in
that it enables topology simplification, does not store explicit
dependencies, and handles non-manifold cases. At run-time
the view-dependence tree is used to guide the selection of the
appropriate level of detail based on factors such as view and
illumination parameters.

We have found that distance metrics that combine vertex
position and normal perform better than metrics that take into
account only position, such as the Euclidean distance metric.
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In section 7 we discuss a new metric that combines the nor-
mals and positions of the collapsed vertex using cubic splines.
Our spline metric tests view frustum, foveation, backfacing re-
gions, and local illumination in a natural fashion.

4. Virtual Edges

A polygonal mesh can be simplified into successively coarser
meshes by applying a sequence of edge collapses or vertex-
pair collapses. In anedge collapsethe two vertices which are
connected by this edge are collapsed into one vertex and the
adjacent triangles are updated appropriately as shown in Fig-
ure 1. A vertex-pair collapseis a generalization of the edge
collapse and involves merging two vertices that may or may
not be connected by an edge. The adjacent triangles are up-
dated in a manner similar to that for the edge collapse.
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Figure 1: Edge collapse and vertex split

For our algorithm to allow topology simplification it needs
to collapse vertex pairs that are not connected by an edge. Such
vertex-pair collapses allow merging of unconnected compo-
nents. We say that such a vertex pair is connected by avirtual
edgewhile the original model edges are referred to asreal
edges. Virtual edges have been used by Garland and Heck-
bert 9, Popović and Hoppe20, and Schroeder23. We rely on
the Delaunay triangulation to restrict potentiallyn2 such vir-
tual edges. The set of virtual edges that we consider is a subset
of the Delaunay edges over the dataset vertices. It is impor-
tant to note here that the Delaunay edges do not necessarily
suffice to represent all vertex-pair collapses that might be con-
sidered desirable by an application. However, we have found
that in practice, the Delaunay edges suffice for most topol-
ogy simplifications, particularly, when they are supplemented
by the real edges of the model as candidates for collapse. We
generate the virtual edges for consideration through a Voronoi
diagram in which the dataset vertices are the Voronoi sites. We
construct the virtual edges from the given set of Voronoi sites
by connecting every pair of vertices by a virtual edge if their
corresponding Voronoi cells share a Voronoi face and are not
connected via a real edge.

Three-dimensional Voronoi diagram can be constructed in
O(n2 logn) time for n points. Several research groups have
developed software for computing three-dimensional Voronoi
diagrams and Delaunay triangulations and released it in the
public domain. We chose to useQhull 2 to construct the three-
dimensional Voronoi diagram since it is robust and can handle
degeneracies well.

4.1. Optimization

We have found that a large fraction of the Delaunay edges con-
nect vertices which are already connected via real edges. One
way to reduce this fraction is to reduce the number of Voronoi
sites, that is the number of vertices we consider. Recently,
Amentaet al 1 have proposed the concept of Voronoi filter-
ing to reduce such connections between points during surface
reconstruction from a set of unorganized sample points. In our
case we achieve this reduction by combining the faces to su-
perfaces and computing the Voronoi diagram for the vertices
that form the boundary of these superfaces. Thus the virtual
edges that are generated are a subset of the edges connecting
the boundary vertices of such superfaces. To allow a rich col-
lection of such virtual edges for consideration, we require that
all the triangles of any superface form a manifold patch. We
define a superface normal as the average of the normals of all
the triangles that form it.

Some algorithms have been suggested to compute super-
faces4; 17. Our algorithm for this construction is very similar
to others. In the initialization step every triangle forms a su-
perface. Then in a recursive greedy fashion we combine the
two adjacent superfaces that have the minimum angle between
their normals and all the shared vertices are manifold. The al-
gorithm stops when the minimum angle between the normals
of any two adjacent superfaces is larger than a given threshold.
We are interested in superfaces that do not contain sharp edges,
hence we use threshold of 75� in our current implementation.

After we have constructed the superfaces, we compute the
Voronoi diagram of the vertices which form the boundary of
these superfaces. We consider the virtual edges which connect
any two vertices that (a) are not connected via a real edge, (b)
share a Voronoi face, and (c) do not lie on the boundary of the
same superface.

It is important to note that superfaces are used only to re-
duce the number of vertices we consider to generate the virtual
edges. As we pointed out earlier, the virtual edges are used to
establish connectivity across different components that would
otherwise not have readily merged. Beyond a certain size, the
shape and extent of superfaces does not affect the run-time
view-dependent simplification to a great extent since they are
being primarily used to limit redundant connectivity. Hence
simple heuristics to define superfaces, like the one we use here,
work well in practice.

5. View-Dependence Tree

View-dependence tree is a generalization of the merge tree in-
troduced by Xiaet al in following ways:

� View-dependence tree is capable of performing topology
and geometry simplifications whereas a merge tree can only
perform topology-preserving geometric simplifications.

� The construction of the view-dependence tree is based on
a generalized vertex-pair collapse method to combine two
vertices. In addition to the real edges, agood representa-
tive subset of virtual edges is used for performing edge col-
lapses. This subset is more general than simply considering
all virtual edges with lengths less than a threshold.
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� View-dependence tree does not store dependencies lists,
since it uses implicit dependencies to ensure runtime con-
sistency in the generated triangulations. This allows highly
localized memory accesses during run-time.

� It is not limited to manifold surfaces. It can handle arbitrary
polygonal meshes.

In a vertex-pair collapse we define the vertices that are col-
lapsed as thechildrenand the newly created vertex as thepar-
ent. Each node of the view-dependence tree keeps vertex in-
formation and pointers to (a) its two children, (b) its parent,
and (c) two adjacent triangle lists:permanentandcurrent. The
permanent adjacent triangle(PAT) list holds pointers to the
triangles that are removed after the collapse of the vertex rep-
resented by this node. Thecurrent adjacent triangle(CAT) list
exists only when the node is active and it holds a list of point-
ers to the current adjacent triangles. Each item(t : s) of the
PAT list consists of a pointer to a trianglet and an offsets. The
offsets is the index of the trianglet on the CAT list of this node
before the collapse took place. This isillustrated in Figure 2.
We shall refer to a view-dependence-tree node asnodeand a
split or collapse of the vertex represented by a node as the split
or collapse of the node.
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Figure 2: Adjacent triangle update after split and collapse

The vertices of the full-resolution mesh are represented by
the leaves of the view-dependence tree. In the initialization
step of constructing the view-dependence tree, we store all
real and virtual edges in a priority heap. The priority heap is
based on the distance between the two vertices of the edge
with respect to some distance metric (shortest-distance-first).
Then while the priority heap is not empty we perform the fol-
lowing: (a) we remove the edge on the top of the priority heap,
(b) we test whether the two vertices of the removed edge can
be safely collapsed, and (c) if they can be safely collapsed we
execute the collapse operation.

The execution of a vertex-pair collapse involves creating a
new node (parent), and moving the adjacent triangles that have
become degenerate from the two children’s CAT lists to their

respective PAT lists. The parent’s CAT list is formed by ap-
pending the CAT list of the left child to the CAT list of the right
child. Note that the triangles that have just become degenerate
and are represented by the PAT lists of the two child nodes are
not present in the parent’s CAT list. We then mark the position
of the start of the right-child CAT list in the parent’s CAT list
by asplit index(SI). This is illustrated in Figure 2. We note that
in some cases the PAT list can have more than two triangles.
At the time of creation of a new node, we also store with it the
distance between the vertex-pair used in the collapse. We refer
to this distance as theswitch-valueof the node. This distance
can be computed using any reasonable distance metric. In our
current implementation we use the cubic spline metric intro-
duced in section 7. These switch values are used to determine
the level of detail in the view-dependence tree at run time.

5.1. Preventing Foldovers

As a result of edge or vertex-pair collapses a triangle may “fold
back” on itself or change its normal by aboutπ. We refer to
this as amesh fold-overor just afoldover. In the construction
of a view-dependence tree we would like to prevent foldovers
and long sliver triangles. We define a vertex-pair collapse as
safeif it does not lead to any foldovers or long sliver triangles.
To determine the safety of a vertex-pair collapse we use two
heuristics. First, for any triangle adjacent to any of the two
collapsed vertices, the difference between the normal of this
triangle before and after the collapse is bounded by some user-
specified threshold. Second, for any triangle adjacent to any of
the two collapsed vertices the quality of this triangle should
not drop below some user-determined threshold. We quantify
the quality of a triangle with areaa and lengths of the three

sidesl0; l1; andl2 to be 4
p

3a
l20+l21+l22

as proposed by Guéziec12. We

exclude from these tests triangles which become degenerate
after a vertex-pair collapse such as the two triangles adjacent
to the collapsed edge.

Since we use Delaunay tetrahedralizations to construct vir-
tual edges it might happen that a virtual edge is piercing a face
of the original mesh. A collapse of such an edge can produce
undetected self-intersection. To detect such self-intersections
a global search is required after each collapse. However, such
self-intersections are limited in our case because we use su-
perfaces and the relative difference between normals of the
collapsing vertices. In a test we conducted on the Auxiliary
Machine Room dataset we found that only 0:005% of the col-
lapses resulted in such self-intersections.

The safety of a collapse or split can be lost during the traver-
sal of the vertex hierarchy tree at run-time. Figure 3 shows
an example of how an undesirable folding in the adaptive
mesh can arise even though all the vertex-pair collapses that
were determined statically were correct. Figure 3(a) shows
the initial state of the mesh. During constructing the view-
dependence tree, we first collapsed vertexvb to va and then
we collapsed vertexvc to vd. Now suppose at run-time we de-
termined that we needed to display verticesva;vb, andvd and
could possibly collapse vertexvc to vd, then this will lead to a
foldover (as shown in Figure 3(b)).
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Figure 3: Foldover case

In order to prevent foldovers at run-time, previous algo-
rithms24; 16 have usedexplicit dependenciesamongst the nodes
of the vertex-hierarchy tree. Let us define theregion of influ-
enceas the set of triangles which are adjacent to one of the
collapsed vertices. We define thecollapse boundaryto be the
set of vertices that form the boundary of the region of influ-
ence of the collapsed vertices. Explicit dependencies permit
the collapse of an edgee only when all the vertices defining
the boundary of the region of influence of this collapse exist
and are adjacent to the edgee. As an example, consider Fig-
ure 1. Vertexva can collapse with vertexvb only when the ver-
ticesv0;v1; : : : ;vk exist and are adjacent tova andvb. Hence,
the explicit dependencies can be stated as in Definition 1.

Definition 1 Explicit dependenciesfor the collapse of two
verticesva andvb in Figure 1.

i. Collapse:Vertex va can collapse to vertexvb, only when
all the verticesv0, v1, : : : , vk are present as neighbors of
verticesva andvb.

ii. Split: Vertexvp can safely split to verticesva andvb only if
verticesv0;v1; : : : ;vk are present and adjacent tovp.

In our view-dependence tree we use implicit dependencies
(discussed in section 6) to prevent foldovers at run time.

5.2. Component Merge

One of the advantages of topology simplification is the abil-
ity to connect previously unconnected components. In our al-
gorithm this connection is established through the collapse of
virtual edges. If these two components are connected through
one vertex only (one virtual edge collapse), further collapses
of real edges will not increase the shared area between these
components. However, if the two components share three ver-
tices that form a triangle, then we remove the two identical
triangles (since they face each other) and thereby establish a
tunnelbetween these two components.

(a) Original (b) Simplified

Figure 4: Tunnel established between two spheres

Establishing such a tunnel enables simplification of the
topology as well as reduces the number of triangles of the
model. For example, the two spheres in Figure 4(a) are close
enough that a tunnel is established between them as shown in
Figure 4(b). The two spheres connected with a tunnel have the
topology of a single sphere which is different from the topol-
ogy of two unconnectedspheres as well as for two spheres that
just share a few vertices.

Some genus simplifying algorithms in the past7 have pro-
posed eliminating the interior triangles after genus simplifi-
cation. The detection of such triangles is based on a region-
growing approach that is quite efficient for generating static
levels of details. However, for view-dependent simplifications
with strict frame-to-frame timing constraints, such techniques
are too expensive to be conducted in real-time. Therefore, in
our present approach we only remove the redundant triangles
that can be rapidly detected by a local search around the col-
lapsed vertices.

6. Implicit Dependencies

Previous work on view-dependent simplification has used ex-
plicit dependencies to prevent foldovers at run-time. These
constraints result in memory overhead and several non-local
memory accesses during testing of the possibility for split or
collapse.

We next propose the concept ofimplicit dependencies. Im-
plicit dependencies rely on the enumeration of vertices gener-
ated after each collapse. If the model hasnvertices at the high-
est level of detail they are assigned vertex-ids 0;1; : : : ;n�1.
Every time a vertex pair is collapsed to generate a new ver-
tex, the id of the new vertex is assigned to be one more than
the greatest vertex-id thus far. This process is continued till the
entire view-dependence tree has been constructed.

Before split or collapse operation is executed at runtime
we make a few simple tests based on vertex ids to ensure the
consistency of the generated triangulations and to avoid mesh
foldovers. These tests are given in Definition 2.

Definition 2 Implicit Dependencies Tests

i. Vertex-Pair Collapse:A vertex-pair(a;b) can be collapsed
if the vertex-id of their parent is less than the vertex-ids of
the parents of the collapsed boundary vertices.

ii. Vertex Split:A vertex p can be safely split at runtime if its
vertex-id is greater than the vertex-ids of all its neighbors.

Consider the example in Figure 5. Figure 5(a) shows the
original mesh, Figures 5 (b), (c), and (d) show the sequence
of the collapses(v9;v10), (v7;v8), and(v11;v12) respectively.
The explicit dependencies list for the collapse(v7;v8) is
E(v7;v8) = fv1;v2;v3;v4;v11g. This means that the nodes ad-
jacent tov7 andv8 must be exactly the elements of the list
E(v7;v8) before the collapse(v7;v8). When using implicit de-
pendencies,we rephrase the above as: the collapse(v7;v8) can
occur only after the collapse of(v9;v10) to v11 and before the
collapse of any of the verticesfv1;v2;v3;v4;v11g. In terms of

5



3 5

 6

 4

 2

 1

 8 9

 710

3 5

 6

 4

 2

 1

 8

 7

11

3 5

 6

 4

 2

 1

11 12

3 5

 6

 4

 2

 1

13

(a) (b) (c) (d)

X Active
Collapsed

 8

X

 9

 710

11(9,10) 12(7,8) 13(11,12)

 9

10

 8

 7

11 12

 9

10

Figure 5: Explicit dependencies and implicit dependencies

carrying out the implicit dependency tests, we note that the
vertex ids of the parents of the collapse boundary for(v7;v8)

are all going to be� 12 (since(v7;v8) collapses tov12). There-
fore, by Definition 2(i),(v7;v8) collapse should occur before
any of its other collapse boundary vertices. Similarly, split of
nodev12 has to occur before the split of nodev11.

In our current implementation of implicit dependencies we
store two integers with each node which are (i) the maximum
vertex-id M of the adjacent vertices and (ii) the minimum
vertex-idm of the parents of the collapse boundary vertices.
The two integers are updated after each change of the collapse
boundary as a result of split or collapse. As an example in Fig-
ure 5, the integer pair(M;m) for nodesv7 as well asv8 for the
mesh state shown in Figure 5(a) is(10;11) while it is (11;13)
for Figure 5(b). The readers might wish to verify for them-
selves the applicability of the implicit dependency tests given
above for various split and collapse operations.

Before we proceed with the proof of the correctness of the
implicit dependencies let us define some terms that help in
understanding this proof.

Definition 3 Two collapse boundaries areadjacentif a vertex
of one vertex-pair collapse exists in the other collapse bound-
ary, otherwise they aredisjoint.

Definition 4 A view-dependence tree is calledfoldover-free
if during its construction no executed collapse leads to a
foldover. A sequence of vertex-pair collapses and vertex split
operations is called afoldover-free sequenceif no foldover oc-
curs during the execution of this sequence.

Definition 5 A sequence of vertex-pair collapses and vertex
split operations on a view-dependence treeT preserves the lo-
cal order of the collapsesif every two adjacent collapses are
carried out in the same order that they were executed during
the construction ofT.

Lemma 1 For a given view-dependence tree, implicit depen-
dencies preserve the local order of the collapses, which means
that any two adjacent collapses occur in the same order as in
the construction sequence.

Proof: Note that there is a one-to-one correspondence be-
tween the enumeration of the newly created nodes and the col-
lapses during the construction of the view-dependence tree.
For example, in the collapseCα : (vi;vj ) to create the new node
vp, theid of the nodevp is equal ton+α, wheren is the num-
ber of leaves of the view-dependence tree (which is the num-
ber of vertices of the dataset) andα is the number of collapses
beforeCα. Thus, Definition 2(i) is equivalent to “Select the
collapse with the minimum id among the set of the given ad-
jacent collapses”, but this statement imposes a local order on
the adjacent collapses. Following the same terminology, Defi-
nition 2(ii) can be stated as “Select the collapse with the max-
imum id among the set of the given adjacent collapses”, but
again this imposes a local order on the collapses. These lo-
cal orders are the same as in the construction sequence of the
view-dependence tree by the way the node ids are assigned.2

Theorem 1 For any foldover-free tree, a sequence of vertex-
pair collapses that preserves the local order of the collapses is
a foldover-free sequence.

Proof: Let us assume by contradiction that a foldover oc-
curs in a foldover-free tree even though the collapse sequence
preserves the local order of the collapses. LetCf : (vb;va) be
the first collapse which leads to a foldover. Now, we proceed
with the proof in two stages. In the first stage, we extend the se-
quence of vertex-pair collapses such that every collapse in the
rangeC0; : : : ;Cf exists in the sequence.We achieve this by ex-
ecuting the missing collapses in that range, without violating
the implicit dependencies. The execution of such collapses is
achievable, since it is always possible to execute the collapse
with the minimum index. However, during the execution of the
missing collapses we may encounter other foldovers. In such
cases, we rename the one with the lowest index toCf .

In the second stage, we sort the complete sequence of col-
lapsesC0;C1; : : : ;Cf , with respect to their index order. We
carry out this sort by only exchanging pair of consecutive col-
lapses which are not in an index order (such asCi ;Cj and
i > j). Now, we show that this exchange preserves the implicit
dependencies.Ci andCj can be either adjacent or disjoint col-
lapses. However such an adjacent pair can not exist because it
contradicts the implicit dependencies. If the two collapses are
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disjoint, then they can not affect each other by the definition
of collapse boundary.

The resulting sequenceC0;C1; : : : ;Cf is a prefix of the con-
struction collapse sequence, which means that this foldover
occurs during the construction too. But the given view de-
pendence tree was foldover-free. This contradiction proves the
theorem.2

In the above proofs we have only dealt with the sequences
of collapses. If we treat a split operation as undoing a collapse
and removing the corresponding collapse from the sequence,
it suffices to show that the above proofs cover both splits and
collapses. Theorem 1 proves that just maintaining the local or-
der of the collapses ensures a foldover-free mesh and Lemma 1
proves that the implicit dependencies maintain the local order
of the collapses. Thus, we can say that the implicit dependen-
cies suffice to ensure a foldover-free mesh.

7. Spline-Based Distance Metric

Three-dimensional curves and surfaces play an important role
in design and manufacture of various products. Since it is
faster to render triangulated surfaces, most of these surfaces
are triangulated before rendering. The triangulated datasets
can be classified as the following main types with respect
to their acquisition: (a) smooth surfaces such as parametric
CAD/CAM (b) range data such as terrains and laser-scanned
data, and (c) hand-digitized or designed polygonal data.

v

v

a

b

N

T
N Ta

b

b

a

Figure 6: Hermite Cubic Curve

Automatic creation of multiresolution hierarchies is a cru-
cial first-step in any level-of-detail-based rendering system. In
our approach we use vertex-pair collapses to reduce the com-
plexity of the dataset. It is crucial to find a metric that well
approximates the distance between two vertices along the sur-
face and gives a “good” measure of the distance between two
unconnected vertices. Since the two vertices may have repre-
sented two points on a continuous surface that was sampled
at an acceptable rate, splines enable faithful reconstruction of
this surface with respect to the sampling rate. A cubic-spline
curve constructed using the normal and the coordinates of the
two vertices results in a good approximation of the curve that
passes through these two vertices along the “original surface”.

In order to keep the model as close as possible to its origi-
nal appearance, we need to carry out the collapses in the order
which introduces the least error first. We determine this order
by the length of the cubic curve that connects these two ver-
tices. Cubic curves approximate the distances better in polygo-
nal datasets that represent smooth surfaces. The cubic curve is

determined by the position and the normal of the two vertices
as depicted in Figure 6.

P(t) =
3

∑
i=0

Hit
i ta � t � tb (1)

Length(P(t);va;vb) =

Z tb

ta

����
����
∂P(t)

∂t

����
����dt (2)

The error introduced as a result of the collapse of two ver-
tices is affected by the position of the new vertex (the collapse
result). Hence, it important to select the position that mini-
mizes this error. Our spline metric relies on the fact that the
mesh represents a smooth surface and tries to keep the updated
triangles as close as possible to the “smooth surface”. We have
found that selecting the position of the resulting vertexc, to
be the the point that has the average of the tangentsTa andTb
usually minimizes the distance between the two vertices and
the resulting curve as shown in Figure 7.

c

va
Ta

Tb

NbNa
vb

Figure 7: Computing the position of the collapsed vertex

The spline metric performs well on models that do not have
sharp edges. The ability to combine the normal and the vertex
position makes it suitable for datasets that represent smooth
surfaces. It is easy to see that for smooth surfaces, a spline-
based metric that allows new collapsed vertices to lie above or
below the line joining the child vertices will work better than a
metric that forces the collapsed vertex to lie on the collapsing
(real or virtual) edge as shown in Figure 8.

 Child 
Vertices

Collapsed
 Parent 
 Vertex

Collapsed
 Parent 
 Vertex

 Child 
Vertices

Figure 8: Effect of normals on the position of the collapsed
vertex

As shown in Figure 9, The cubic-spline-based metric re-
sults in different simplifications when two closed boxes are
placed near each other as shown in Figure 9(a)–(c) as com-
pared to when two boxes with their closest faces missing are
placed near each other as shown in Figure 9(d)–(f). As can be
seen in first case the geometry gets simplified before the topol-
ogy whereas in the second case the topology is simplified by
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(a) Original (b) Geometry simplified (c) Topology simplified

(d) Original (e) Topology simplified (f) Geometry simplified

Figure 9: Simplifying Closed and Open Boxes with Cubic-spline-based Metric

connecting the two boxes and then the geometry is simplified.
This is because the cubic-spline-based metric takes into ac-
count the normals of the vertices in addition to their position
coordinates.

We use Hermite interpolation to compute the parametric cu-
bic curve as in equation (1), whereHi is determined by the
positions and the normals of the two vertices. To compute the
length of the curveP(t) that connects the two vertices we use
equation (2). We can simplify this distance function in two
ways. First, one can approximate the curve length by a se-
quence of straight lines, which are determined by using the de
Boor algorithm8. Second, one can analytically simplify equa-
tion 2. We have adopted the latter in our implementation; de-
tails are in section 7.2).

7.1. Choosing Tangents

Hermite interpolation requires a tangent at each of the two ver-
tices. We compute the tangents at the two vertices using the
normals at these vertices. Any vector perpendicular to the ver-
tex normal is a valid tangent at that vertex. Among these infi-
nite number of tangents we pick two for each curve (one from
each vertex) as follows: for vertexva we choose the tangent
that points to the other vertexvb. For vertexvb we choose the
tangent that points in the direction opposite that of the vertex
va. The pointc (shown in Figure 10) is the intersection of the
tangentTa and the extension of the tangentTb. The pointc is
the closest point tova andvb that lies on the intersection of
the two planes defined by the two pointsva andvb and the
two normalsNa andNb, respectively, as shown in Figure 10.
A special case arises when the angle between the two normals
is π, then any two opposite tangents are valid.

The lengths of the tangent vectors at the two vertices partly
determine the behavior of the spline curve passing through
these two vertices. Hence, if we do not compute the tangent
vector lengths carefully, we may not get the desired spline.
For example, as shown in Figure 11, the spline between the
two verticesva;vb can have, aloop, a cusp, or two inflec-
tion pointsrespectively3. We can eliminate the loop and cusp

c

Na

Ta

Va Vb T b

N b

Figure 10: The curve tangents are computed as the first inter-
section of the two cylinders

singularities and unwanted inflection points by changing the
magnitudes of the tangent vectors. Su and Liu3 have found a
bound on the length of the tangent that guarantees the elim-
ination of singularities and unwanted inflection points. In the
special setting of our spline, assigning the length of the tangent
to be less than the Euclidean distance between the two vertices
va;vb guarantees the generation of a spline curve without sin-
gularities and unwanted inflection points.

(a) (b) (c)

v va b v va b v va b

Figure 11:Curves (a) and (b) have singularities, curve (c) has
unwanted inflection points

7.2. Analytical Approximation

We now explain the analytical approximation for curve length
in three-dimensional space, which is derived from (2) and can
be written as in equation (3).
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Length((P(t);va;vb) =

Z tb

ta

q
Ẋ(t)2+Ẏ(t)2+ Ż(t)2dt (3)

Since the length of the curve imposes a complete order on
the vertex pairs set, we will get the same order if we remove
the square root of integral in (3). For spline curve we can al-
ways reparameterizet to run from[0::1] instead of[ta::tb]. Af-
ter applying these these two changes on equation (3) we get
equation (4).

Length((P(t);va;vb) =

Z 1

0
(Ẋ(t)2

+Ẏ(t)2
+ Ż(t)2

)dt (4)

The functionsX(t);Y(t),andZ(t) are cubic polynomials,
hence we can write these functions in a form similar to equa-
tion (5) which representX(t).

X(t) = axt
3
+bxt

2
+cxt +dx (5)

Since the three equations are similar, it is enough to show
only the solution of

R 1
0 Ẋ(t)2dt, which appears in (6).

Z 1

0
Ẋ(t)2dt =

Z 1

0
(3axt

2
+2bxt +cx)

2dt

= a(
9
5

a+3b)+c(2a+c)+b(
4
3

b+2c)

(6)

As we see from equation (6), it is fast to compute the length
of the curve and the metric derived from it.

8. Real-Time Traversal

The view-dependencetree which is constructed off-line is used
at run-time to construct an adaptive level-of-detail mesh rep-
resentation. In fact, the view-dependence tree is a forest (set
of trees) since some nodes can not merge together to form one
tree. The view-dependence tree is able to adapt to various lev-
els of detail. Coarse details are associated with nodes that are
close to the top of the tree and high details are associated with
the nodes that are close to the bottom of the tree as shown in
Figure 13. The reconstruction of a real-time adaptive mesh re-
quires the determination of the list of vertices of this adaptive
mesh and the list of triangles that connect these vertices. We
shall refer to these lists as the list ofactive nodesand the list
of active triangles.

8.1. Refinement Metric

The light and view parameters determine the level of detail at
each region of the scene. We use the spline metric we have in-
troduced in section 7 to construct the view-dependence tree as
well as to use it for real-time generation of these levels of detail
at run time. Previous approaches have used different distance
metrics for the off-line processing and for run-time refinement
and simplification. We next discuss how the same spline metric

can be used to not only determine the distances amongst ver-
tices but also can be used to determine distances to the light
source as well as to the view point.

Eye

-LookAt

-Light

Figure 12: View and light spline curves

The level of detail at a vertexv based on the view parame-
ters is computed using the cubic spline that connects the eye
position with the vertexv. Here, the normal of the vertexv
and the negative look-at vector are used as tangents. The light
contribution to the level of detail at the vertexv is similarly
computed by using the vertex normal and the negative of the
light direction as tangents (as shown in Figure 12). In both of
these distance measurements, short curve lengths are associ-
ated with high detail and long ones associated with low detail.
Note that dark regions (not facing the light) are not displayed
in the highest detail even if they are close to the viewer since
the light curve is long. As we see in Figure 12 the cubic-spline
curves are short for front-facing regions close to the viewer
and long for far-away regions that are back-facing. When the
normal of a vertexv falls into the silhouette cone, we treatv as
special case by displaying it in higher detail.

8.2. Active Nodes

The list of active vertices is a subset of the nodes of the view-
dependence tree and is determined by:

� Eye parameters, such as eye position and look-at direction.
� Light Parameters, such as position and direction.
� Distance metric function which determines the level of de-

tail at each vertex.

Active Nodes

Low Detail

High Detail

Figure 13: Active vertices list

At each frame the set of active nodes is traversed and for
each node we use the distance metric to compute a metric
value. This metric value represents the distance to the viewer,
the light source, and the local geometry. We then compare the
metric value at a node with the switch value stored at that node
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to determine the next operation to execute. We have discussed
how to compute the switch value at a node in section 5. If the
metric value is less than the switch value and this node satisfies
the implicit dependency conditions for split, we split thisnode
into its two children. If the computed metric value is larger
than the switch value stored at the parent of this node and its
sibling can collapse, we collapse this node and its sibling. Oth-
erwise, this node stays in the active nodes list.

When a noden can not split as result of the implicit depen-
dency condition, two approaches are possible. In the first ap-
proach, we recursively split the nodes which prevent the split
of noden (if possible) and then carry out the split ofn. In the
second approach,we leave noden for the later frames (until the
nodes that preventn’s split have split). We have found that the
second approach can deliver better frame rates, since the first
approach takes longer to update the list of active nodes and tri-
angles. Similar observations have been reported by Hoppe16

for slowly changing view-parameters.

The split operation involves removing the node from the ac-
tive nodes list and inserting its two children into this list. The
active nodes list is updated after a collapse by replacing the
parent of the two nodes with one of them and removing the
pointer to the other node.

8.3. Active Triangles

We maintain a global list of all the triangles of the dataset.
Each triangle is represented by three pointers to its vertices
and its normal. The active triangle list is a list of pointers to
the entries in the global triangle list. The adjacent triangle lists
(CAT and PAT) in the tree nodes are also represented by a list
of pointers to the global triangle list.

As we mentioned earlier, our algorithm relies on the coher-
ence between frames. We assume that the list of active trian-
gles at framei is given. To determine the list of triangles at
framei+1 we either add, remove, or update triangles depend-
ing on the split or collapse operation to move from framei to
framei+1. The update of the triangle lists during a vertex-pair
collapse is done in two steps. First, we subtract the PAT list at
each vertex from the CAT list. Second,we append the resulting
CAT list at the right child to the resulting CAT list at the left
child to form the CAT list of the parent node. During the ap-
pend of the two list we assign thesplit indexat the parent node
to point to the first element of the right child CAT list. The
vertex split operation is also carried out in two steps. First, we
split the parent’s CAT list at thesplit indexposition into two
lists, left list and right list. Second, we merge the left node’s
PAT list with the left list to form the left node’s CAT list. Sim-
ilarly we merge the right node’s PAT list with the right list to
form the right node’s CAT list. Note that we use the offset of
the triangle in the PAT list to perform the correct merge.

9. Results and Discussion

We have implemented our algorithm in C++ on an SGI Onyx2
with Infinite Reality graphics. We have tested our algorithm on
several datasets and have received encouraging results for our

non-optimized implementation. The times for our preprocess-
ing appear in Table 1. As can be seen our method to compute
the virtual edges limits them to be linear with respect to the
number of real edges of the model. For these results we have
used the normal difference angle for generation of the super-
faces to be less than 75o.

The model tricycle in Figure 14 consists of multiple uncon-
nected components. Figure 14 shows the different levels of de-
tail of the tricycle as the unconnected components merge and
the number of triangles is reduced. Figure 15 shows the result
of simplifying a hole on the back-facing region of the sphere.
Figure 15(a) shows the original high-detail model of the sphere
showing a hole. Figures 15(b) and (c) show one view and its
opposite toillustrate the simplifying away of the hole in the
region facing away from the viewer. Figure 15(d) shows the
side-view of the mesh in wire-frame to illustrate the different
levels of detail and the simplifying away of the hole. Using our
spline metric we were able to achieve high detail at regions
that are close to the viewer and front-facing and low detail at
regions that are far from the viewer or back-facing. Figure 16
shows the results of view-frustum-based simplification. The
objects outside of the view-frustum are simplified to zero tri-
angles. We test very few nodes of the view-dependence tree to
reduce the objects lying outside the view-frustum to low de-
tails. Figure 17(a) shows the Auxiliary Machine Room(AMR)
of a notional submarine dataset from the Electric Boat Corpo-
ration. Figure 17(a) shows the viewer position for Figure 17(b)
by the locationA and for Figure 17(c) by the locationZ. For
a given error threshold that produces almost visually indistin-
guishable images we have found that our generalized view-
dependent method produces more aggressive simplification
than topology-preserving view-dependent algorithm. For in-
stance, AMR model we were able to achieve 76K triangles us-
ing the geometry and topology simplification compared with
91K triangles for the geometry simplification, for the same er-
ror bound and viewer position.

Table 2 presents the space requirements for the View-
dependence tree that we propose in this paper and the Merge
tree. Theadjacencycolumn indicates the space required to
store the adjacency information for all the nodes including
the space for the explicit or the implicit dependencies. The
total column indicates the total space requirements for the en-
tire vertex hierarchy. As can be seen the nodes of the view-
dependence tree require approximately half as much space as
that for the merge tree. We would like to point out here that for
the purposes of comparison the view-dependence tree’s space
requirements do not represent the space for virtual edge col-
lapses since nothing equivalent exists for the merge tree. We
have compared the total amount of memory required for the
merge trees24 and the view-dependence trees as proposed in
this paper. For the example of the Buddha dataset, we have
found that the merge tree requires 32:1MB of memory while
the view-dependence tree requires 22:3MB. In this compari-
son we had disabled the presence of virtual edges in the view-
dependence tree since none exist in the merge tree.

Table 3 demonstrates the range of pointer accesses with ex-
plicit dependencies including the average distance of access
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Dataset Vertices Triangles Real Edges Vertices after Virtual Edges Preprocessing Time(sec)
Superfaces View-Dep. Tree Superfaces Qhull

Tricycle 7K 14K 21K 2K 9K 2.1 0.7 2.2
Buddha 145K 293K 435K 29K 126K 51.0 24.9 26.3
Tricycle Lot 178K 340K 517K 55K 217K 84.6 26.9 63.4
AMR 195K 381K 572K 31K 152K 87.0 28.1 83.8
Torpedo Room 465K 737K 1,288K 91K 291K 222.8 42.7 96.2
Dragon 437K 871K 1,309K 82K 336K 273.7 46.4 79.7

Table 1: Preprocessing times for different datasets

Dataset Number View-Dependence Tree(KB) Merge Tree(KB) Savings Factor
of Nodes Adjacency Total Adjacency Total Adjacency Total

Tricycle 14,086 109 616 626 1,133 5.74 1.83
Buddha 289,265 2,345 12,758 14,788 25,201 6.30 1.97
Tricycle Lot 352,098 2,733 15,408 15,692 28,367 5.74 1.84
AMR 337,791 2,728 14,888 15,373 27,533 5.63 1.84
Torpedo Room 823,761 6,653 36,308 37,489 67,144 5.63 1.84
Dragon 874,927 6,972 38,469 46,906 78,403 6.72 2.03

Table 2: View-Dependence Tree size vs Merge Tree size

as well as the standard deviation. This has serious implica-
tions for external memory algorithms as well as for performing
view-dependent simplifications over networks. If we assume a
normal bell-shaped distribution, to get over 95% of the hits in
a block we will need a block size to beµ+2σ to just cover the
accesses required to decide on the split/collapse for asingle
node. For a dataset such as the Dragon, this implies that we
might need a block of size 21MB. This is particularly large if
we note that the entire tree for the Dragon dataset is about 38:5
MB. The implicit dependencies on the other hand, since they
require only local accesses within the node at run time, do not
suffer from this drawback.

We have observed several advantages in using our gen-
eralized view-dependent simplification algorithm in terms of
memory savings, localized access, and better simplification.

� Memory Savings:Implicit dependencies require only two
integers to store instead of a list of adjacent triangle pointers
in explicit dependencies. In addition our view-dependence
tree does not duplicate triangle pointers.

� Localized Access:Explicit dependencies in previous work
24; 16 need to visit every neighbor of an active node to test
whether it can split or collapse. This may result in non-local
accesses causing unnecessary paging (when the dataset is
larger that the local memory).

� Better Simplification:Our algorithm is able to simplify ge-
ometry and topology in a view-dependent manner. It can
achieve aggressive simplification for objects that are far
from the viewer, are backfacing, or are out of the view frus-
tum. In addition, our algorithm can deal with non-manifold
representations. Our spline-based distance metric works in a
natural and intuitive manner, especially for smooth surfaces.

Our algorithm accepts arbitrary polygonal datasets. In ad-
dition, it is able to achieve better simplification than topol-
ogy preserving algorithms for models with non-manifold cases
such as cracks and T-junctions. However, our algorithm does
simplify all the T-junctions, since that requires a connectivity
between vertices and edges.

Average Standard
Number Distance Deviation

Dataset of Nodes (µ)(MB) (σ)(MB)

Tricycle 14,086 0.16 0.11
Buddha 289,265 4.32 2.12
Tricycle Lot 352,098 3.95 3.15
AMR 337,791 3.70 3.20
Torpedo Room 823,761 13.74 6.93
Dragon 874,927 14.26 7.10

Table 3: Non-Local Access with Explicit Dependencies

10. Conclusions and Future Work

We have presented the concept of view-dependence trees as
a tool to perform geometry and topology simplification for
large polygonal datasets. These trees use implicit dependen-
cies and efficient node representation that make them more
compact, faster to navigate, and allow them to accept gen-
eral non-manifold datasets. Further, we have also introduced
a spline-based distance metric that can incorporate both the
vertex normals and positions in a reasonably intuitive way.

We see the scope for future work in designing external
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memory algorithms for visualization of datasets whose sizes
exceed that of the main memory and collaborative visualiza-
tion of large dataset that reside in a local or remote server,
by taking advantage of the localized and compact structure of
view-dependence trees.
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Figure 14: Different levels of detail for a tricycle model

(a)Original (b) Front-Facing (c) Back-Facing (c) Side View

Figure 15: Hole Simplification on the back-facing region

(a) The complete model (b) Selected View (c) After Culling

Figure 16: View Frustum Culling Using View-Dependent Simplification

(a) Original model (b) Viewer at A (b) Viewer at z

Figure 17: Close and Far View of the Auxiliary Machine Room Dataset

13


