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Abstract 

We describe a software system on the Pixel-Planes 5 graphics 
engine that displays user-defined antialiased procedural 
textures at rates of about 30 frames per second for use in real- 
time graphics applications. Our system allows a user to create 
textures that can modulate both diffuse and specular color, the 
sharpness of specular highlights, the amount of transparency 
and the surface normals of an object. We describe a texture 
editor that allows a user to interactively create and edit 
procedural textures. Antialiasing is essential for real-time 
textures, and in this paper we present some techniques for 
antialiasing procedural textures. Another direction we are 
exploring is the use of dynamic textures, which are functions 
of time or orientation. Examples of textures we have 
generated include a translucent fire texture that waves and 
flickers and an animated water texture that shows the use of 
both environment mapping and normal perturbation (bump 
mapping). 

Introduction 

The current trend in graphics libraries is to give users 
complete control of an object’s surface properties by 
providing a language specifically for shading [Han&an & 
Lawson 901. There are two lines of research that have come 
together to form modem shading languages. One line of 
research is the notion of programmable shaders, which has its 
roots in the flexibility of the shader dispatcher [Whitted & 
Weimer 821 and which was expanded to fully programmable 
shaders in [Cook 841. The other research track is the use of 
mathematical function composition to create textures 
[Schachter 801 [Gardner 841. These two lines of research were 
dramatically brought together to produce a mature shading 
language in the work of Ken Perlin [Perlin 851. There are now 
several graphics machines fast enough to bring some of this 
flexibility to real-time graphics applications [Apgar 881 
[Potmesil & Hoffert 891 [Fuchs 891. This is the point of 
departure for our research. 

The organization of this paper is as follows: a discussion of the 
pros and cons of procedural textures; an overview of the Pixel- 
Planes 5 hardware and software; a brief description of our 
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language for composing textures; an outline of the algorithms 
involved in displaying such textures on Pixel-Planes 5; a 
description of an interactive texture editor that dynamically 
displays a texture as the user changes its parameters; examples 
of dynamic textures; examples of applications that make use 
of the texture capabilities of our system; and future directions 
for this research. 

Why Use Procedural Textures? 

Procedural textures provide an alternative to the choice of 
image-based textures. The central tradeoff between image 
and procedural textures is between memory cost and 
execution time. 

Graphics architectures that are well-suited for displaying 
image textures typically have large amounts of memory 
associated with a handful of fast processors. Each processor 
retains a copy of every image texture for a given scene so that 
any processor can perform the texture look-up at any given 
pixel in the scene. Texture evaluation thus has a small, fixed 
computational cost, at the expense of using large amounts of 
memory to store the texture copies. The Silicon Graphics 
Skywriter and the Star Graphicon 2000 are two commercial 
graphics engines that use this approach with impressive 
results. 

Our implementation of procedural textures on Pixel-Planes 5 
provides a look at the opposite end of this spectrum. Each 
pixel processor has only 208 bits of memory, but the graphics 
machine may be configured to have on the order of 256,000 
pixel processors, giving the ability to perform several billion 
instructions per second. Their very small memory makes the 
pixel processors poor for rendering image-based textures but 
their computational power makes them ideal for generating 
procedural textures on-the-fly. 

It is clear that any procedural texture can be computed once, 
saved as an image, and used in a scene like any other image 
texture. In this sense, it can be argued that image-based 
textures offer everything that procedural textures can provide, 
with the only additional cost being the use of more memory. 
Also, it is clear that procedural textures are a poor choice when 
the scene requires a picture hanging on the wall or an image 
on the cover of a book. Nevertheless, procedural textures do 
have benefits of their own. One benefit is that the texture can 
be arbitrarily detailed, provided that the texture coordinates 
are represented with enough bits. Each additional bit added to 
computation of a function of two variables is reflected by a 
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factor of four in memory cost to mimic the texture with a 
stored image. A more dramatic benefit is the ability to define 
textures which are functions of many variables, such as 
animated textures and solid textures. The memory capacity of 
graphics systems that we are familiar with is not large enough 
to explicitly store such textures. Pixel-Planes 5 offers us the 
alternative of evaluating on demand the values from textures 
of several variables. 

Pixel-Planes 5 Overview 

Hardware - The Pixel-Planes 5 machine has multiple Intel 
i860-based Graphics Processors (GPs) and multiple SIMD 
pixel processor arrays called Renderers. A Renderer is a 
128x128 array of bit-serial pixel processors, each with 208 
bits of local memory, calledpixelmemory, and 128x32 bits of 
off-chip backing store memory. Each Renderer can be 
mapped to any 128x128 pixel region of an image. The 
Renderer processors are capable of general arithmetic and 
logical operations and operate in SIMD mode. Each 
processor has an enable bit that regulates its participation in 
instructions. Graphics Processors, Renderers, Frame Buffers, 
and workstation host communicate over a shared 640 Mb/set 
ring network. 

Software - Generating images with textured polygons on 
Pixel-Planes 5 is a multi-stage process which can be viewed 
as a graphics pipeline [Fuchs 891 as shown in Figure 1. 
Transparent polygons are handled by making multiple passes 
through the pipeline. In the first stage of the graphics pipeline, 
the Graphics Processors transform the polygon vertices from 
model space to perspective screen space and create SIMD 
instruction streams (Image Generation Controller or ICC 
commands) for the Renderers to rasterize the polygons. A Z- 
buffer algorithm is executed in parallel for all pixels within a 
polygon. During rasterization, intrinsic color components, 
surface normals, texture u,v coordinates, texture scale factor 
(used for antialiasing), texture-id, etc., are stored in the pixels. 
After rasterization of all polygons, each pixel processor has 
the parameters of its front-most polygon. These parameters 
are then used in the next two stages of the pipeline: texture 
program interpretation and lighting model computation. At 
the beginning of texture program interpretation, some 
initialization is performed. The rasterization phase actually 
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Figure 1: Pixel-Planes 5 Graphics Pipeline 

stores U-Z and V*Z rather than u and v in pixel memory (since 
U*Z and V*Z are linear in screen space), so a z division is 
needed. Also a time value is stored in pixel memory for use 
in animated textures. The lighting model currently used is 
Phong shading. Since all pixels are handled concurrently after 
all rasterization, we call this approach deferred shading. 
Because of the high degree of parallelism achieved during 
deferred shading, we can afford to have quite elaborate 
procedural textures and lighting models while maintaining 
high frame rates. 

Texture Programs 

Programming Model - Procedural textures are implemented 
via a simple virtual machine. This texture machine comprises 
an assembly language-like instruction set called T-codes, a set 
of registers in pixel memory, and a set of parameters in the 
Graphics Processor memory. The pixel parameters, such as 
intrinsic color, u,v coordinates, etc., are accessible to the 
texture machine via its pixel memory registers. The Graphics 
Processors execute the T-codes interpretively, modifying the 
pixel variables that affect shading. More exactly, 
interpretation of a T-code program produces an IGC 
command instruction stream, which is routed to the 
appropriate Renderers for SIMD execution. 

T-Codes -There are three kinds of T-codes: generators, which 
produce several basic texture patterns, operators, which 
perform simple arithmetic operations on texture patterns, and 
conditionals which permit selected pixels to be included or 
excluded in a computation. Generators include Perlin’s band- 
limited noise function [Perlin 851, Gardner’s sum-of-sines 
[Gardner 841, antialiased square waves, and a Julia set. 
Examples of operators include add, scale, max, square root, 
splines, and color table lookup. These operators can be 
cascaded to implement arbitrary functional composition. 
There are T-codes for conditional execution (by having 
selected pixel processors conditionally disable themselves), 
but no T-codes for looping. Adding a new T-code to our 
system is a straightforward task. Besides coding and testing of 
the T-code subroutine in C, the programmer needs only to 
update the T-code assembler parse table and the T-code 
subroutine dispatch table. 

Sample Texture Program - The following T-code fragment 
computes an antialiased black and white checkerboard 
pattern. The U and V registers contain the texture coordinates, 
and the D register contains the texture scale factor. Output is 
to the diffuse color components D-Red, D-Green and 
D-Blue. The swave generator produces antialiased square 
waves in one dimension. Note how the outputs of the 
generators are combined by continuous operators for 
antialiasing, rather than using bitwise exclusive-OR. 

# make antialiased square wave in U direction 
swave R,U,D; swave params 

# make antialiased sq-uarewave in V direction 
swave S,V,D; swave-params 

# R and S registers now contain stripes 
mu1 T,R,S 
add W,R,S 
Sub W,W,T 
sub W,W,T 

# W := R+S-2*R*S, countinuous exclusive OR 
# set diffuse colors :from W 

copy D Red,W 
COPY DGreen,W 
copy _ DBlue,W 
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Certainly, our texture programming language is hardly state- 
of-the-art with respect to programming ease. This is 
compensated to some extent by the fact that texture programs 
tend to be rather short - typically 20-40 instructions. The 
programs are short because the built-in generators and some 
of the operators (such as spline and color table lookup) are 
fairly powerful. The main job of the texture programmer is 
producing the appropriate “glue” code to tie these together. In 
addition, as discussed later, programming is facilitated by an 
interactive texture editor program which allows the use of 
macros. 

Texture Procedure Evaluation Details 

Pixel Memory Management - The Pixel-Planes 5 Renderers 
contain 208 bits of on-chip memory and 4096 bits of off-chip 
backing store memory per pixel. Backing store memory 
cannot be directly addressed by IGC instructions, but must be 
swapped in and out by special instructions. Because texture 
programs usually require the use of scratch memory space and 
because a rather large number of pixel variables are needed to 
support deferred shading, there is not enough pixel memory to 
statically allocate it for the worst case. Therefore, a pixel 
memory manager keeps track of the locations of the variables 
and to perform memory movement and backing store 
swapping to make available required amounts of scratch 
memory space. 

Caching of IGC Commands - For static texture programs, 
the IGC commands do not change from frame to frame, and 
thus the T-code translation step need occur only once. Note 
that static texture programs do not imply static textures; the 
result of executing a texture program may vary with time, if 
time is an input variable. During texture parameter editing, 
the T-code program must be reinterpreted each time it is 
changed. The Graphics Processors cache the IGC commands 
resulting from texture interpretation to avoid generating them 
repeatedly. 

Region-Hit Flags - Since each Renderer covers a small 
(128x128 pixel) region of the screen, it is likely that only a 
small subset of the textures will be represented in a given 
region. The Graphics Processors flag each region that any 
textured polygon intersects as needing that particular texture. 
The Graphics Processor that creates the texturing commands 
for a particular region checks the OR’ed flags from all 
Graphics Processors for that region, and creates and sends the 
texture programs for only those textures that might be visible. 

Obtaining Real-Time Performance 

Our goal for real-time procedural textures was to deliver at 
least 15 frames-per-second to real applications in research 
projects at UNC. This goal has been met, and these 
applications are described in a later section. 

There are two crucial issues for rapid texture evaluation. The 
first issue is to maximize utilization of the pixel processors. 
This is achieved by waiting to execute the texture programs 
until all polygons have been rasterized, so parallelism of the 
texture programs can be maximized. In addition, by use of 
region-hit flags, we avoid processing texture programs for 
screen regions that don’t have the texture. The second issue is 
enabeling the Graphics Processors to keep up with the 
Renderers. This is accomplished by the IGC instruction 
caching. We increased the performance of the Walkthrough 
application from 2 to 20 frames/set by the use of region-hit 
flags and the IGC instruction caching. 

Antialiasing Techniques 

Antialiasing of procedural textures is a difficult problem to 
which we have not found a general solution; instead we have 
developed a few techniques which work fairly well for many 
texture programs. The theoretically proper method is to 
convolve the texture with a filter kernel of an appropriate 
shape, centered at the pixel. In principle, this is possible since 
each pixel processor knows the entire texture, but in practice, 
this can be done only for the simplest textures, because 
integrating arbitrary functions of two variables is difficult. 

In orderto do antialiasing, we need some estimate at each pixel 
of how an area element in screen space maps into texture 
space. Ideally, we would use the derivatives of u and v with 
respect to screen space x and y. However because of limited 
pixel memory, we decided to record this estimate using a 
single number, called the tam-e scalefactor. This number is 
intended to represent the maximum magnification factor that 
can occur when a unit vector in screen space is mapped to 
texture space. The texture scale factor is available in a pixel 
memory register for use in T-code programs. The 
approximation we use is max(luXl+lu I,lvXl+lv I), which is 
within a factor of 1.42 of the commonly used $ormula max 
((ux2+u y”*, (v 2+v 2)1/2) for MIPmaps [Williams 831. 
Becausg of this, &r tgxtures are over-blurred when viewed at 
certain angles, just like MIPmaps. Texture scale factor is 
computed for polygons as follows. When the polygon is 
rasterized, the u and v coordinates at the middle of the 
polygon, umid and v are computed. The linear expression for 
uz = ax+by+c, is #ferentiated to give u z+uz = a, which is 
solved for the constant uXz = a-umidzX. Si&larl~ u,,z, vXz, and 
vYz are computed. From these max(luXzl+luYzl,lv~zl+lvYzl) is 
computed and stored in pixel memory. Finally, just before 
texture program evaluation, a parallel z divide is performed 
for all pixels. This is, of course, an approximation due to the 
substitution of u.d for u. The approximation error manifests 
itself as a difference in the amount of blurring at the corners 
of a polygon that is being viewed at a very oblique angle (large 
z,). We found that the error is not noticeable in ordinary 
scenes, although it can be seen in contrived test cases. 

The antialiased square wave generator produces an 
antialiased stripe pattern with a specified phase, frequency, 
and duty cycle. The generator analytically computes the 
convolution integral of a box filter kernel with a square wave 
function of its input parameter in one dimension. The width 
of the box filter is the texture scale factor. Initially we 
implemented a triangular filter kernel, but found that it 
required too much scratch pixel memory. 

A method that works for some textures is to antialias the final 
color table lookup. The idea is to return a final color that is the 
integral over some finite interval in the color table, rather than 
a point sample. The width of the integration interval is 
proportional to the texture scale factor times the maximum 
gradient magnitude of color with respect to u and v. This 
integral is simple enough to be computed analytically in the 
pixel processors. If the gradient magnitude of the texture 
value input to the color table is reasonably smooth, this 
roughly approximates the correct convolution integral, and 
does a fairly good job in practice for many textures. It fails 
utterly for textures that are discontinuous functions of u and v. 
This kind of texture gradually loses contrast as the texture 
scale factor increases, but before the texture fades to a uniform 
color, there is severe aliasing. 
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Another method works in the frequency domain. Some of our 
texture programs “roll off’ the amplitude of the band-limited 
noise based on the texture scale factor. The result is that the 
noise fades to a uniform value at scales where aliasing would 
be a problem. 

Interactive Editing of Texture Procedures 

An interactive texture editor eliminates the need for an edit- 
compile-link-test cycle. Since T-code programs are executed 
interpretively at run time, texture procedures can be changed 
without recompilation. Furthermore, the interpretation phase 
is fast enough so that literal values (Graphics Processor 
parameters) in T-code instructions can be updated in a single 
frame time, at frame rates of more than 30 frames per second. 
The texture editor displays the T-code instructions of a 
selected procedural texture in a text window. The user can 
position a movable cursor on any literal value in a T-code 
instruction, and then smoothly vary this value via a joystick. 
The dynamically updated texture pattern is displayed on the 
graphics system with a two-frame lag (the graphics pipeline 
overlaps two frames). At over 30 frames per second this lag 
time is hardly noticeable. Hence the user can explore the 
parameter space of a texture procedure continuously in real 
time. 

More drastic changes to texture programs can be made by 
interactively editing the text of the program in another 
window via a conventional text editor. T-code instructions 
can be added, rearranged, and deleted, producing a new 
program. Then with a couple of commands, the user can save 
the updated texture program and reload it into the texture 
editor for immediate display. This process takes from one to 
five seconds, which due to the more discrete nature of such 
changes, can still be viewed as interactive editing. 

What the user sees on the graphics system is a complete scene 
with possibly many graphics primitives and texture 
procedures, not just a single isolated texture pattern. The 
texture editor provides a complete set of commands to access 
the facilities of our graphics library. Thus the user can change 
the viewpoint, move objects around, change the locations and 
parameters of light sources, etc. This is important, because the 
appearance of a texture is dependent on its visual context. 

noise(u,t) > v image plane at time t 
I_ h 

u u = const 

Figure 2: Generating Flames 

Dynamic Textures 

Textures have been traditionally considered to be functions of 
spatial coordinates u and v. A generalized texture, however, 
need not be restricted to just mappings from the spatial 
coordinates. One could consider a texture to be a function of 
several other parameters as well - time and surface normal, to 
mention just a couple. Procedural textures permit us to create 
these generalized textures without the memory overheads that 
would be required with image textures. Since these textures 
change spatially based on input parameters that need not be 
restricted to just those that define the mapping, we prefer to 
call them dynamic textures. 

If we consider a textures to be a function of u, v, and t, where 
t is a time variable, we can produce time-varying animated 
procedural textures such as a fire texture that flickers and 
water waves that ripple. If we consider textures as functions 
of u, v and n where n is the normal to the surface that has been 
textured, then it is possible to do environment mapping by 
defining an appropriate procedural texture. Dynamic textures 
implemented this way can still be precomputed because the 
program text for the texture doesn’t change. Another way to 
produce dynamic textures is to edit the texture programs after 
each frame, but then there is some loss of performance since 
precomputation of IGC commands isn’t possible. In the 
following sections we describe how we implemented several 
dynamic textures. 

Fire - An example of an animated texture is a flickering flame. 
We implement a fire texture as follows (Figure 2): First 
perturb u by adding to it a 2D noise function of u and t. Then 
generate a height field h by applying a 2D noise generator to 
u and t. Compute flame intensity f = l-v/h. If f < 0 set f to 0. 
This creates a moving outline of the flame. Because of the 
noise perturbation of u, the outline moves both vertically and 
horizontally. Finally we copy f to opacity and use a color table 
with input f to produce color. We use two layers of transparent 
fire texture to produce the fireplace shown in Photo 3. 

Environment Mapping - The next example is a dynamic 
texture depending on object orientation instead of time. It 
implements environment mapping of a simple checkerboard 
pattern onto a teapot. The textured teapot appears to be located 
inside a room with checkerboard walls, as shown in Photo 5. 
Rotating the object lets the reflections move across the surface 
in a realistic way. We accomplish this by performing typical 
environment mapping computations [Blinn & Newell 761 
(determine reflected eye vector, compute indices, compute 
procedural texture as function of indices) in aT-code program 
for each pixel. 

Our current system has two limitations for environment 
mapping. First, because the normal vector is only available in 
eye space coordinates, the (infinitely distant) reflective 
environment appears to be attached to the camera. Thus, 
whenever the camera is rotated (panned, tilted or rolled), the 
reflections move across the object’s surface in an erroneous 
way. If we had enough pixel memory to store world space 
normals this restriction could be removed. Second, we cannot 
perform antialiasing properly, since we do not have surface 
curvature information available in pixel memory. 

Water - The final example, shown in Photo 6, is an animated 
texture approximating water waves by means of an animated 
procedural bump map. This dynamic texture is a function of 
both time and spatial orientation. The pixel normals are 

98 



perturbed on the basis of a height field whose value is 
computed at each pixel. The derivatives required for the 
normal perturbation are computed by finite differences. The 
height field consists of superimposed circular and parallel 
moving sinusoidal waves generated by a number of sources 
distributed across the water-textured surface, a common 
approach for this problem. The surface characteristics are 
such that the water surface appears highly specular. In 
addition, the normals are used to compute a simple one- 
dimensional color scale environment map, which is used to 
create a more natural appearance. The map has rotational 
symmetry about a vertical axis, so that the camera can be 
arbitrarily panned. However, tilting or rolling the camera 
would generate erroneous results, for the reasons mentioned 
in connection with the environment mapping texture. As 
mentioned, this restriction could be removed by storing world 
space normals at each pixel. We also have a problem with 
determining which way to perturb the surface normals, since 
we do not have the surface tangent vectors in the u and v 
directions available in pixel memory. We can circumvent this 
problem for horizontal polygons (like water surfaces) by 
broadcasting the current transformation matrix to the pixel 
processors during the texturing phase of each end-of-frame 
calculation. The scene in Photo 6 was rendered in 33 
milliseconds, low resolution, with 24 GPs and 12 Renderers. 

Applications Using Procedural Textures 

Pixel-Planes 5, besides being a research project in its own 
right, is also an important resource for several other research 
projects at UNC. Two of those for which textures are 
important are the Building Walkthrough project and the Head- 
Mounted Display project. Both of these use a stereo head- 
mounted display and head tracking, so high frame rates are 
necessary to maintain the illusion of the virtual environment. 

Walkthrough - The UNC Walkthrough Project aims at the 
development of a system for creating virtual building 
environments [Brooks 861. This is intended to help architects 
and their clients explore a proposed building design prior to its 
construction, correcting problems on the computer instead of 
in concrete. Texturing plays an important role in enhancing 
image realism. Having textures for bricks, wood, ceiling tiles, 
etc., adds to the richness of the virtual building environment 
and gives an illusion of greater scene complexity. The 
radiosity illumination model is used in the Walkthrough 
project. We can display amodel of a house that contains about 
34,000 polygons and 20 procedural textures at 15-20 frames/ 
set on 24 Graphics Processors and 12 Renderers at 640x5 12 
resolution. Photo 1 shows a view of the living room of the 
house, and Photo 2 shows a view of the kitchen. 

For enhanced realism, textures have been integrated with 
radiosity in Walkthrough. There are two stages in this 
integration. The first stage is to calculate radiosity values for 
a textured polygon, such that the radiosity effects such as color 
bleeding are correctly simulated for the polygons near this 
textured polygon. The second stage is to shade the textured 
polygon itself by the radiosity values at its vertices. To effect 
the first step, the color of a textured polygon is assigned to be 
the average color of its texture. This color is then used in the 
radiosity process as usual. After the radiosity values at the 
vertices of a polygon have been computed, they are passed as 
input parameters to the procedural texture for this polygon 
along with other input parameters such as the u and v 
coordinates. These shading values are linearly interpolated 
across the polygon. The procedural texture is computed as 
before and a post-multiplication of the interpolated radiosity 

shading values with the computed texture colors at each pixel 
gives a smooth shading effect over the textured polygon. 

Another application which textures find in the Walkthrough 
project is that they offer one way to switch lights in a virtual 
building. The total radiosity illumination of a polygon is 
determined by the dot-product of the vector of light values and 
the radiosity vector specifying the contribution of each light 
source to the illumination of the polygon. This then means that 
given the latter, the user can vary the intensity of a light source 
and observe the same building model under different light 
scales (but same light positions), by just computing the dot 
product as described before [Airey90]. This however takes 
roughly 3 - 5 seconds for a dataset of roughly 30,000 polygons 
and 20 light sources if done sequentially on the host 
workstation and fails to provide the effect of instantaneous 
light switching. One possibility to do this fast enough to 
provide an instantaneous effect (under a tenth of a second) is 
to do this in parallel by using T-codes. The idea is to pass the 
intensity value of a light source as an input parameter to a T- 
code program (along with the polygon colors) which 
computes the dot-product of the input parameter with the 
value of the interpolated radiosity (as described in the 
preceding paragraph) and uses the resulting value to shade the 
polygon. Changing the intensity of a light source can then be 
done by editing the T-code program and changing this input 
parameter. This is essentially using the T-code commands as 
a shading language. 

Head-Mounted Display - In the Head-Mounted Display 
project, the primary use of textures has so far been in a 
mountain bike simulation, where the user rides a stationary 
bicycle and views simulated terrain through the head- 
mounted display. Textures are used to increase the apparent 
scene complexity and to improve the user’s perception of 
motion through the environment. This application features 
relatively few textures (grass, road, and cloudy sky), each of 
which covers a fairly large area of the images. A scene from 
this application is shown in Photo 4. The cloudy sky texture 
makes use of the Gardner texture generator. The grass and 
road texture make use of band-limited 2-D noise, and are 
antialiased by decreasing the noise amplitude as the texture 
scale factor increases. Several frequencies of noise are used, 
each with its own threshold for rolloff. This simulation runs 
at 20-25 frames per second in low resolution (640x5 12) stereo 
mode using 32 Graphics Processors and 20 Renderers. 

Future Work 

The logical next step to our simple texture language is to 
implement a full-fledged shading language that can be 
executed on-the-fly. Using the deferred shading paradigm on 
a high-end graphics machine, real-time execution of a shading 
language such as Renderman [Hanrahan & Lawson 901 seems 
to be a very real possibility. Unfortunately, this is impractical 
on the current Pixel-Planes system due to the small amount of 
memory available to the pixel processors. However, it is 
likely that the Pixel-Flow machine [Molnar 911, now being 
designed at UNC Chapel Hill, will have sufficient pixel 
memory to make this idea viable. 
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