
Real-Time Procedural Textures

John Rhoades, Greg Turk, Andrew Bell, Andrei State,
Ulrich Neumann and Amitabh Varshney

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract

We describe a software system on the Pixel-Planes 5 graphics
engine that displays user-defined antialiased procedural
textures at rates of about 30 frames per second for use in real-
time graphics applications. Our system allows a user to create
textures that can modulate both diffuse and specular color, the
sharpness of specular highlights, the amount of transparency
and the surface normals of an object. We describe a texture
editor that allows a user to interactively create and edit
procedural textures. Antialiasing is essential for real-time
textures, and in this paper we present some techniques for
antialiasing procedural textures. Another direction we are
exploring is the use of dynamic textures, which are functions
of time or orientation. Examples of textures we have
generated include a translucent fire texture that waves and
flickers and an animated water texture that shows the use of
both environment mapping and normal perturbation (bump
mapping).

Introduction

The current trend in graphics libraries is to give users
complete control of an object’s surface properties by
providing a language specifically for shading [Han&an &
Lawson 901. There are two lines of research that have come
together to form modem shading languages. One line of
research is the notion of programmable shaders, which has its
roots in the flexibility of the shader dispatcher [Whitted &
Weimer 821 and which was expanded to fully programmable
shaders in [Cook 841. The other research track is the use of
mathematical function composition to create textures
[Schachter 801 [Gardner 841. These two lines of research were
dramatically brought together to produce a mature shading
language in the work of Ken Perlin [Perlin 851. There are now
several graphics machines fast enough to bring some of this
flexibility to real-time graphics applications [Apgar 881
[Potmesil & Hoffert 891 [Fuchs 891. This is the point of
departure for our research.

The organization of this paper is as follows: a discussion of the
pros and cons of procedural textures; an overview of the Pixel-
Planes 5 hardware and software; a brief description of our

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@ 1992 ACM 0-89791-471-6/92/0003/0095...$1.50

language for composing textures; an outline of the algorithms
involved in displaying such textures on Pixel-Planes 5; a
description of an interactive texture editor that dynamically
displays a texture as the user changes its parameters; examples
of dynamic textures; examples of applications that make use
of the texture capabilities of our system; and future directions
for this research.

Why Use Procedural Textures?

Procedural textures provide an alternative to the choice of
image-based textures. The central tradeoff between image
and procedural textures is between memory cost and
execution time.

Graphics architectures that are well-suited for displaying
image textures typically have large amounts of memory
associated with a handful of fast processors. Each processor
retains a copy of every image texture for a given scene so that
any processor can perform the texture look-up at any given
pixel in the scene. Texture evaluation thus has a small, fixed
computational cost, at the expense of using large amounts of
memory to store the texture copies. The Silicon Graphics
Skywriter and the Star Graphicon 2000 are two commercial
graphics engines that use this approach with impressive
results.

Our implementation of procedural textures on Pixel-Planes 5
provides a look at the opposite end of this spectrum. Each
pixel processor has only 208 bits of memory, but the graphics
machine may be configured to have on the order of 256,000
pixel processors, giving the ability to perform several billion
instructions per second. Their very small memory makes the
pixel processors poor for rendering image-based textures but
their computational power makes them ideal for generating
procedural textures on-the-fly.

It is clear that any procedural texture can be computed once,
saved as an image, and used in a scene like any other image
texture. In this sense, it can be argued that image-based
textures offer everything that procedural textures can provide,
with the only additional cost being the use of more memory.
Also, it is clear that procedural textures are a poor choice when
the scene requires a picture hanging on the wall or an image
on the cover of a book. Nevertheless, procedural textures do
have benefits of their own. One benefit is that the texture can
be arbitrarily detailed, provided that the texture coordinates
are represented with enough bits. Each additional bit added to
computation of a function of two variables is reflected by a

95

factor of four in memory cost to mimic the texture with a
stored image. A more dramatic benefit is the ability to define
textures which are functions of many variables, such as
animated textures and solid textures. The memory capacity of
graphics systems that we are familiar with is not large enough
to explicitly store such textures. Pixel-Planes 5 offers us the
alternative of evaluating on demand the values from textures
of several variables.

Pixel-Planes 5 Overview

Hardware - The Pixel-Planes 5 machine has multiple Intel
i860-based Graphics Processors (GPs) and multiple SIMD
pixel processor arrays called Renderers. A Renderer is a
128x128 array of bit-serial pixel processors, each with 208
bits of local memory, calledpixelmemory, and 128x32 bits of
off-chip backing store memory. Each Renderer can be
mapped to any 128x128 pixel region of an image. The
Renderer processors are capable of general arithmetic and
logical operations and operate in SIMD mode. Each
processor has an enable bit that regulates its participation in
instructions. Graphics Processors, Renderers, Frame Buffers,
and workstation host communicate over a shared 640 Mb/set
ring network.

Software - Generating images with textured polygons on
Pixel-Planes 5 is a multi-stage process which can be viewed
as a graphics pipeline [Fuchs 891 as shown in Figure 1.
Transparent polygons are handled by making multiple passes
through the pipeline. In the first stage of the graphics pipeline,
the Graphics Processors transform the polygon vertices from
model space to perspective screen space and create SIMD
instruction streams (Image Generation Controller or ICC
commands) for the Renderers to rasterize the polygons. A Z-
buffer algorithm is executed in parallel for all pixels within a
polygon. During rasterization, intrinsic color components,
surface normals, texture u,v coordinates, texture scale factor
(used for antialiasing), texture-id, etc., are stored in the pixels.
After rasterization of all polygons, each pixel processor has
the parameters of its front-most polygon. These parameters
are then used in the next two stages of the pipeline: texture
program interpretation and lighting model computation. At
the beginning of texture program interpretation, some
initialization is performed. The rasterization phase actually

Graphics Processor IGC Commands Renderer I

I

1 Raw Pixel Data 1

Textured Pixels
1 Lighting Model b< 2

1 Color Pixels
I

1

v

Frame 0 Buffer

Figure 1: Pixel-Planes 5 Graphics Pipeline

stores U-Z and V*Z rather than u and v in pixel memory (since
U*Z and V*Z are linear in screen space), so a z division is
needed. Also a time value is stored in pixel memory for use
in animated textures. The lighting model currently used is
Phong shading. Since all pixels are handled concurrently after
all rasterization, we call this approach deferred shading.
Because of the high degree of parallelism achieved during
deferred shading, we can afford to have quite elaborate
procedural textures and lighting models while maintaining
high frame rates.

Texture Programs

Programming Model - Procedural textures are implemented
via a simple virtual machine. This texture machine comprises
an assembly language-like instruction set called T-codes, a set
of registers in pixel memory, and a set of parameters in the
Graphics Processor memory. The pixel parameters, such as
intrinsic color, u,v coordinates, etc., are accessible to the
texture machine via its pixel memory registers. The Graphics
Processors execute the T-codes interpretively, modifying the
pixel variables that affect shading. More exactly,
interpretation of a T-code program produces an IGC
command instruction stream, which is routed to the
appropriate Renderers for SIMD execution.

T-Codes -There are three kinds of T-codes: generators, which
produce several basic texture patterns, operators, which
perform simple arithmetic operations on texture patterns, and
conditionals which permit selected pixels to be included or
excluded in a computation. Generators include Perlin’s band-
limited noise function [Perlin 851, Gardner’s sum-of-sines
[Gardner 841, antialiased square waves, and a Julia set.
Examples of operators include add, scale, max, square root,
splines, and color table lookup. These operators can be
cascaded to implement arbitrary functional composition.
There are T-codes for conditional execution (by having
selected pixel processors conditionally disable themselves),
but no T-codes for looping. Adding a new T-code to our
system is a straightforward task. Besides coding and testing of
the T-code subroutine in C, the programmer needs only to
update the T-code assembler parse table and the T-code
subroutine dispatch table.

Sample Texture Program - The following T-code fragment
computes an antialiased black and white checkerboard
pattern. The U and V registers contain the texture coordinates,
and the D register contains the texture scale factor. Output is
to the diffuse color components D-Red, D-Green and
D-Blue. The swave generator produces antialiased square
waves in one dimension. Note how the outputs of the
generators are combined by continuous operators for
antialiasing, rather than using bitwise exclusive-OR.

make antialiased square wave in U direction
swave R,U,D; swave params

make antialiased sq-uarewave in V direction
swave S,V,D; swave-params

R and S registers now contain stripes
mu1 T,R,S
add W,R,S
Sub W,W,T
sub W,W,T

W := R+S-2*R*S, countinuous exclusive OR
set diffuse colors :from W

copy D Red,W
COPY DGreen,W
copy _ DBlue,W

96

Certainly, our texture programming language is hardly state-
of-the-art with respect to programming ease. This is
compensated to some extent by the fact that texture programs
tend to be rather short - typically 20-40 instructions. The
programs are short because the built-in generators and some
of the operators (such as spline and color table lookup) are
fairly powerful. The main job of the texture programmer is
producing the appropriate “glue” code to tie these together. In
addition, as discussed later, programming is facilitated by an
interactive texture editor program which allows the use of
macros.

Texture Procedure Evaluation Details

Pixel Memory Management - The Pixel-Planes 5 Renderers
contain 208 bits of on-chip memory and 4096 bits of off-chip
backing store memory per pixel. Backing store memory
cannot be directly addressed by IGC instructions, but must be
swapped in and out by special instructions. Because texture
programs usually require the use of scratch memory space and
because a rather large number of pixel variables are needed to
support deferred shading, there is not enough pixel memory to
statically allocate it for the worst case. Therefore, a pixel
memory manager keeps track of the locations of the variables
and to perform memory movement and backing store
swapping to make available required amounts of scratch
memory space.

Caching of IGC Commands - For static texture programs,
the IGC commands do not change from frame to frame, and
thus the T-code translation step need occur only once. Note
that static texture programs do not imply static textures; the
result of executing a texture program may vary with time, if
time is an input variable. During texture parameter editing,
the T-code program must be reinterpreted each time it is
changed. The Graphics Processors cache the IGC commands
resulting from texture interpretation to avoid generating them
repeatedly.

Region-Hit Flags - Since each Renderer covers a small
(128x128 pixel) region of the screen, it is likely that only a
small subset of the textures will be represented in a given
region. The Graphics Processors flag each region that any
textured polygon intersects as needing that particular texture.
The Graphics Processor that creates the texturing commands
for a particular region checks the OR’ed flags from all
Graphics Processors for that region, and creates and sends the
texture programs for only those textures that might be visible.

Obtaining Real-Time Performance

Our goal for real-time procedural textures was to deliver at
least 15 frames-per-second to real applications in research
projects at UNC. This goal has been met, and these
applications are described in a later section.

There are two crucial issues for rapid texture evaluation. The
first issue is to maximize utilization of the pixel processors.
This is achieved by waiting to execute the texture programs
until all polygons have been rasterized, so parallelism of the
texture programs can be maximized. In addition, by use of
region-hit flags, we avoid processing texture programs for
screen regions that don’t have the texture. The second issue is
enabeling the Graphics Processors to keep up with the
Renderers. This is accomplished by the IGC instruction
caching. We increased the performance of the Walkthrough
application from 2 to 20 frames/set by the use of region-hit
flags and the IGC instruction caching.

Antialiasing Techniques

Antialiasing of procedural textures is a difficult problem to
which we have not found a general solution; instead we have
developed a few techniques which work fairly well for many
texture programs. The theoretically proper method is to
convolve the texture with a filter kernel of an appropriate
shape, centered at the pixel. In principle, this is possible since
each pixel processor knows the entire texture, but in practice,
this can be done only for the simplest textures, because
integrating arbitrary functions of two variables is difficult.

In orderto do antialiasing, we need some estimate at each pixel
of how an area element in screen space maps into texture
space. Ideally, we would use the derivatives of u and v with
respect to screen space x and y. However because of limited
pixel memory, we decided to record this estimate using a
single number, called the tam-e scalefactor. This number is
intended to represent the maximum magnification factor that
can occur when a unit vector in screen space is mapped to
texture space. The texture scale factor is available in a pixel
memory register for use in T-code programs. The
approximation we use is max(luXl+lu I,lvXl+lv I), which is
within a factor of 1.42 of the commonly used $ormula max
((ux2+u y”*, (v 2+v 2)1/2) for MIPmaps [Williams 831.
Becausg of this, &r tgxtures are over-blurred when viewed at
certain angles, just like MIPmaps. Texture scale factor is
computed for polygons as follows. When the polygon is
rasterized, the u and v coordinates at the middle of the
polygon, umid and v are computed. The linear expression for
uz = ax+by+c, is #ferentiated to give u z+uz = a, which is
solved for the constant uXz = a-umidzX. Si&larl~ u,,z, vXz, and
vYz are computed. From these max(luXzl+luYzl,lv~zl+lvYzl) is
computed and stored in pixel memory. Finally, just before
texture program evaluation, a parallel z divide is performed
for all pixels. This is, of course, an approximation due to the
substitution of u.d for u. The approximation error manifests
itself as a difference in the amount of blurring at the corners
of a polygon that is being viewed at a very oblique angle (large
z,). We found that the error is not noticeable in ordinary
scenes, although it can be seen in contrived test cases.

The antialiased square wave generator produces an
antialiased stripe pattern with a specified phase, frequency,
and duty cycle. The generator analytically computes the
convolution integral of a box filter kernel with a square wave
function of its input parameter in one dimension. The width
of the box filter is the texture scale factor. Initially we
implemented a triangular filter kernel, but found that it
required too much scratch pixel memory.

A method that works for some textures is to antialias the final
color table lookup. The idea is to return a final color that is the
integral over some finite interval in the color table, rather than
a point sample. The width of the integration interval is
proportional to the texture scale factor times the maximum
gradient magnitude of color with respect to u and v. This
integral is simple enough to be computed analytically in the
pixel processors. If the gradient magnitude of the texture
value input to the color table is reasonably smooth, this
roughly approximates the correct convolution integral, and
does a fairly good job in practice for many textures. It fails
utterly for textures that are discontinuous functions of u and v.
This kind of texture gradually loses contrast as the texture
scale factor increases, but before the texture fades to a uniform
color, there is severe aliasing.

97

Another method works in the frequency domain. Some of our
texture programs “roll off’ the amplitude of the band-limited
noise based on the texture scale factor. The result is that the
noise fades to a uniform value at scales where aliasing would
be a problem.

Interactive Editing of Texture Procedures

An interactive texture editor eliminates the need for an edit-
compile-link-test cycle. Since T-code programs are executed
interpretively at run time, texture procedures can be changed
without recompilation. Furthermore, the interpretation phase
is fast enough so that literal values (Graphics Processor
parameters) in T-code instructions can be updated in a single
frame time, at frame rates of more than 30 frames per second.
The texture editor displays the T-code instructions of a
selected procedural texture in a text window. The user can
position a movable cursor on any literal value in a T-code
instruction, and then smoothly vary this value via a joystick.
The dynamically updated texture pattern is displayed on the
graphics system with a two-frame lag (the graphics pipeline
overlaps two frames). At over 30 frames per second this lag
time is hardly noticeable. Hence the user can explore the
parameter space of a texture procedure continuously in real
time.

More drastic changes to texture programs can be made by
interactively editing the text of the program in another
window via a conventional text editor. T-code instructions
can be added, rearranged, and deleted, producing a new
program. Then with a couple of commands, the user can save
the updated texture program and reload it into the texture
editor for immediate display. This process takes from one to
five seconds, which due to the more discrete nature of such
changes, can still be viewed as interactive editing.

What the user sees on the graphics system is a complete scene
with possibly many graphics primitives and texture
procedures, not just a single isolated texture pattern. The
texture editor provides a complete set of commands to access
the facilities of our graphics library. Thus the user can change
the viewpoint, move objects around, change the locations and
parameters of light sources, etc. This is important, because the
appearance of a texture is dependent on its visual context.

noise(u,t) > v image plane at time t
I_ h

u u = const

Figure 2: Generating Flames

Dynamic Textures

Textures have been traditionally considered to be functions of
spatial coordinates u and v. A generalized texture, however,
need not be restricted to just mappings from the spatial
coordinates. One could consider a texture to be a function of
several other parameters as well - time and surface normal, to
mention just a couple. Procedural textures permit us to create
these generalized textures without the memory overheads that
would be required with image textures. Since these textures
change spatially based on input parameters that need not be
restricted to just those that define the mapping, we prefer to
call them dynamic textures.

If we consider a textures to be a function of u, v, and t, where
t is a time variable, we can produce time-varying animated
procedural textures such as a fire texture that flickers and
water waves that ripple. If we consider textures as functions
of u, v and n where n is the normal to the surface that has been
textured, then it is possible to do environment mapping by
defining an appropriate procedural texture. Dynamic textures
implemented this way can still be precomputed because the
program text for the texture doesn’t change. Another way to
produce dynamic textures is to edit the texture programs after
each frame, but then there is some loss of performance since
precomputation of IGC commands isn’t possible. In the
following sections we describe how we implemented several
dynamic textures.

Fire - An example of an animated texture is a flickering flame.
We implement a fire texture as follows (Figure 2): First
perturb u by adding to it a 2D noise function of u and t. Then
generate a height field h by applying a 2D noise generator to
u and t. Compute flame intensity f = l-v/h. If f < 0 set f to 0.
This creates a moving outline of the flame. Because of the
noise perturbation of u, the outline moves both vertically and
horizontally. Finally we copy f to opacity and use a color table
with input f to produce color. We use two layers of transparent
fire texture to produce the fireplace shown in Photo 3.

Environment Mapping - The next example is a dynamic
texture depending on object orientation instead of time. It
implements environment mapping of a simple checkerboard
pattern onto a teapot. The textured teapot appears to be located
inside a room with checkerboard walls, as shown in Photo 5.
Rotating the object lets the reflections move across the surface
in a realistic way. We accomplish this by performing typical
environment mapping computations [Blinn & Newell 761
(determine reflected eye vector, compute indices, compute
procedural texture as function of indices) in aT-code program
for each pixel.

Our current system has two limitations for environment
mapping. First, because the normal vector is only available in
eye space coordinates, the (infinitely distant) reflective
environment appears to be attached to the camera. Thus,
whenever the camera is rotated (panned, tilted or rolled), the
reflections move across the object’s surface in an erroneous
way. If we had enough pixel memory to store world space
normals this restriction could be removed. Second, we cannot
perform antialiasing properly, since we do not have surface
curvature information available in pixel memory.

Water - The final example, shown in Photo 6, is an animated
texture approximating water waves by means of an animated
procedural bump map. This dynamic texture is a function of
both time and spatial orientation. The pixel normals are

98

perturbed on the basis of a height field whose value is
computed at each pixel. The derivatives required for the
normal perturbation are computed by finite differences. The
height field consists of superimposed circular and parallel
moving sinusoidal waves generated by a number of sources
distributed across the water-textured surface, a common
approach for this problem. The surface characteristics are
such that the water surface appears highly specular. In
addition, the normals are used to compute a simple one-
dimensional color scale environment map, which is used to
create a more natural appearance. The map has rotational
symmetry about a vertical axis, so that the camera can be
arbitrarily panned. However, tilting or rolling the camera
would generate erroneous results, for the reasons mentioned
in connection with the environment mapping texture. As
mentioned, this restriction could be removed by storing world
space normals at each pixel. We also have a problem with
determining which way to perturb the surface normals, since
we do not have the surface tangent vectors in the u and v
directions available in pixel memory. We can circumvent this
problem for horizontal polygons (like water surfaces) by
broadcasting the current transformation matrix to the pixel
processors during the texturing phase of each end-of-frame
calculation. The scene in Photo 6 was rendered in 33
milliseconds, low resolution, with 24 GPs and 12 Renderers.

Applications Using Procedural Textures

Pixel-Planes 5, besides being a research project in its own
right, is also an important resource for several other research
projects at UNC. Two of those for which textures are
important are the Building Walkthrough project and the Head-
Mounted Display project. Both of these use a stereo head-
mounted display and head tracking, so high frame rates are
necessary to maintain the illusion of the virtual environment.

Walkthrough - The UNC Walkthrough Project aims at the
development of a system for creating virtual building
environments [Brooks 861. This is intended to help architects
and their clients explore a proposed building design prior to its
construction, correcting problems on the computer instead of
in concrete. Texturing plays an important role in enhancing
image realism. Having textures for bricks, wood, ceiling tiles,
etc., adds to the richness of the virtual building environment
and gives an illusion of greater scene complexity. The
radiosity illumination model is used in the Walkthrough
project. We can display amodel of a house that contains about
34,000 polygons and 20 procedural textures at 15-20 frames/
set on 24 Graphics Processors and 12 Renderers at 640x5 12
resolution. Photo 1 shows a view of the living room of the
house, and Photo 2 shows a view of the kitchen.

For enhanced realism, textures have been integrated with
radiosity in Walkthrough. There are two stages in this
integration. The first stage is to calculate radiosity values for
a textured polygon, such that the radiosity effects such as color
bleeding are correctly simulated for the polygons near this
textured polygon. The second stage is to shade the textured
polygon itself by the radiosity values at its vertices. To effect
the first step, the color of a textured polygon is assigned to be
the average color of its texture. This color is then used in the
radiosity process as usual. After the radiosity values at the
vertices of a polygon have been computed, they are passed as
input parameters to the procedural texture for this polygon
along with other input parameters such as the u and v
coordinates. These shading values are linearly interpolated
across the polygon. The procedural texture is computed as
before and a post-multiplication of the interpolated radiosity

shading values with the computed texture colors at each pixel
gives a smooth shading effect over the textured polygon.

Another application which textures find in the Walkthrough
project is that they offer one way to switch lights in a virtual
building. The total radiosity illumination of a polygon is
determined by the dot-product of the vector of light values and
the radiosity vector specifying the contribution of each light
source to the illumination of the polygon. This then means that
given the latter, the user can vary the intensity of a light source
and observe the same building model under different light
scales (but same light positions), by just computing the dot
product as described before [Airey90]. This however takes
roughly 3 - 5 seconds for a dataset of roughly 30,000 polygons
and 20 light sources if done sequentially on the host
workstation and fails to provide the effect of instantaneous
light switching. One possibility to do this fast enough to
provide an instantaneous effect (under a tenth of a second) is
to do this in parallel by using T-codes. The idea is to pass the
intensity value of a light source as an input parameter to a T-
code program (along with the polygon colors) which
computes the dot-product of the input parameter with the
value of the interpolated radiosity (as described in the
preceding paragraph) and uses the resulting value to shade the
polygon. Changing the intensity of a light source can then be
done by editing the T-code program and changing this input
parameter. This is essentially using the T-code commands as
a shading language.

Head-Mounted Display - In the Head-Mounted Display
project, the primary use of textures has so far been in a
mountain bike simulation, where the user rides a stationary
bicycle and views simulated terrain through the head-
mounted display. Textures are used to increase the apparent
scene complexity and to improve the user’s perception of
motion through the environment. This application features
relatively few textures (grass, road, and cloudy sky), each of
which covers a fairly large area of the images. A scene from
this application is shown in Photo 4. The cloudy sky texture
makes use of the Gardner texture generator. The grass and
road texture make use of band-limited 2-D noise, and are
antialiased by decreasing the noise amplitude as the texture
scale factor increases. Several frequencies of noise are used,
each with its own threshold for rolloff. This simulation runs
at 20-25 frames per second in low resolution (640x5 12) stereo
mode using 32 Graphics Processors and 20 Renderers.

Future Work

The logical next step to our simple texture language is to
implement a full-fledged shading language that can be
executed on-the-fly. Using the deferred shading paradigm on
a high-end graphics machine, real-time execution of a shading
language such as Renderman [Hanrahan & Lawson 901 seems
to be a very real possibility. Unfortunately, this is impractical
on the current Pixel-Planes system due to the small amount of
memory available to the pixel processors. However, it is
likely that the Pixel-Flow machine [Molnar 911, now being
designed at UNC Chapel Hill, will have sufficient pixel
memory to make this idea viable.

Acknowledgements

We would like to acknowledge the support and cooperation of
Pixel-Planes 5, Walkthrough, and Head-Mounted Display
research project teams at UNC. In particular, we would like
to thank the following individuals: David Ellsworth, Trey
Greer, and Brice Tebbs for their help on the initial stages of the

99

design of texture algorithms, Eric Erikson for his work on the
virtual bike, John Alspaugh for modeling the house model in
Walkthrough and Carl Mueller for the Pixel-Planes frarne-
saving facility. We would also like to acknowledge
Professors Henry Fuchs, Frederick Brooks, and John Poulton
for their encouragement and support.

This work has been supported in part by the following grants:
NSF MIP-9000894 DARPA order No 75 10, DARPA Grant
No: DAEA 18-90-C-0044, NSF Cooperative Agreement No
ASC 8920219, NSF Walkthrough Grant No: CCR 8609588,
ONR Grant No NO00 14-86-K-0680.

References

[Airey 901 Airey, J.M., J.H. Rohlf and F.P. Brooks, Jr.
“Towards Image Realism with Interactive Update Rates in
Complex Virtual Building Environments” ACM Computer
Graphics (Proceedings 1990 Symposium on Interactive 3D
Graphics), Vol. 24, No. 2, pp 41-50.

[Apgar 881 Apgar, Brian, Bret Bersack and Abraham
Mammen, “A Display System for the Stellar Graphics
Supercomputer Model GS 1000,” Computer Graphics, Vol.
22, No. 4, (SIGGRAPH ‘88), pp. 255-262.

[Blinn & Newell 761 Blinn, J. F. and M. E. Newell, “Texture
and Reflection for Computer Synthesized Pictures,”
Communications of the ACM, Vol. 19, No. 10, pp. 542-547.

[Brooks 861 Brooks, F. P., Jr., “Walkthrough- A Dynamic
Graphics System for Simulating Virtual Buildings,”
Proceedings of the 1986 Workshop on Interactive 30
Computer Graphics, pp. 9-21.

[Cook 841 Cook, Robert L., “Shade Trees,” Computer
Graphics, Vol. 18, No. 3, (SIGGRAPH ‘84), pp. 223-231.

[Fuchs 891 Fuchs, Henry, John Poulton, John Eyles, Trey
Greer, Jack Goldfeather, David Ellsworth, Steve Molnar,
Greg Turk, Brice Tebbs and Laura Israel, “Pixel-Planes 5: A
Heterogeneous Multiprocessor Graphics System Using
Processor-Enhanced Memories,” Computer Graphics, Vol.
23, No. 3, (SIGGRAPH ‘89), pp. 79-88.

[Gardner 843 Gardner, Geoffery Y., “Simulation of Natural
Scenes Using Textured Quadric Surfaces,” Computer
Graphics, Vol. 18, No. 3, (SIGGRAPH ‘84), pp. 11-20.

[Hanrahan & Lawson 901 Hanrahan, Pat and Jim Lawson, “A
Language for Shading and Lighting Calculations,” Computer
Graphics, Vol. 24, No. 4, (SIGGRAPH ‘go), pp. 289-298.

[Molnar 911 Molnar, Steve, “Image Composition
Architectures for Real-Time Image Generation,” Ph.D.
thesis, Computer Science Department, University of North
Carolina at Chapel Hill, 1991.

[Perlin 8.51 Perlin, Ken, “An Image Synthesizer,” Computer
Graphics, Vol. 19, No. 3, (SIGGRAPH ‘85), pp. 287-296.

[Potmesil & Hoffert 891 Potmesil, Michael and Eric M.
Hoffert, “The Pixel Machine: A Parallel Image Computer,”
&m7rter Graphics, Vol. 23, No. 3, (SIGGRAPH ‘89), pp.

[Schachter 801 Schachter, B. J., “Long-crested Wave
Models,“Computer Graphicsandlmage Processing, Vol. 12,
pp. 187-201.

[Whitted & Weimer 821 Whitted, Turner and David M.
Weimer, “A Software Testbed for the Development of 3D
Raster Graphics Systems,” ACM Transactions on Graphics,
Vol. 1, No. 1, pp. 44-58.

[Williams 831 Williams, Lance, “Pyramidal Parametrics,”
fymputer Graphics, Vol. 17, No. 3, (SIGGRAPH ‘83), pp. l-

100

