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Abstract—The Compute Unified Device Architecture (CUDA)
has enabled graphics processors to be explicitly programmed
as general-purpose shared-memory multi-core processors with
a high level of parallelism. In this paper, we present our
preliminary results of implementing the Graph Cuts algorithm
on CUDA. Our primary focus is on implementing Graph Cuts on
grid graphs, which are extensively used in imaging applications.
We first explain our implementation of breadth first search (BFS)
graph traversal on CUDA, which is extensively used in our Graph
Cuts implementation. We then present a basic implementation
of Graph Cuts that succeeds to achieve absolute and relative
speedups when used for foreground-background segmentation on
synthesized images. Finally, we introduce two optimizations that
utilize the special structure of grid graphs. The first one is lockstep
BFS, which is used to reduce the overhead of BFS traversals.
The second is cache emulation, which is a general technique to
regularize memory access patterns and hence enhance memory
access throughput. We experimentally show how each of the
two optimizations can enhance the performance of the basic
implementation on the image segmentation application.

I. INTRODUCTION

In recent years, graphics processing units (GPUs) have
been progressively and rapidly advancing from being spe-
cialized fixed-function to being highly programmable and
incredibly parallel computing devices. With the introduction
of the Compute Unified Device Architecture (CUDA), GPUs
are no longer exclusively programmed using graphics APIs.
In CUDA, a GPU can be exposed to the programmer as
a set of general-purpose shared-memory Single Instruction
Multiple Data (SIMD) multi-core processors. The number of
threads that can be executed in parallel on such devices is
currently in the order of hundreds and is expected to multiply
soon. Many applications that are not yet able to achieve
satisfactory performance on CPUs can get benefit from the
massive parallelism provided by such devices.

In this paper we present our preliminary results and findings
on implementing the max-flow/min-cut algorithm (referred to
just as Graph Cuts almost throughout the paper) on CUDA.
The problem is defined as follows. Let G be a graph 〈V, E〉,
where V is a set of nodes, and E is a set of links. Let s and t
be two designated terminal nodes in V . An s/t cut in G is a
partitioning of V into two disjoint subsets S and T such that
s ∈ S and t ∈ T . Figure 1 shows an example of an s/t cut of a
sample graph. Let w(u, v) be a cost function that assigns a real
value to every link (u, v) ∈ E . The cost of a cut C = (S, T ) is
defined as c (S, T ) =

∑
u∈S,v∈T w (u, v) , which is basically

s t

Fig. 1. An example of an s/t cut in a graph. Terminal nodes s and t are
marked in black. The cost of the cut is the sum of the weights of the thick
links, which are the links that connect nodes in S to nodes in T .

the sum of the costs of all links linking a node in S to a node
in T . In Fig. 1, the cost of the shown cut is the sum of the
costs of the thick links. The Graph Cuts algorithm finds the
minimum cut in a graph, which is a cut with a minimum cost
value. A cut in the graph defines a binary labeling over its
nodes. If we are not interested in the cost of the minimum cut
itself and interested instead in the best binary labeling of graph
nodes according to some energy function, it can be shown that
Graph Cuts can be used to exactly minimize a wide class of
functions of binary variables, and approximately minimize a
wide class of functions of discrete variables in general [1].

The Graph Cuts algorithm has many applications in different
areas of research. It is a fundamental graph algorithm thereof
some other graph algorithms can be modeled as special cases,
such as shortest paths, and bipartite graph matching. How-
ever, our focus and primary background are on applications
related to computer vision, computer graphics, and machine
learning. For example, in computer vision, binary labeling via
Graph Cuts was applied in foreground/background segmenta-
tion such as in [2], [3], where labels are either foreground
or background. Discrete labeling was applied in many other
applications such as image restoration [4], where labels are
discrete intensity values, stereo matching [5], where labels are
discrete disparity values, and multi-camera scene reconstruc-
tion [6], where labels correspond to different scene elements.
In computer graphics there are many applications as well.
In [7], Graph Cuts was applied to interactive PhotoMontage,
where different images for the same scene can be combined to
form a better image based on interactively determined user’s
criteria. In [8], a method for texture synthesis using Graph Cuts
was proposed. Authors of [9] proposed a method for labeling
objects of interest in images, called SmartLabel, based on



Graph Cuts. An example application of Graph Cuts in machine
learning is in [10], where a method for labeling a large unla-
beled dataset based on a small labeled one, via Graph Cuts,
was proposed. Among these many applications, we selected
image segmentation [2] to evaluate our implementation on.
That is primarily due to the simplicity of its implementation
as well as non-reliance on field specific concepts. However,
it is important to emphasis that our implementation of Graph
Cuts is general and is not targeted to any particular application.

While fast practical parallel implementations for Graph
Cuts have already been accomplished before [11], [12], to
the best of our knowledge, our implementation is the first
implementation on CUDA. It is also the first implementation
on graphics processors that succeeds to achieve relative and
absolute speedups for the type of graphs targeted in this paper.
An implementation on CUDA is particularly important due to
the relatively low cost of CUDA-enabled devices. Moreover,
many of the applications of Graph Cuts, as mentioned above,
are targeted to desktop applications, e.g. [3], [7], where
assuming existence of many CPUs or clusters of computers
is not practical, while existence of a CUDA-enabled device is
almost guaranteed.

The simplicity of CUDA’s programming model, in fact,
projects a number of challenges on implementing Graph Cuts
on it compared to the other architectures on which Graph Cuts
implementations were studied before. For example, mecha-
nisms for memory locking, to prevent concurrent updates to
the same memory location, cannot be taken for granted in
CUDA 1. Also, multiprocessors in CUDA work in a SIMD
fashion, where best performance is achieved when all core
processors perform the same operation at the same time.
Divergence among core processors in the same multiprocessor
results in serialization of the different paths taken and hence
can cause a large performance penalty.

Our implementation addresses these issues by taking a
rather unusual way of implementing Graph Cuts in parallel.
Our algorithm is a push-relabel style algorithm [14]. Instead
of implementing the global relabeling heuristic in parallel
with push and relabel operations, such as in [11], [12], we
exclusively rely on BFS graph traversals to assign optimal
labels to graph nodes, as explained in section V.

Although implementation of Graph Cuts on general graphs
is our ultimate goal, in this paper we focus only on grid
graphs. In fact, implementing graph algorithms, such as Graph
Cuts, where the complexity of processing a node in the
graph is a function of its degree, is not straight forward on
SIMD architectures, such as CUDA, where divergence among
different processors has to be avoided as much as possible.
Grid graphs have the attractive property of having a constant
out-degree for almost all nodes in the graph. Therefore, the
number of operations performed when processing a node in

1Recently, atomic functions were introduced in CUDA devices with com-
pute capability 1.1, namely, GeForce 8600 and 8500 series. However, the
number of multiprocessors in these devices is much less than what is available
in devices of compute capability 1.0, which do not support atomic functions
yet [13].

the graph is generally the same as processing any other node,
which almost eliminates divergence. Moreover, the special
structure of grid graphs allows us to apply two optimization
techniques. The first technique is the lockstep BFS, which is
utilized to mitigate the overhead of our CUDA implementation
of BFS traversal. The second is cache emulation, which is
a general technique to regularize memory access patterns.
Restricting our implementation to grid graphs by no means
nullifies its utility. Almost all the applications of Graph Cuts
mentioned above, and many others, work on grid graphs.

The rest of the paper is organized as follows. Section II
summarizes related work. In section III, an overview of CUDA
is presented. Section IV explains our CUDA implementation of
BFS graph traversal. Section V presents our approach for com-
puting Graph Cuts and its parallel implementation on CUDA.
Then, section VI introduces performance improvements that
utilize the special structure of grid graphs. Section VII contains
performance results. Finally, the paper is concluded in section
VIII

II. RELATED WORK

In [15], the first parallel algorithm for Graph Cuts was
introduced. It was based on the augmenting paths approach. As
many other researchers, our implementation is primarily based
on the push relabel approach since it is more natural to imple-
ment in parallel. In [16], the first parallel algorithm based on
push-relabel techniques was introduced and was implemented
on a connection machine. The first parallel implementation
on a shared memory architecture was introduced in [12],
where they performed global relabeling concurrently with the
main push and relabel operations. Recently, an extended and
enhanced version of the same approach was implemented
on a modern SMP architecture [11]. These implementations
differ significantly from ours since they assume availability
of a memory locking mechanism and assume asynchronous
operation of different processors. In [17], the Graph Cuts
algorithm was implemented on older GPUs. However, it was
much slower than the CPU implementation.

III. COMPUTE UNIFIED DEVICE ARCHITECTURE

We briefly present the main features of CUDA. For a
detailed description, refer to [13].

A. Hardware Architecture

In CUDA terminology, the GPU is called the device and
the CPU is called the host. A CUDA device consists of a set
of multi-core processors. Each multi-core processor is simply
referred to as a multiprocessor. Cores of a multiprocessor work
in a SIMD fashion. All multiprocessors have access to three
common memory spaces. They are:

1) Constant Memory: A read only cached memory space.
2) Texture Memory: A read only cached memory space that

is optimized for texture fetching operations.
3) Global Memory: A read/write non-cached memory

space.



Besides the three memory spaces that are common among
all multiprocessors, each multiprocessor has an on chip shared
memory space that is common among its cores. Furthermore,
each core has an exclusive access to a read/write non-cached
memory space called local memory.

Accessing constant and texture memory spaces is as fast as
accessing registers on cache hits. Accessing shared memory
is as fast as accessing registers as long as there is no bank
conflict. On the other hand, accessing global and local memory
spaces is much slower, typically two orders of magnitude
slower than floating point multiplication and addition.

B. Execution Model

The execution is based on threads. A thread can be viewed
as a module, called a kernel, that processes a single data
element of a data stream. Threads are batched in groups called
blocks. The group of blocks that executes a kernel constitutes
one grid. Each thread has a two dimensional index that is
unique within its block . Each block in a grid in turn has a
unique two dimensional index. Knowing its own index and
the index of the block in which it resides, each thread can
compute the memory address of a data element to process.

A block of threads can be executed only on a single
multiprocessor. However, a single multiprocessor can execute
multiple blocks simultaneously by time slicing.

Threads in a block can communicate with one another via
the shared memory space. They can also use it to share data
fetched from global memory. There is no means of synchro-
nization among threads in different blocks. The number of
threads within a block that can execute simultaneously is
limited by the number of cores in a multiprocessor. A group
of threads that execute simultaneously is called a warp. Warps
of a block are concurrently executed by time slicing.

C. Some Considerations

There are some important considerations that need to be
taken into account to obtain good performance on CUDA. We
refer to some of them later on in the paper.
• Effect of Branching: If different threads of a warp take

different paths of execution, the different paths are seri-
alized, which reduces parallelism.

• Global Memory Read Coalescing: Global memory reads
from different threads in a warp can be coalesced. To
be coalesced, the threads have to access data elements
in consecutive memory locations. Moreover, addresses
of all data elements must follow the memory alignment
guidelines. Details are in [13].

• Shared Memory Bank Conflict: Reading from shared
memory is as fast as reading from registers unless a bank
conflict occurs among threads. Simultaneous accesses to
the same bank of shared memory are in most cases
serialized.

• Writing to Global Memory: In CUDA, two different
threads, in the same warp, can write simultaneously to
the same address in global memory. The order of writing
is not specified, but, one is guaranteed to succeed.
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Fig. 2. An example graph.
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Fig. 3. Traversal of depth level 2 for the graph in figure 2 if traversal starts
from node 0: creation of a list of nodes visited in depth level 2 given the list
of nodes of depth level 1. Arrows at the bottom indicate traversals. Arrows
at the top indicate moving nodes to their positions in the new list. Note that
prefix sum values for traversed nodes correspond to their locations in the
newly created list.

IV. PARALLEL BFS GRAPH TRAVERSAL ON CUDA

Let G be a graph 〈V, E〉. In breadth first search graph traver-
sal, we start from a designated node in the graph s ∈ V . We
visit all nodes at a specific depth level from s before visiting
any node in the next depth level. The output of the algorithm
is a label for each node reachable from s, that specifies its
depth level with respect to s. In our implementation, to visit
nodes at depth level k + 1, we start with a list of nodes at
depth level k. All nodes at level k are processed in parallel.
In processing each node, all its neighbors that have not been
visited yet are marked to be added to level k+1. After finishing
this process, we end up having an array of flags each element
therein indicates whether the corresponding node in the graph
is added to level k + 1 or not. The size of this array is n, the
number of nodes in the graph. To compact this list of flags and
construct the list of nodes for level k + 1, we use a parallel
prefix sum operation [18]. Figure 3 illustrates this operation
for traversing depth level 2 of the graph in figure 2

This approach is not work efficient since the work com-
plexity of visiting one level of the graph is Θ(n), which is the
complexity of performing the prefix sum operation on n ele-
ments. That makes the overall complexity of the BFS traversal
O(n2). In fact, it may be much more efficient to implement
the BFS traversal on the host (the CPU) instead of performing



it inefficiently on the device. But, the overhead of transferring
the results from the host to the device may be much more
significant than the overhead of performing the traversal on
the device. Therefore, we selected to implement the traversal
on the device. In section VI, we introduce an optimization for
grid graphs that reduces the overall complexity of the traversal
to Θ(n).

V. PARALLEL GRAPH CUTS ON CUDA

We first give an algorithmic background to Graph Cuts
and then explain our approach to implement the algorithm
in parallel on CUDA.

A. Background on Graph Cuts Algorithms

In a fundamental theorem in graph theory, Ford and Fulk-
erson [19] proved the duality between finding the maximum
flow that can be pushed from a source node s to a target node
t in a graph, and finding the minimum s/t cut in that graph.
Based on this theorem, algorithms for solving the Min Cut
problem typically do that by solving the dual problem, the
Max Flow problem. In the Max Flow terminology, the cost of
a link w is referred to as its capacity.

There are two main approaches to finding the maximum
flow in a network, the augmenting paths approach [19], and
the push-relabel approach [14]. We briefly explain the basic
idea of the two approaches. We elaborate more on the push
relabel approach since we believe it is more appropriate to
implement in parallel, and our algorithm is based on it. In
both approaches, a residual graph is constructed and used
throughout the algorithm. A residual graph Gf of a graph G
is a graph that has the same layout as G, but the capacities
of its links are residual capacities. The residual capacity
wf (u, v) of a link (u, v) after pushing flow f(u, v) through it
is w(u, v)− f(u, v), where w(u, v) is the capacity of the link
(u, v).

1) Augmenting Paths: An augmenting-paths style algorithm
tries to find a path from the source to the target in the residual
graph and then pushes the maximum possible flow through
that path. The algorithm continues until no path remains from
the source to the target. The differences between augmenting
paths algorithms lie mainly in the way they select the path
through which to push.

2) Push Relabel: A push-relabel style algorithm assigns
to each node in the graph an excess value and a label. The
excess of a node is the total amount of flow it received from
its neighbors minus the total amount of flow it sent to its
neighbors. Initially all nodes have excess 0 except for those
nodes that have links coming from the source. Each of the
latter nodes initially has excess equal to the capacity of the
link coming from the source. The label of a node is a non-
negative integer that underestimates the node’s distance to the
target (in terms of link count.) Initially all nodes have label
0, except for s that is given label n, where n is the number
of nodes in the graph. The algorithm alternates between two
operations, push and relabel:

• Push: The push operation applies to a node u in the
graph if u has positive excess. If u has label k, the push
operation finds a neighbor v of u such that v has label
k−1 and the link (u, v) has positive residual capacity. If
such a node exists, the maximum possible flow is pushed
from u to v. That push results in updating the excesses
of u and v as well as the residual capacities of the links
(u, v) and (v, u). After a push operation, either u loses all
its excess or the link (u, v) is saturated. The criterion of
selecting v can be understood based on the interpretation
of a node’s label as an estimate of the distance to the
target. The push operation basically tries to push flow
towards the target through a node that is one step closer.
It does that relying only on local information of a node
and its neighbors.

• Relabel: The relabel operation applies to a node u if u
has positive excess and has outgoing links but a push
operation does not apply. That happens when all outgoing
links from u are towards nodes with labels greater than or
equal to that of u. The relabel operation tries to enable
u to eliminate its excess by increasing its label to the
minimum possible value that makes a push operation
applicable.

The algorithm can apply push and relabel operations in any
order until none of them applies, which happens when all
nodes have 0 excess. It is guaranteed that either of the two
operations must apply for a node with positive excess [20].
Upon termination, all extra excess that was initially pushed
from the source to its neighbors and did not find its way to the
target will have been pushed back to the source. The algorithm
is guaranteed to terminate in O(mn2) time regardless of the
order in which push and relabel operations are applied, where
n is the number of vertices and m is the number of links in the
graph. However, it turns out that the order of such operations
has a great impact on the performance of the algorithm in
practice. Actually, the differences among push relabel methods
lie mostly in the way this order is determined and the way
nodes are labeled.

B. Our Approach to Implementing Graph Cuts on CUDA

One might think that a parallel implementation can process
all nodes in parallel, and for each node with positive excess if
a push operation applies it is performed, otherwise a relabel
is performed. However, on CUDA, we would like to make all
processors perform the same operation at the same time to
avoid divergence. Also, a node cannot push flow and receive
flow pushed to it at the same time since both operations
update its excess value. Since, we do not assume any memory
locking mechanism, we have to find a different way to prevent
concurrent updates to the same value. In the following we
explain how the push and relabel operations can be adapted
to overcome these difficulties.

1) Parallel Labeling: As explained above, the label of a
node is an underestimate of its distance to the target. But, in
practice, relying only on the basic relabel operation results in
very poor estimates and makes flow go back and forth between
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Fig. 4. Dividing parallel pushing into two steps.

nodes many times before eventually reaching the target. That
dramatically slows down the algorithm. A heuristic that was
proposed to enhance the running time is global relabeling [14].
In this heuristic, the algorithm is frequently stopped and all
nodes are labeled with their actual distances to the target. This
is accomplished using a backward breadth first search traversal
starting from the target. In our proposed algorithm, we use this
heuristic as the only labeling scheme. In other words, this is the
only way nodes get their labels. We employ the BFS traversal
technique, explained in section IV. The traversal in this case
starts from the target, and goes backwards in the graph. In
this way, all nodes are optimally labeled in parallel without
introducing expensive divergence among processors. Note that
applying global relabeling on every iteration eliminates the
need for the gap relabeling heuristic that was suggested to be
combined with global relabeling in [21].

2) Parallel Pushing: The order of applying the push op-
erations also impacts the performance of the algorithm. A
heuristic that is used to enhance the performance is to apply
push to nodes with higher labels before nodes with lower
labels [22]. We apply this heuristic in our implementation.
During the labeling phase, we store the nodes that are visited
at each depth level in a separate list. This comes almost for
free because of the way the breadth first search technique
works (section IV). We call the resulting structure the traversal
lattice. During pushing, we start from the top level of the
lattice going downwards to the target. At each level pushing
is done in parallel. All nodes in the current level in parallel
push flow to their neighbors in the lower level.

Unfortunately, pushing in parallel in this way may not
produce correct results. A node cannot receive flow from
more than one neighboring node simultaneously. To resolve
this problem, we divide the push operation into two phases,
push and pull. In the push phase no node updates the excess
of its neighbor. Instead, each node keeps a reservoir for
each outgoing link in which it stores the amount of flow it
pushes on that link in the current pushing phase. In the pull
phase, all nodes at a given depth level in parallel collect flow

procedure PARALLELPUSH(LabelsLattice)
EMPTYRESERVOIRS

. initializes all node reservoirs to 0
Level ← POPTOPLEVEL(LabelsLattice)
PARALLELPUSHTOLOWERLEVEL(Level)
while NUMLEVELS(LabelsLattice) > 1 do

Level ← POPTOPLEVEL(LabelsLattice)
PARALLELPULLFROMUPPERLEVEL(Level)
PARALLELPUSHTOLOWERLEVEL(Level)

end while
Level ← POPTOPLEVEL(LabelsLattice)
PARALLELPULLFROMUPPERLEVEL(Level)
PARALLELPUSHTOTARGET(Level)

end procedure

Fig. 5. Pseudo-code for the parallel push operation.

pushed to them from their neighbors in the upper level by
reading the values stored in the appropriate reservoirs. Each
node then updates its excess value and residual capacities
accordingly. Figure 4 clarifies this operation. The final parallel
push algorithm is depicted in the pseudo-code in Fig. 5.

3) Termination Criteria: After pushing flow all the way
from the top level of the traversal lattice down to the target,
the layout of the graph changes due to saturation of some
links. So, the lattice has to be rebuilt before the next pushing
phase. Therefore, the whole algorithm works by alternating
between parallel labeling and parallel pushing phases. But,
when should the algorithm be terminated? There are two
conditions; reaching either of them causes the algorithm to
terminate.
• Failure to Construct the Lattice: That happens when all

links to the target are saturated. In this case, the resulting
cut is C = (S, T ) such that T = t and S = V − {t}.

• No Excess in Lattice: In this condition, all nodes in the
lattice, i.e. all nodes having at least a path to the target,
have no excess. In this case, there is no flow to push
down to the target. The cut in such a case is defined as
C = (S, T ) such that T = {u ∈ V, u has a path to t}
and S = V − T .

The entire algorithm is depicted in the pseudo-code in
Fig. 6. The pseudo-function PARALLELBFS performs the
BFS traversal and all proper initializations needed for it.
The variable ExcessF lag represents whether there is positive
excess at any node in the traversal lattice or not. It is set during
the parallel labeling phase.

VI. OPTIMIZATIONS FOR GRID GRAPHS

There are two main issues with the aforementioned algo-
rithm:
• Memory Access Pattern: Either in labeling (building the

lattice) or pushing, threads do not share data read from
global memory. That is because two adjacent threads in
a block could generally be processing two nodes in the
graph that have no neighbors in common.



procedure PARALLELGRAPHCUT
INITNODELABELS . initializes all node labels to 0
ExcessF lag ← 0
LabelsLattice ← PARALLELBFS
while ExcessF lag = 1 do

PARALLELPUSH(LabelsLattice)
INITNODELABELS
ExcessF lag ← 0
LabelsLattice ← PARALLELBFS

end while
end procedure

Fig. 6. Pseudo-code for the parallel Graph Cuts algorithm.

Fig. 7. An example of a grid graph.

• Prefix Sum: During constructing the lattice, in the labeling
stage, prefix sum operations are performed over the entire
set of nodes regardless of the number of nodes actually
visited.

We propose two approaches to alleviate the effect of these
problems by utilizing the special structure of grid graphs. For
simplicity of presentation, we focus on two dimensional grids.
The concept can easily be extended to higher dimensional
grids. A two dimensional grid graph can be viewed as a matrix
of nodes, where each node can be uniquely identified by a
two dimensional index specifying its row and column in the
graph. A general node in the graph has links with nodes only
within a fixed neighborhood surrounding it in the grid. Figure
7 shows a sample 4 × 4 grid graph. In the following two
sections, we explain the two proposed optimizations, lockstep
BFS traversal, and cache emulation.

A. Lockstep BFS Traversal

The technique for BFS graph traversal explained in section
IV utilizes an array of flags of length n, and performs prefix
sum operation on it on traversing each depth level of the graph.
That is important for general graphs, where the number of
nodes traversed at each depth level is arbitrary and does not
depend on the number of nodes in the preceding level. Also,
each node can be traversed from several neighbors at the same
time. Therefore, it is important to keep a unique flag for each
and every node in the graph for the operation to produce
correct results.

T r a v e r s e  L e f t T r a v e r s e  R i g h t

T r a v e r s e  T o p T r a v e r s e  B o t t o m

Fig. 8. Black nodes are on the same depth level. The illustration gives an
example of how lockstep BFS traversal works to create the next depth level
from these nodes. Gray nodes are the nodes traversed in each direction.

In grid graphs, on the other hand, each node has a fixed
number of neighbors. Therefore, the number of nodes traversed
at each depth level is at most a constant multiple of the
number of nodes traversed at the preceding level. Moreover,
if we represent the graph in a way where links to neighboring
nodes have a fixed order based on their directions (e.g. left,
right, top, and then bottom for a 4-connected neighborhood
graph,) and during graph traversal only a single direction is
traversed at a time, then the number of nodes traversed at a
certain direction at a certain depth level is at most the same
as the number of nodes traversed at the preceding depth level.
Also, performing traversal in this way guarantees that a node
is traversed-to from exactly one neighbor. This paradigm of
traversal in which only one direction is traversed at a time
is what we call the lockstep BFS traversal technique. For
example, in a 4-connected neighborhood graph, constructing
a given depth level is divided into four steps instead of being
done all in one step. In each step neighbors along one direction
are traversed. Figure 8 gives an illustration of this operation.

When traversing nodes at depth level k from nodes at depth
level k − 1, applying the lockstep BFS traversal technique
allows us to use an array of flags whose size is equal to the
number of nodes in level k− 1, nk−1. That reduces the order
of work complexity of building level k of the traversal lattice
to Θ(nk−1) instead of Θ(n). The overall complexity of the
traversal becomes Θ(

∑
k nk) = Θ(n).

B. Cache Emulation

Because nodes’ data – excesses, labels, and outgoing link
capacities – are updated and then read during the pushing
and labeling phases, we selected to store all nodes’ data



Fig. 9. A 4×4 grid graph divided into 2×2 tiles. Dotted lines indicate tile
boundaries. Active nodes and active tiles are shown in gray. A tile is active
if and only if it contains at least one active node.

in the global memory space, which is a read/write space 2.
The problem with the global memory space is that it is not
cached. Moreover, threads have to respect a specific memory
access pattern in order for reads from global memory to be
coalesced (section III-C). Graph algorithms generally exhibit
an irregular memory access pattern, which makes requirements
for coalescing not guaranteed. The cache emulation technique
aims at regularizing accesses to global memory by enforcing
memory coalescing requirements on global memory accesses.
It basically works by emulating the operation of a multi-
dimensional cache memory unit. For the technique to work,
data accessed have to be structured as a one dimensional
or multi-dimensional array. For the technique to be useful,
processing a data element has to rely only on its local
neighborhood in the array; hence comes the restriction to grid
graphs in this case. Unlike a hardware cache memory, whose
operation is independent of any algorithm, the cache emulation
technique in fact requires modifying the way the algorithm
works in order to be used. We will explain the technique in the
context of our Graph Cuts implementation on two dimensional
grid graphs. Nevertheless, we believe the technique is fairly
general and deploying it in other problems is straightforward.

Nodes’ data of a two dimensional grid graph are assumed to
be stored in two dimensional arrays. To process a node in the
graph, we actually load from global memory its data and the
data of the 2D tile of nodes in which it resides, and process
all the nodes in the tile in parallel. In other words, the graph
is divided into equally sized tiles of nodes. Figure 9 shows a
simple 4×4 grid graph divided into 2×2 tiles. The algorithm
proceeds exactly as explained earlier. The only difference is in
building the breadth first search lattice. For each level of the
lattice, instead of constructing a list of nodes, a list of tiles is
constructed. Each tile added to a level of the lattice must have
at least one node that belongs to that level. Figure 9 depicts the
relationship between an active tile and an active node. Activity
here means eligibility for the currently performed operation.

2In fact, since data updated during a kernel invocation are not read later
on during the same kernel invocation, texture memory space can be used as
well. However, in the current CUDA implementation this trick is restricted
only to 1D arrays, which limits its utility. Also, according to our tentative
experiments, the technique presented in this section performs much better.
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Fig. 10. Black circles represent active nodes. Gray circles are common
neighbors to more than one active node. The illustration shows how active
and non-active nodes can cooperate and how active nodes can share data to
save memory access time.

For example, when pushing flow from level k of the lattice to
level k− 1, nodes that belong to level k are the active nodes,
and the tiles containing them are the active tiles. Note that a
node that belongs to an active tile is not necessarily active.
But, at least one node in tile must be active for the tile to be
active.

In the CUDA implementation, each block of threads cor-
responds to a tile of nodes. Each thread of a block loads
data of one node in the tile from global memory to shared
memory. Then, if a node is active for the current operation, its
thread proceeds and processes the node, otherwise, the thread
terminates. For example, if the operation is parallel labeling
with label k, a thread processes a node only if it has label
k−1, otherwise the thread terminates after loading the node’s
data. If the operation is parallel pushing from level k to level
k − 1 in the lattice, a thread processes a node only if it has
label k.

When a thread terminates without processing a node, it
actually does a useful job before termination. Indeed it helps
in the most time consuming operation. It helps in reducing the
overhead of memory access for other threads in the block that
are processing active nodes. Specifically, the benefit from this
technique is two fold:
• Efficient Memory Access: Two factors enhance memory

access performance when using cache emulation. One
factor is cooperation among threads by helping one
another to achieve memory read coalescing. All threads
in a warp of a thread block read adjacent global memory
addresses with proper alignment. As explained in section
III-C, that makes these reads coalesced together. The
other factor is sharing among threads. Data read by one
thread are stored in shared memory and become available
for other threads in the block. Figure 10 depicts these
notions.

• Less Prefix Sum Overhead: When using cache emulation,
prefix sum operations are performed over tiles not indi-
vidual nodes. If each tile on average contains b active
nodes in the same level of the lattice, the number of
elements processed by prefix sums is reduced by a factor
of b on average.



Since the computations performed per node during the
pushing and labeling phases are very simple computations,
the time for global memory access is much more significant.
That is proved by the superiority of the implementation that
utilizes the cache emulation technique over others, as shown
below.

VII. EXPERIMENTAL RESULTS

We experimented our implementations on an image segmen-
tation task. The segmentation algorithm we use is the one in
[2]. It basically divide pixels in the image into two partitions,
foreground and background, depending on user’s input that
marks some pixels as foreground and others as background.
In the results shown here, we did not use hard constraints,
i.e. enforcing some pixels to belong to the foreground or
background. We set the weights of singleton and pairwise
energy terms to 1 and 2.5, respectively, and the noise value to
50. Only 4-connected neighborhoods are used in the generated
graphs.

We compare the running times of five different implementa-
tions: a CPU implementation of the proposed technique, a ba-
sic CUDA implementation without any optimization, a CUDA
implementation using lockstep BFS, a CUDA implementation
using cache emulation, and the CPU implementation intro-
duced in [23], which is reported to be the fastest in practice
for grid graphs, and whose implementation is available online.
For the CPU implementation of our technique, BFS traversal
is implemented in the regular sequential way without using
prefix sum operations.

For all our CUDA implementations, the graph nodes’ data
are stored in three two-dimensional arrays of type float4 (a
structure of four floating point elements.) One array contains
reservoirs, one array contains outgoing residual link capacities,
and the last array contains for each node its excess, label, and
link capacities to s and t. The results presented here for the
proposed technique when implemented with cache emulation
are for tile size of 8 × 4. We experimented with tile sizes
16× 8, 16× 12, and 16× 16 as well. The best results we got
were for the tile size 8× 4. This is actually at odds with the
recommended block sizes for CUDA devices [13]. This issue
needs further investigation.

On running the algorithm on real images, it turned out not to
be easy to adjust the user input, and weights for the singleton
and pairwise terms to get desirable segmentation results. Al-
ternatively, we report results here for experiments on synthetic
images only. Each synthesized image is produced by drawing
a foreground with intensity values generated from a Mixture
of Gaussian density function, on a background with intensity
values generated from a different mixture. Each mixture has
three components. The foreground shape of each image is a
collection of ellipses in random locations, orientations, and
sizes. In each generated image, we enforce the condition that
the 32 × 32 patch at the center of the image belongs to the
foreground, and the 32× 32 patch at the top left corner of the
image belongs to the background. These are the patches based
on which foreground and background intensity histograms

Fig. 11. Left is a sample randomly generated image. Right is its segmentation
result.

are constructed. The enforcement here is in the distribution
from which the random intensity values for these patches are
generated. But, we do not enforce the resulting segmentation
to assign these patches specific labels. Each generated image
is resized to make a set of six different sizes. We compare
the segmentation results from the five implementations and
make sure they are exactly the same for each image. Each
implementation is run for 10 times on each image. An example
image with the resulting segmentation is shown in Fig. 11.
The CPU implementations are run on an Intel Xeon 3.2 GHz
processor with 1GB RAM. The GPU implementations are run
on a GeForce 8800 GTX graphics card.

The plot in Fig. 12 compares the running times of the five
implementations with different image sizes. This is the time of
running the Graph Cuts on the generated graph 10 times. The
time to generate the graph itself is excluded. Also, for the
CUDA implementations, the time to transfer the graph data
from the host to the device and the time to transfer the result
from the device to the host are excluded. That is because the
input graph can actually be constructed on the device as well,
which should be much faster than constructing it on the host.
But, that is not done in our implementation. Also, the resulting
cut might be postprocessed on the device, or directly rendered
to the screen buffer in some applications.

The implementation of the proposed algorithm on CPU
is not always faster than the implementation of Boykov-
Kolmogrov’s (BK) method [23]. The plot in figure 12 shows
also that the basic CUDA implementation, without optimiza-
tions, consistently outperforms the two CPU implementations.
The two optimizations proposed introduce another consider-
able speedup over the non-optimized CUDA implementation.
The cache emulation technique in particular is consistently
the fastest. That emphasis the importance of memory access
optimization on such devices. That is particularly important in
graph algorithms in general since they are typically memory
intensive algorithms.

The plot in Fig. 13 shows the speed up of the CUDA im-
plementation of the proposed algorithm with cache emulation
when compared to the faster of the two CPU implementations.
The speedups gained are in the range 1.7-4.5, depending on
the image size.

VIII. CONCLUSION

In this paper, we presented our preliminary results and
findings on implementing Graph Cuts on CUDA. To address



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

1

2

3

4

5

6

7

8

9

10

Number of Pixels

R
un

ni
ng

 T
im

e 
(s

)

Running Time vs Image Size

BK
Our CPU Impl
Basic CUDA
CUDA with Lockstep BFS
CUDA with Cache Emulation

Fig. 12. Comparison of running times vs image size for different implemen-
tations of Graph Cuts. BK is Boykov-Kolmogriv’s method and Our CPU is
the implementation of the proposed approach on CPU

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

1.5

2

2.5

3

3.5

4

4.5

Number of Pixels

S
pe

ed
 U

p

Speed Up vs. Image Size

Fig. 13. The speed up of the the proposed method with tiling on CUDA
over the faster CPU implementation for each image size.

the unique architectural features of CUDA, we resorted to
an unusual way of implementing Graph Cuts in parallel.
Our approach relies on BFS traversals solely to assign node
labels. This computationally inefficient approach facilitates
turning around limitations of CUDA, such as the simple
SIMD execution model and the unavailability of memory
locking constructs. Nevertheless, the performance of this ap-
proach provides both relative and absolute speedups when
experimented on image segmentation of synthesized images.
We proposed two improvements to this technique that make
use of the special structure of grid graphs to deliver better
performance, lockstep BFS and cache emulation. The lockstep
BFS utilizes the special structure of grid graphs to make BFS
traversal implementation on CUDA work efficient. The cache
emulation technique is fairly general. It aims at regularizing
memory access patterns to enforce memory read coalescing
as much as possible through emulating the operation of a
cache memory unit. The experimental results showed that
the proposed techniques indeed enhance the performance,
especially the cache emulation technique. That was expected
since graph algorithms in general are memory bound and
enhancing memory throughput is crucial to enhance their
overall performance.

We are investigating how to enhance the speed further by
applying the global relabeling heuristic concurrently with the

push and relabel operations. We would like also to experiment
our implementation on a wider range of images and imaging
applications. In particular, having a fast implementation for
Graph Cuts is much more important when the algorithm is
applied to general discrete labeling, instead of binary labeling,
since in the former the algorithm is actually run for many times
until it converges. Therefore, we would like to experiment our
techniques on such applications. Finally, we need to further
investigate and understand the effect of changing the block
size on the performance of the algorithm.
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