
Statistical Geometry Representation for Efficient
Transmission and Rendering

ARAVIND KALAIAH

and

AMITABH VARSHNEY

University of Maryland, College Park

Traditional geometry representations have focused on representing the details of the geometry in
a deterministic fashion. In this paper we propose a statistical representation of the geometry that
leverages local coherence for very large datasets. We show how the statistical analysis of a densely
sampled point model can be used to improve the geometry bandwidth bottleneck both on the
system bus and over the network and for randomized rendering without sacrificing visual realism.
Our statistical representation is built using a clustering-based hierarchical principal component
analysis (PCA) of the point geometry. It gives us a hierarchical partitioning of the geometry into
compact local nodes representing attributes such as spatial coordinates, normal, and color. We
pack this information into a few bytes using classification and quantization. This allows our repre-
sentation to directly render from compressed format for efficient remote as well as local rendering.
Our representation supports view-dependent as well as on-demand rendering. Our approach ren-
ders each node using quasi-random sampling using the probability distribution derived from the
PCA analysis. We show many benefits of our approach: (1) several-fold improvement in the stor-
age and transmission complexity of point geometry, (2) direct rendering from compressed data,
and (3) support for local and remote rendering on a variety of rendering platforms such as CPUs,
GPUs, and PDAs.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; G.3 [Mathemat-
ics of Computing]: Probability and Statistics

General Terms: Computer Graphics, Rendering

Additional Key Words and Phrases: Point-based Rendering, View-dependent Rendering, Progres-
sive Transmission, Network Graphics, Principal Component Analysis, Quasi-random Numbers,
Programmable GPU

1. INTRODUCTION

Recent advances in 3D acquisition technology have posed new challenges in the
representation and visualization of geometry. With the rapid commercialization of
Light Detection And Ranging (LIDAR) range finders, outdoors scenes can now be
easily scanned with an accuracy of a few millimeters. The output of these scanners

Authors address: Graphics and Visual Informatics Laboratory, Department of Com-
puter Science and UMIACS, University of Maryland, College Park, MD - 20742, USA,
{ark|varshney}@cs.umd.edu
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2005 ACM 0000-0000/2005/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, March 2005, Pages 1–30.

2 · Kalaiah and Varshney

(a) (b) (c) (d) (e) (f)

Fig. 1. Figures (a) and (b) show our hierarchical probability distribution computed from
the point geometry of the Michelangelo’s David Statue. Each ellipsoid in these figures
represents an anisotropic Gaussian probability distribution. We approximate the original
geometry using quasi-random sampling (figure (c)). We use this scheme to reduce the
network/system-bus bandwidth for fast view-dependent rendering on GPU (figure (d)),
and other rendering platforms such as remote desktop (figure (e)) and PDA (figure (f)).

are raw point primitives with spatial coordinates and color. The acquired geometry
can be arbitrary with high complexity in shape and scale. Current geometries are
several hundreds of millions of points and are likely going to be in billions of points
in the near future. Current techniques for handling such large point datasets have
evolved from several decades of research in triangle meshes. The triangle meshes
with their origins in the high-precision CAD community have strongly favored deter-
ministic representations. We believe that the current deterministic representations
are not ideal for representing such large acquired geometries for several reasons:

• Deterministic representations are unable to represent uncertainties [Johnson and
Sanderson 2003] in acquisition, such as noise,

• Deterministic representations are not geared for encoding the primitives with a
high degree of coherence inherent in such large datasets, and

• Deterministic representations are expensive in representational complexity for
the accuracy they represent in large acquired geometries.

In this paper we present a statistical representation of the geometry and its at-
tributes using Principal Component Analysis (PCA) [Duda et al. 2001]. A PCA of
a set of points allows us to represent them compactly as an anisotropic Gaussian
distribution. Since PCA generalizes to arbitrary dimensions it allows us to treat
both geometry and its attributes in a consistent fashion. While PCA is amongst
the more fundamental methods of analysis in statistics there are several other ap-
proaches such as Self Organizing Maps (SOM), Locally Linear Embedding (LLE),
and Isomaps. However, PCA is more attractive for our purposes since it is very
simple, is easily scalable to large inputs, and provides a tight volume hierarchy that
we desire for efficient transmission and rendering. We also extend our represen-
tation to construct a hierarchical probability distribution for any given point set.
This hierarchy provides us with the flexibility of approximating the original dataset
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 3

Fig. 2. Client-Server rendering: The server selects the tree cut in a view-dependent
manner and transmits the nodes of the cut to the client. The client renders each node
by generating points from the statistical information of the node. In a typical single-PC
system the server is the CPU while the client is the GPU. In general, the server is on a
host computer while the client can be any rendering device such as a PC or a PDA.

to the accuracy desired by the user. Our representation is free of connectivity and
is well-suited for rendering from a compressed format. Our main contributions are
as follows:

(1) We introduce a hierarchical statistical representation for large point datasets.
The hierarchy is built using our novel clustering-based binary partitioning (see
figures 1(a) and 1(b)).

(2) We present a framework for compact representation and on-the-fly decoding
and rendering. This addresses the growing gap in the speeds of storage, trans-
mission, and computation [Wulf and McKee 1995] by substituting geometry
bandwidth with computation (see figure 2).

(3) Our representation maps well to many rendering platforms – locally on the
GPU and remotely on the desktops and PDAs (see figures 1(d–f)).

The statistical representation is the primary contribution of our paper. In this
paper, we show the benefits of this approach for transmission and rendering. We
believe there are numerous other applications that can benefit from this represen-
tation. We have detailed them in the section on future work (§11).

Overview

We build a binary hierarchy over a given set of points using PCA of the geometry
attributes followed by k-means clustering. Each node in this hierarchy represents a
set of points and also carries PCA information for other attributes, such as color and
normal. Since the PCA parameters of the nodes tend to be similar for coherent
regions, we compactly represent each node using classification and quantization.
Figure 3 illustrates the entire preprocess pipeline.

The pre-process stage gives us a hierarchical probability distribution of the data.
We approximate the original geometry by selecting a cut in this tree and then gen-
erating points according to the probability distribution of the nodes of the cut. We
use quasi-random sampling for this generation. We render the nodes by rendering
the generated points. We extend our rendering approach to a client-server setting
for remote rendering. This is illustrated in figure 2. Our overall preprocess and

ACM Journal Name, Vol. V, No. N, March 2005.

4 · Kalaiah and Varshney

rendering algorithm is as follows:

Preprocess(Point *p)
1 Node *n = Hierarchical-PCA(p) // hierarchically partition input points, p[]
2 Quantize-Classify-Encode-PCA-Atributes(n) // compress per-node info.

Hierarchical-PCA(Point *p)
1 Node *n = PCA(p)
2 if((Variance(p) > threshold-variance) and (Cardinality(p) > threshold-size))
3 (leftp, rightp) = Two-Means-Geometric-Partition(p)
4 n → left = Hierarchical-PCA(leftp)
5 n → right = Hierarchical-PCA(rightp)
6 return(n)

Render(Node *n)
1 Determine the tree cut based on view parameters
2 For each node in the tree cut
3 Decode the node
4 Determine the number of points to generate
5 Generate and render points with attributes

This work builds upon our earlier work on Statistical Point Geometry [Kalaiah
and Varshney 2003b]. We make the following additional contributions here:

(1) Better Hierarchy: The octree hierarchy used in our earlier approach tends
to be imbalanced. This can have a direct bearing on the geometry bandwidth
and the rendering speed. We achieve a balanced partitioning using our k-means
clustering approach. Our hierarchy can benefit many other applications such
as simplification, editing, collision detection, and illumination.

(2) Quasi-Random Sampling: Pseudo-random sampling of PCA-derived Gaus-
sian probability distribution requires high sampling rates due to their relatively
higher discrepancy [Niederreiter 1992]. Here we use quasi-random sampling
which has the advantages of: (1) lesser memory, (2) faster sampling, (3) better
(lower discrepancy) sampling, and (4) no temporal aliasing.

(3) Efficient Transmission and Rendering: We show how our approach can
work for a variety of local and remote rendering devices such as GPUs, remote
desktops, and PDAs. In particular, for the case of a GPU, we show how to
reduce the geometry bandwidth on the system bus, decode the information
directly on the GPU, and also directly sample points on the GPU.

The rest of the paper is organized as follows: we discuss related work in §2 and
our scheme for statistical modeling of a point set in §3. We discuss the hierarchical
extension of this approach in section §4 and detail our scheme for compact repre-
sentation and on-the-fly decode in §5. We discuss quasi-random sampling in §6 and
view-dependent approximation in §7. We introduce our client-server model in §8,
present our results in §10, and conclude the paper in §11.
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 5

Fig. 3. The preprocess pipeline: We partition the input point cloud hierarchically and do a
PCA on the position and other attributes of the points in each partition of the hierarchy.
We use k-means clustering to classify the standard deviations in the nodes so that the per-
node standard deviations can be replaced by the index of nearest class. We also quantize
the mean and the frame information in each node. In this figure the yellow nodes represent
data while the brown nodes represent computational units.

2. RELATED WORK

2.1 Modeling

The traditional approaches to modeling graphics objects include triangle meshes,
parametric, implicit, and procedural methods, as well as representations that are
based on points, images, and volumes. Here we propose a statistical approach to
modelling graphics objects by classifying local geometries. The strength of our
approach lies in its ability to exploit local coherency on a global scale. The input
to our algorithm could be the points obtained directly from the scanner or after
processing for surface reconstruction [Amenta et al. 1998], editing [Pauly et al.
2003], simplification [Pauly et al. 2002], and signal processing [Pauly and Gross
2001].

2.2 Representation

A compact representation is essential for a small geometry bandwidth. Traditional
methods reconstruct the original input, with the variable being a possible loss of
detail due to quantization [Deering 1995; Isenburg and Snoeyink 2000; Taubin and
Rossignac 1998; Touma and Gotsman 1998]. Such methods have been extended for
progressive compression and reconstruction [Alliez and Desbrun 2001; Cohen-Or
et al. 1999; Gandoin and Devillers 2002; Taubin et al. 1998]. Alternatively, higher
compression rates can be obtained by using representations that approximate the
given input without necessarily trying to reproduce the original samples [Kho-
dakovsky et al. 2000], by using spectral compression [Karni and Gotsman 2000],
or by mapping the geometry to images [Praun and Hoppe 2003]. Our statistical
approach belongs to this category and achieves better geometric compression since
the number of primitives is greatly reduced.

Points by themselves are dimensionless primitives and hence a local region of
influence is typically assigned to each point. The local region of influence can
be surface-based or volume-based. Surface-based point representations such as
Surfels [Pfister et al. 2000] and implicit surfaces [Alexa et al. 2001; Fleishman
et al. 2003] approximate the scanned datasets well at high resolutions and are usu-
ally topology sensitive. On the other hand volume-based representations such as

ACM Journal Name, Vol. V, No. N, March 2005.

6 · Kalaiah and Varshney

spheres [Rusinkiewicz and Levoy 2000] and octree cells [Pfister et al. 2000; Woolley
et al. 2002; Botsch et al. 2002; Pajarola 2003] are topology blind and easy to hierar-
chically organize. However they are isotropic and therefore do not approximate the
underlying data distributions compactly. Our representation extends the current
volumetric point representations through its use of anisotropy and a probability
distribution of points at each node of the hierarchy.

Our representation has several benefits: (1) decoding of each local geometry is
done entirely independently, and hence is not memory intensive, is fast, is parallel,
and offers direct real-time rendering from compressed data, (2) it offers a uniform
framework for compressing other local attributes of the model such as color, normal,
and texture coordinates, and (3) the savings in geometry bandwidth can be used
for progressive network transmission.

2.3 Rendering

Levoy and Whitted [Levoy and Whitted 1985] introduced points as geometric ren-
dering primitives. Points have found a variety of applications [Grossman and Dally
1998] including efficient rendering of large complex models [Rusinkiewicz and Levoy
2000]. Points have evolved from being rendered as a pixel per point to more in-
teresting primitives. The point primitives include sphere [Rusinkiewicz and Levoy
2000], points with attributes (Surfels) [Pfister et al. 2000], tangential disk (Surface
splats) [Zwicker et al. 2001; Ren et al. 2002; Botsch and Kobbelt 2003; Guen-
nebaud and Paulin 2003; Pajarola 2003], tangential ellipse [Wu and Kobbelt 2004],
quadratic surface [Kalaiah and Varshney 2003a], higher degree (3 or 4) polynomi-
als [Alexa et al. 2001], and wavelet basis [Welsh and Mueller 2003]. These methods
are successful in covering inter-point spaces as long as the local sampling density
can provide sufficient detail in the image space. Points can also be rendered with-
out any CPU involvement by storing the point geometry directly on the graphics
card [Dachsbacher et al. 2003; Botsch and Kobbelt 2003; Guennebaud and Paulin
2003]. Temporal coherence can be exploited by keeping track of the visible Sur-
fels in the frame buffer of successive frames [Guennebaud et al. 2004]. Another
useful application of point primitives is the rendering of regions of a triangle mesh
with small screen-space projection area [Chen and Nguyen 2001; Dey and Hudson
2002]. In our approach we independently render each local geometry by quasi-
random point generation. Our work has some common elements to procedural
rendering [Ebert et al. 2002; Reeves 1983] and the randomized z-buffer algorithm
for triangle meshes [Wand et al. 2001]. The difference is that our approach uses
statistical properties to generate geometry along with other local attributes such
as normal and color to achieve a fully randomized rendering. Variance analysis has
been widely used for anti-aliasing. Schilling [Schilling 2001] uses it for anti-aliasing
normals in bump mapped environment mapping.

3. STATISTICAL NEIGHBORHOOD MODELING

We use Principal Component Analysis (PCA) to represent the geometry and its
attributes. The PCA of a set of N points in a d-dimensional space gives us the
mean µ, an orthogonal frame f , and the standard deviation σ of the data [Duda
et al. 2001]. The terms µ and σ are d-dimensional vectors and we refer to their
i-th component as µi and σi respectively, where σi ≥ σj if i > j. The frame
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 7

(a) (b) (c) (d) (e)

Fig. 4. (b): The Gaussian approximation derived from the PCA analysis of the points in
(a). (c): The normals of a set of points on an unit sphere. The normals are shown in
blue while the mean of the normals is shown in white. These normals are unwrapped to a
tangent plane at the mean as shown with green points in figure (d). (e): The approximation
of the normals by an ellipse on the tangent plane and a coordinate frame.

f consists of d vectors with the i-th vector referred to as f i. In our case, the
input is a set of N points with three attributes: spatial position p, normal n, and
color c. We identify the mean, variance, and the basis of each of these attributes
by their subscripts p, n, and c corresponding to the position, normal and color
respectively (eg. µp, fn, and σc). We determine the values µp, fp, and σp from
the PCA analysis of the (x, y, z) values of the points. This gives us an anisotropic
Gaussian distribution centered at µp, aligned in the directions f1

p , f2
p , and f3

p , with
the standard deviation along these directions being σ1

p, σ2
p, and σ3

p, respectively
(see figures 4(a-b)). Such a distribution can be effectively visualized as an oriented
ellipsoid with its intercepts being σ1

p, σ2
p, and σ3

p (see figures 5(a) and 5(b)). Our
approach can easily generalize to other local attributes such as texture coordinates.
Another approach to multi-attribute PCA is to concatenate all the attributes of a
point and do a single-attribute PCA on the resulting long attribute vectors. We
discuss the advantages and disadvantages of this approach in §9.

A PCA analysis of the (r, g, b) color values gives us their mean, µc, principal com-
ponents, fc, and the standard deviations, σc. We need to be a little more careful
when doing PCA for the normals due to the normalization constraint. Normals can
be seen as points on a unit sphere (see figure 4(c-e)). We choose a longitudinal arc-
length preserving parameterization because it allows us to map the Gaussian distri-
bution from the tangent plane onto the sphere in such a way that the distribution on
the sphere is also Gaussian. Note that this is not possible with a plain orthographic
mapping. We first orient the unit sphere such that its z-axis is along the average
of the N normals. We then transform all the normals to this basis and determine
their respective elevation (θ) (measured from the z-axis) and azimuth (φ) angles.
The normals are now points in this sphere and they are unwrapped onto a tangent
plane at the North pole using the transformation: (u, v) = (θ sin(φ), θ cos(φ)). This
parameterization preserves the arc-lengths along the longitudes though the latitu-
dinal arc-lengths are not preserved. A PCA in this parametric space gives us an
ellipse. The x- and the y-axes of the sphere are then rotated to be parallel to the
axes of the ellipse. The PCA analysis of the normals thus gives us a 2D standard
deviation vector σn and a 3D frame fn (basis of the sphere). Note that the frame fn

effectively represents both the mean and the principal components of the normals.
Since the PCA analysis is blind to surface geometry constraints it scales well to

ACM Journal Name, Vol. V, No. N, March 2005.

8 · Kalaiah and Varshney

(a) (b) (c) (d)

Fig. 5. Figure (a) shows the nodes at the mid-level resolution of the hierarchy built for the
David’s Head model. Each ellipsoid in this figure represents an anisotropic Gaussian dis-
tribution of the geometry with their intercepts being their corresponding standard deviation
σp. The ellipsoids are colored by their mean color, µc. Figure (b) shows that scaling the
ellipsoids by a factor γ = 3.5 ensures that the geometry is represented up to a Confidence
Index (CI) of at least 99.7%. Figure (c) shows the estimate of the local curvatures (the
β factor) varying from high (red) to medium (green) to low (blue). Figure (d) shows the
Gaussian distribution at the highest detail (after correction by the β factor).

arbitrary geometries with complex topology. Moreover, we found that the PCA
analysis is a fast, simple, and robust procedure. We believe that this feature makes
the PCA-based representation further attractive. However, a downside to this is
that the nodes could protrude out of the surface in regions of high curvature. To
correct this we observe that the ratio σ1

n

σ1
p

is a good estimate of the surface curvature
since it captures the variation of the surface normal (see figure 5(c)). Hence we

scale the value of σp by the factor β = [η0 + (1 − η0)min(0, (1 − η1

√
σ1

n

σ1
p
))], where

0 < η0, η1 < 1. The (1−η1

√
σ1

n

σ1
p
) term reduces the width of the node if the curvature

is high. However, in some cases, the (1 − η1

√
σ1

n

σ1
p
) factor leads to relatively small

nodes for lower resolution nodes of the hierarchy (see §4). We avoid this by using
the η0 factor which determines the proportion of the original PCA-derived width
that is retained even after the curvature-related reduction of the node. Although
the curvature estimate is given by σ1

n

σ1
p
, scaling σp by its square root gave us better

visual results. We have used values of η0 = 1
2 and η1 = 1

6 for all our experiments.

4. HIERARCHICAL PCA

The PCA representation of a large dataset, such as the David’s Head, is compact
but a coarse approximation. We represent the data at different levels of detail by
building a hierarchy in a top-down fashion by partitioning the collection of points
at each node into two sets using 2-means clustering. We then compactly represent
each node using statistical neighborhood modeling as discussed in §3.

The distortion of a partitioning is defined as the sum of the distances of the
points from the partition’s mean [Duda et al. 2001]. In our partitioning scheme
we reduce this distortion by using k-means clustering with k = 2. We initialize
the two starting means (centers) for the k-means algorithm by doing a PCA over
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 9

(a) (b) (c)

Fig. 6. These figures illustrate three iterations of the clustering algorithm used for spatial
partitioning of a set of points. Successive iterations reduce the distortion between the
original set of points and the cluster centers (shown as blue crosses).

the points and choosing µp + σ1
p

2 f1
p and µp − σ1

p

2 f1
p as the initial guesses. This is

a reasonable assumption since the data varies maximally along f1
p . The k-means

clustering algorithm then iterates over the twin steps of partitioning the point set
according to the proximity of each point to the two means and then updating
the two means according to this partitioning (see figure 6). [Pauly et al. 2002]
use a geometric way to separate the point set for their point-based simplification
hierarchy. They separate along the principal direction f1

p with the separating plane
passing through the mean µp. A similar strategy is used by [Brodsky and Watson
2000] for hierarchical mesh partitioning. This approach is equivalent to the first
iteration of the clustering scheme. Subsequent iterations then successively reduce
the distortion. We stop iterating when the difference in the distortion between two
successive iteration is less than 10−7 or when the number of iterations is more than
30, whichever happens earlier. We terminate the partitioning at nodes which have
less than a user-specified number of points (between 6 and 30 for our models).

The choice of the distance metric is crucial for a clustering algorithm. The Eu-
clidean distance metric is a good one in most instances and produces a balanced
tree. However, it has a tendency to merge disjoint parts of the surface if they are
close enough (see figure 7(c)). This can be rectified by the Mahalanobis distance
metric [Duda et al. 2001]. The Mahalanobis distance metric warps the space so
that distances along the normal direction are weighed much higher than the dis-
tances along the tangential directions (see figure 7(a)). The Mahalanobis distance
between a point q and the mean µp of a PCA node is determined by the product
of two matrices: an affine transformation matrix and a scaling matrix. The affine
transformation matrix, Tp, transforms the point to the coordinate frame defined by
the pair (µp, fp). The point is then scaled using a scaling matrix:

Sp =

1
σ1

p
0 0

0 1
σ2

p
0

0 0 1
σ3

p

 .

The Mahalanobis distance, m(q) between q and µp is given by, m(q) = ‖Sp Tp q‖2 .
The Mahalanobis distance metric generally leads to partitions that do not merge

disjoint parts of the surface. This is because the Mahalanobis distance metric mea-
sures distances respecting the local anisotropy of the partitions that the Euclidean
metric is unable to do. However, we note here that the use of the Mahalanobis met-
ric is still a heuristic, although generally a better one than the Euclidean metric.
When the surface is too complex to be partitioned into two clearly disjoint surfaces,

ACM Journal Name, Vol. V, No. N, March 2005.

10 · Kalaiah and Varshney

(a) (b) (c) (d)

Fig. 7. Figure (a) illustrates the Mahalanobis distance, m(q), between a point q and the
mean µp of a PCA node. Figure (b) is simple model of a sphere and a plane. Figure
(c) is the partitioning of the sphere and plane model obtained by a partitioning-plane-
based approach while figure (d) is the partitioning obtained by the Mahalanobis-distance-
based approach. The partitions have been rendered by the ellipsoids corresponding to their
respective PCA attributes (mean µp, standard deviation σp, and principal components fp).

the Mahalanobis distance metric can produce an imbalanced partitioning. Hence
we use a two-pronged strategy: we first try a k-means clustering based on the Ma-
halanobis metric and if that partitioning turns out to be imbalanced we switch to
a Euclidean-distance-based partitioning. The definition of an imbalanced partition
is left to the user (we used a balance threshold of 30% – 70% for our models).

5. CLASSIFICATION AND QUANTIZATION

The PCA-based representation of a set of points is fairly compact. However, a
quick look at the PCA parameters of the nodes of the hierarchy shows that there
is a high coherence in the PCA parameters themselves. This is especially true for
the standard deviations σ. To use this we run a k-means clustering algorithm on
the standard deviations (σp, σn, and σc) to derive a small number of representative
variances (between 64 to 4K for each model). Figures 8(b) and 8(c) show the
original values of the standard deviations σp and their cluster centers. We build
a global lookup table of the σ cluster centers and only store the index of the best
matching standard deviation with each node. For each node we then use 12 bits
each for σp and σn, and 6 bits for σc (see figure 8(a)).

We use quantization to reduce the number of bits needed for the remaining
attributes. To encode the frame, fp we could quantize the quaternion coefficients
corresponding to the rotation of the unit basis to fp. This approach gives equal
weight to all the three principal components. However we have observed that the
human eye is much more sensitive to the quantization of f3

p , (that generally points
in the direction of the local normal) than to the quantization of the other two axes.
So we quantize f3

p separately by quantizing its θ and φ angles in 8 and 10 bits,
respectively (see figure 8(d)). To quantize the other two axes we observe that they
are orthogonal in the plane normal to f3

p . The remaining two components, f1
p and

f2
p , can therefore be represented by a single angle ψ. To see this, consider the

rotation of the unit vectors x̂ = (1, 0, 0), ŷ = (0, 1, 0), and ẑ = (0, 0, 1) by an angle
of θ around the the axis â = ẑ × f3

p (see figure 8(d)). If we denote the rotated
vectors by x̂′, ŷ′, and ẑ′ respectively, then ẑ′ = f3

p , while x̂′ and ŷ′ reside on the
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 11

(a)

(b) (c)

(d)

Fig. 8. (a) A node is quantized into 13 bytes for the spatial and normal information. Four
extra bytes are used for the optional color information. The breakdown is shown in bits.
(b) About 600K PCA values of σp for the David’s Head, and (c) their 512 k-means cluster
centers. (d) We quantize the frame, fp, by quantizing its θ, φ, and ψ angles.

plane normal to f3
p . The angle ψ is then simply the counter-clockwise angle going

from x̂′ to f1
p . We quantize ψ by 6 bits which means that the whole frame fp can

be quantized into 24 bits.
Our method of encoding the frame fp allows us to decode its quantized informa-

tion quickly. Given the values of θ, φ, and ψ we can compute the frame vector f3
p

directly as (cos φ sin θ, sin φ sin θ, cos θ). To determine the other two frame vectors
we first need to compute the vector x̂′ given by [Ritter 1990]:

x̂′ = cos θ x̂ + (1− cos θ)(â · x̂)â + sin θ (â× x̂)

=

cos θ + f3
p (y) f3

p (y) (1− cos θ)
−f3

p (x) f3
p (y) (1− cos θ)

f3
p (x) sin θ

 ,

where f3
p (x) and f3

p (y) are the x- and y- components of f3
p respectively. The vector

ŷ′ can be computed similarly. The final frame vector f1
p is then given by the rotation

of x̂′ and ŷ′ by an angle of ψ to get :

f1
p = cos ψ x̂′ + sin ψ ŷ′

f2
p = cos ψ ŷ′ − sin ψ x̂′

We speedup the decoding process by using a 8-10-6 quantization of the θ, φ, and ψ
angles of fp and using a lookup table for sine and cosine values of these angles.

Quantizing the remaining information is straightforward. We quantize fn simi-
larly with 24 bits and quantize fc in 10 bits using a 4-3-3 quantization of its θ, φ, ψ
angles. We encode µp in 32 bits using a 10-11-11 quantization, where the dimension
of minimum width uses a 10 bit quantization. The value of µc is encoded in 16
bits using a 5-6-5 quantization of its RGB values [Rusinkiewicz and Levoy 2000].
Hence, a node needs 13 bytes for the coordinates and normal with 4 extra bytes for
color. A complete floating-point representation would require 96 bytes.

ACM Journal Name, Vol. V, No. N, March 2005.

12 · Kalaiah and Varshney

6. DETAIL EVALUATION

The PCA of a set of points gives us a Gaussian probability distribution for each of
its attributes. This distribution is given by:

p(x) =
1

(2π)d/2|∑|1/2
e−(x−µ)T ∑−1(x−µ)

where d is the dimensionality of the attribute and
∑

is the covariance matrix of the
attribute values. We approximate the original points by independently sampling
the distribution of each attribute to generate new points. We determine the posi-
tion attribute of the generated points by using a 3D extension of the Box-Muller
transform [Box and Muller 1958; Wong et al. 1997]:

x
y
z

 =

σ1
p 0 0
0 σ2

p 0
0 0 σ3

p

τp

√
1− r2

p2 cos(2πrp1)

τp

√
1− r2

p2 sin(2πrp1)
τp rp2

where rp0, rp1, and rp2 are uniformly distributed random numbers in (0, 1], [0, 1],
and [−1, 1], respectively and τp =

√−2 ln(rp0). This sampling uses a uniform
parameterization of a unit sphere by using a (cos(θ), φ) spherical parameterization.
The random values rp1 and rp2 are samples in this parameter space and spread
points uniformly on the unit sphere. The value τp then ensures that the radial
distances of the points from the mean are spread in a Gaussian manner while the
scaling matrix gives the anisotropic nature to the sampling. We determine the
color of these generated points by independently sampling their color space. To
determine the normals of the generated points we use the Box-Muller transform
to sample the tangent plane positioned at the mean normal. These points are
then wrapped onto the unit sphere to reverse the sphere-to-tangent-plane mapping
discussed in §3. The entire normal sampling procedure is given by the following set
of equations that derive the (θ, φ) values of the normals:

τn =
√
−2 ln(rn0)

α = σ1
nτn cos(2πrn1)

β = σ2
nτn sin(2πrn1)

θ =
√

α2 + β2

φ = tan−1

(
β

α

)

where rn0 ∈ (0, 1] and rn1 ∈ [0, 1] are uniform random numbers. Here, the term
rn0 uniformly spreads the samples around the center of the tangent plane while τn

radially distorts them to behave as a Gaussian distribution of unit variance. The
(α, β) values model an anisotropic Gaussian distribution on the tangent plane. The
(θ, φ) values are then obtained by wrapping the (α, β) values to the sphere.

The above scheme for sampling assumes that all the variances are non-zero.
However, in practice we found several nodes with one or more zero variances. To
deal with zero variances of σi

p we have a minimum threshold value (of the order
10−15). Any σi

p is set to the maximum of itself and this threshold value. This allows
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 13

(a) (b)

Fig. 9. (a): 800 points generated in a 2D space from a pseudo-random generator. (b):
800 points generated using quasi-random numbers. Quasi-random numbers are preferable
since they show low discrepancy (and hence are more uniformly distributed).

us to consider only ellipsoidal (Gaussian) distributions (even if they are vanishingly
thin along some dimensions) without having to worry about special cases. When
there are two zero variances, we retain the principal direction derived from eigen-
analysis and set the other two directions so that the z-direction of the ellipsoid
points along the average normal. For the case of three zero-variances, we set the
z-axis of the ellipsoid to point along the normal while the other two directions are
any two orthogonal vectors in the tangent plane. Handling the zero variances of σi

c

and σi
n is a little easier since there is no correct orientation of their principal vectors

under such degeneracies. We simply use a minimum threshold for these values.

6.1 Quasi-Random Sampling

The quality of the sampling is linked to the quality of the random number genera-
tor. Pseudo-random numbers have a high discrepancy since deriving each pseudo-
random sample independent of previous pseudo-random samples produces a less
uniform distribution (see figure 9(a)) [Niederreiter 1992]. On the other hand, Quasi-
random numbers generated from algebraic sequences such as the Sobol sequence
exhibit low discrepancy (see figure 9(b)) [Press and Teukolsky 1989; Press et al.
2003]. Quasi-random numbers have two main features: (1) they generate the same
random number sequence each time, and (2) successive random numbers are aware
of the random numbers that were generated earlier and hence are placed so as to
minimize the discrepancy. Quasi-random numbers have been used successfully in
computer graphics, for instance in the Monte-Carlo integration for global illumina-
tion [Keller 1996]. We use quasi-random numbers for sampling our position, color,
and normal attributes. They easily fit into our scheme of sampling the Gaussian
distribution by replacing the pseudo-random numbers, r, with the quasi-random
numbers in the sampling equations above.

6.2 Determining the Number of Samples

The points that we generate from the Gaussian distributions approximate the orig-
inal geometry and we visualize the PCA node by rendering these generated points.
For view-dependent rendering we minimize the number of generated points using
an estimate of the screen-space dimensions of the PCA node. This is similar in
spirit to the Randomized Z-Buffer idea by Wand et al. [Wand et al. 2001]. They

ACM Journal Name, Vol. V, No. N, March 2005.

14 · Kalaiah and Varshney

α1 α2 α3 # pseudo # quasi
1 1 1 1 1
2 1 1 2 2
3 1 1 6 4
4 1 1 15 4
2 2 1 3 3
3 2 1 9 7
4 2 1 23 10
3 3 1 26 7
4 3 1 51 12
4 4 1 83 26

α1 α2 α3 # pseudo # quasi
2 2 2 3 3
3 2 2 12 4
4 2 2 14 4
3 3 2 25 7
4 3 2 36 12
4 4 2 77 26
3 3 3 28 14
4 3 3 48 28
4 4 3 89 26
4 4 4 81 54

Table I. This table shows the relationship between the screen-space dimensions of an el-
lipsoid (in pixels) and the minimum number of generated points required to cover the
screen-space projection of the ellipsoid (αi = γ × σi

p). The “# pseudo” column refers to
the number of samples required for pseudo-random sampling while the “# quasi” column
refers to quasi-random sampling. The points are rendered with a diameter of 1.8 pixels.

uniformly sample a triangle mesh by using an analytical formula to decide the num-
ber of points to sample. In particular, if the triangle mesh projects to p pixels, they
uniformly sample O(p log p) points on their triangle mesh. In our approach we
empirically precompute this relationship and efficiently look it up at runtime using
a table. We choose an empirical approach over an analytic approach to handle
the non-linear relationship introduced by a diverse set of factors such as discrete
rasterization, hardware anti-aliasing, and the use of quasi-random numbers.

Table I shows the relationship between σp and the number of points to be gener-
ated to completely cover the orthographic projection of an ellipsoid with dimensions
of γ × σp along its f3

p vector. The rationale for the γ factor is that the Gaussian
distribution is an unbounded distribution and an infinite number of points would
be needed to cover the entire distribution. However it can be shown that the region
enclosed by γ = 3.5 has a Confidence Index (CI) of at least 99.7% (i.e., it covers at
least 99.7% of the distribution). At render-time, we estimate the screen-space di-
mensions to be dFσp/ze, where F is the distance between the camera and the view
plane and z is the distance of the mean µp from the camera. We use this to index
the table for determining the number of points to generate. Our z-distance-based
estimate is a conservative one and the use of other parameters such as rotation
would further reduce the number of generated points. However, since our view-
dependent rendering algorithm ensures that a node only projects to a few pixels,
the z-distance (being the most significant parameter) is sufficient.

Table I shows that a pseudo-random number scheme requires more samples than
a scheme based on quasi-random numbers. This is natural since pseudo-random
number generators exhibit greater discrepancy. Moreover, quasi-random sampling
does not exhibit temporal aliasing since the quasi-random sequence does not vary
on a per-frame basis. That leaves rasterization as the only source of aliasing with
our approach. We take care of this easily and efficiently using the hardware support
for anti-aliasing (see §8.3). Under our scheme for view-dependent tree traversal (see
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 15

(a)

Server()

1. For every node, n, in the tree-cut
2. Decode(n)
3. If (CanCull(n))
4. Merge(n)
5. continue
6. p ← NumPointsToGenerate(n)
7. If (NeedSplit(n, p))
8. n ← Split(n)
9. Decode(n)
10. p ← NumPointsToGenerate(n)
11. SendToClient(n, p)
12. If (CanMerge(p))
13. Merge(n)

(b)

Fig. 10. View-dependent rendering data structure and algorithm. The tree data structure
has following elements – P: Parent pointer, C: Child pointer, N: Next tree-cut pointer,
L/R: Left/Right sibling, PCA: encoded PCA parameters.

§7.2) the maximum threshold for the screen-space size of σi
p is 2. However, larger

values can occur when the user is extremely close to the surface and for such cases
one can either render using larger points or generate more points based on the
Gaussian distribution parameters.

7. VIEW-DEPENDENT APPROXIMATION

7.1 Tree Data Structure

The design of the tree data structure is very important for an efficient implementa-
tion. Our tree data structure is similar to B-Trees (see figure 10(a)). In each node
we store a pointer to the parent, a pointer to the next node in the tree-cut, and
a pointer to its left child. We do not need to store a pointer to both the children
since siblings are stored in consecutive memory locations – hence the right child is
only a pointer increment away from the left child. We also store the encoded PCA
attributes(13 or 17 bytes) at a node and an extra byte which is set to 1 iff the child
is a right child. In all we use between 26 to 30 bytes for each node. The compact
size of the node leads to a good caching performance.

7.2 View-Dependent Tree Cut

Our tree node data structure allows us to maintain a view-dependent tree cut with
each node of the tree cut pointing to the next node in the cut. We also maintain
the tree cut by maintaining a pointer to the first node of the tree cut. The server
initially sets the tree-cut to be at half the maximum level of the hierarchy. Then, at
each frame the server traverses the cut and adjusts it in a view-dependent fashion
depending on the screen-space projection area of the nodes and the results of their
view-frustum culling and back-face culling tests (see figure 10(b)).

We implement view-frustum culling by approximating a node by a sphere of
radius γσ1

p (as in §6.2). We use a normal-cone-based back-face culling test [Kumar
et al. 1996] with the radius of the cone being γσ1

n. If the node can be culled, the
ACM Journal Name, Vol. V, No. N, March 2005.

16 · Kalaiah and Varshney

Fig. 11. (a): The means of the nodes of the tree-cut during view dependent rendering.
(b): The rendering of the model using quasi-random sampling at the GPU.

server merges the node and its sibling to its parent if: (1) the node is a right child,
(2) the previous node in the cut is its (left) sibling, and (3) the previous node was
also culled. This is done by the Merge() function of the pseudocode of figure 10(b).
If the node is not culled, the server estimates the screen-space area of the node and
looks up the number of points to render from table I. If the screen-space area of
the node is above a maximum threshold (set to 2 in all our tests) then the server
splits the node. The split node is replaced in the tree-cut by its children.

8. TRANSMISSION AND RENDERING

We adopt a client-server model for rendering where the server selects the nodes to
be rendered (see §7) and transmits their PCA attributes to the client, which then
goes on to render them by generating the required number of points (see figure 2).
A time-line illustration of our client-server architecture is shown in figure 12.

We validate our approach on three kinds of rendering devices: (1) GPU, (2)
remote computer, and (3) PDA. The GPU represents a single-system computer
where the CPU sends the attribute information to the GPU for rendering. This is
consistent with the architecture of graphics interfaces such as OpenGL and DirectX
that allow the CPU to treat the GPU as a client accessed through device drivers.
We make no distinction between GPU and other client rendering devices since the
bottleneck is generally the communication bandwidth that we wish to reduce.

8.1 Transmission

There are two phases during transmission (see figure 12): the startup phase and
the (per-frame) update phase. In the startup phase the client receives global infor-
mation such as the classification and quantization information. The classification
information consists of the classes of the standard deviations σp, σn, and σc. The
quantization information consists of the bit distribution for µp, µc, fp, fn, and fc.
This information sets up the client to decode the PCA nodes as they arrive.

We have experimented with two kinds of client-server rendering models – on-
demand and view-dependent rendering. The on-demand rendering is more suitable
for applications that involve less synchronous communication with the server or for
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 17

Fig. 12. A time-line illustration of our client-server architecture. A blue arrow repre-
sents a change of state at the server or the client, while a red arrow represents a flow of
information between the server and the client. Depending on the bandwidth of the commu-
nication channel, this architecture can be used for a per-frame view-dependent rendering
or a client-feedback-based on-demand rendering.

lower-bandwidth communication channels such as the Wi-Fi 802.11b and cell phone
networks. The view-dependent rendering requires a greater synchronous, per-frame
communication with the server and is better suited for time-critical applications on
high-bandwidth channels such as the system bus and dedicated fiber-optic networks.

In on-demand rendering the user selects a subset of the model using a refinement
window. The client requests the server to update the nodes in that window. The
server sends back the encoded PCA information of the refined nodes (see figures 13
and 14). Here the server can either maintain a mirror state of the client and its
tree-cut information or the client can send its past transactions so that the server
can determine the current tree cut. In the first case the client only has to send
the parameters of its camera and the refinement window. This leads to less flow of
information between the two, but comes at the cost of the server memory. In the
second case the bandwidth used by the client is still small, although there is some
computational load on the server. We have used the first case in our experiments
although the latter case may be more suitable when scaling to a large number of
clients. We have tested our on-demand framework on a variety of communication
channels such as Wi-Fi 802.11b, Ethernet LAN, the Internet, and USB. Our client
rendering devices for these experiments were a remote PC and a PDA.

In view-dependent rendering we use the tree-cut algorithm of §7 to update the
displayed detail. At each frame the server sends the encoded PCA parameters and
the number of points to generate for each node of the tree-cut. The client renders
the nodes by quasi-random sampling and rendering the required number of points.

8.2 Decoding and Sampling on the GPU

In this section we detail how our client-server communications is modified for cur-
rent programmable GPUs that support OpenGL version 1.2 or higher. Our mod-
ifications are consistent with the overall client-server framework. We expect that
improving programmability of the GPUs will allow a straight-forward mapping of
our client model to the GPU in the near future. There are two primary issues when
it comes to rendering PCA nodes on the GPU: decoding the PCA information and
generating points. We have implemented both at the level of the vertex shaders.

Decoding the PCA nodes involves looking up the values of σp, σn, and σc at
ACM Journal Name, Vol. V, No. N, March 2005.

18 · Kalaiah and Varshney

(a) (b) (c) (d) (e)

Fig. 13. On-demand rendering: We show the rendering of PCA nodes on a remote PC
with (a) square splats (72 nodes, 97 FPS) and (b) with quasi-random sampling (72 nodes,
334 generated points, 161 FPS). The client selects a refinement window in figure (c).
Figures (d) and (e) are the rendering of the refined nodes with square splats (30660 nodes,
30 FPS) and quasi-random sampling (30660 nodes, 192258 generated points, 12 FPS),
respectively. The figures show that quasi-random sampling conveys more information for
the same number of nodes but is slower.

(a) (b) (c) (d) (e)

Fig. 14. On-demand rendering: These figures show the same sequence of operations as
in figure 13 on a PDA client. Statistics: (a): (72 nodes, 9.2 FPS), (b): (72 nodes, 334
generated points, 5.3 FPS), (d): (30660 nodes, 0.7 FPS), (e): (30660 nodes, 192258
generated points, 0.35 FPS).

the GPU. However, since table lookups are currently not supported at the vertex
shaders we lookup these values at the CPU and send in the actual values. Simi-
larly, since the GPU does not support bitwise operations, we send the unquantized
versions of µp, µn, and µc to the GPU. To decode the frames fp, fn, and fc we
send the values of the sine and cosine values of their respective θ, φ, and ψ values.
The latest GPUs allow sine and cosine computations at the vertex shaders and on
such GPUs we only need to send the angles.

We transform the first 500 vectors of a 3D quasi-random sequence into a unit
Gaussian distribution and store this sequence as the vertex coordinates of a Vertex
Array Range (VAR). This sequence serves as the quasi-random numbers for com-
puting the spatial location and the color of the generated points. We also store
an equal number of 2D quasi-random numbers as normals of the VAR vertices. At
run-time we pass the PCA attributes of the node as texture coordinates and in-
voke the function glDrawArrays() to render the required number of (generated)
points from the VAR array. The GPU delivers the quasi-random numbers to the
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 19

(a) (b)

Fig. 15. Figure (a) shows view-dependent rendering on a 512 × 512 window from 191K
un-encoded nodes and 824K generated points. Figure (b) shows the same rendering from
encoded nodes. We encode each node to 17 bytes using quantization and classification.

vertex shaders as a sequence of normal and vertex coordinates. For each incoming
vertex at the vertex shader, we reconstruct the PCA information of the node, use
the quasi-random numbers to determine the attributes of the point, and leave it to
the rest of the GPU pipeline to rasterize them. Since OpenGL is a state machine
the PCA parameters that we send before the invocation of glDrawArrays() are
available for all the generated points. Hence we only send the PCA attributes to
the GPU once per-node as opposed to sending them for every generated point. We
however have the computational overhead of decoding the PCA attributes for each
sample point. Overall, we are able to achieve a 30% speedup in the rendering time
compared to the strategy of sampling points at the CPU. This speedup is mainly
due to the reduced bus-bandwidth and the SIMD-nature of the shaders.

8.3 Antialiased Rendering

We need to pay special attention to two kinds of aliasing issues while rendering
from generated points: temporal aliasing and spatial aliasing. The temporal aliasing
artifacts arise for pseudo-random sampling where new points are generated for every
frame. Our approach of using quasi-random sampling gets rid of temporal aliasing
since the generated points are from the same set for every frame. We deal with
the spatial (screen) aliasing simply by using the hardware support (8× Quincunx
multisampling on NVIDIA GPUs) for anti-aliasing (see figures 18(b) and 18(c)).
We found this to have an insignificant overhead on the rendering speed. Also,
rendering from encoded data did not show any noticeable artifacts (see figure 15).

8.4 Splatting

While point geometries can be rendered at high-quality using splatting [Zwicker
et al. 2001; Botsch et al. 2002]. Since splatting uses a 2D tangent plane Gaussian
distribution it is natural to ask if our 3D Gaussian nodes can be used for splatting as
well. In this section we show how our nodes can be used for splatting and compare
its speed and rendering quality to that of statistical point generation.

Splatting works by projecting the 2D weight function of each point onto the
screen and accumulating the weighted color contribution at each pixel. The final
color at the pixel is computed by normalizing the color by the cumulative weight
contribution from the individual points/Surfels [Zwicker et al. 2001; Ren et al.

ACM Journal Name, Vol. V, No. N, March 2005.

20 · Kalaiah and Varshney

(a) (b) (c)

Fig. 16. Figure (a): The per-pixel cumulative weight accumulated in the second pass of
the splatting algorithm. Figure (b): The final rendering after per-pixel normalization at 9
FPS (42.6K surfels). Figure (c): Rendering of the model by points generation at 29 FPS
(42.6K nodes, 79.7K generated points)

2002]. Our surfels are simply the elliptical distribution derived by considering the
two most significant components of a node’s ellipsoidal distribution. Hence the
surfels are centered at the means µp, and have standard deviations of σ1

p and σ2
p,

along the vectors f1
p and f2

p respectively. We modify the Gaussian weight function
of the surfel as follows:

w(u, v) = max
(

exp
(
− 1

2

((u

σ1
p

)2

+
(v

σ2
p

)2))
− exp

(
− 1

2
γ2

)
, 0

)

where γ bounds the infinite support of the Gaussian function. We choose γ = 3.0
which corresponds to a Confidence Index (CI) greater than 99.5%. We render
each surfel as a tangent plane rectangle centered at µp, with widths of 2γσ1

p and
2γσ2

p along f1
p and f2

p respectively. We map each such rectangle with a texture
corresponding to a spherically symmetric weight function with a standard deviation
of 1

γ . We deliver w(u, v) at each pixel simply by assigning texture coordinate values
of (0,0), (1,0), (1,1), and (0,1) to the corners of the rectangle [Ren et al. 2002].

We use a three-pass rendering scheme for splatting. In the first pass we only write
to the depth buffer and add a ∆z depth offset at the fragment shaders to each pixel
that a surfel projects to [Ren et al. 2002]. Instead of using a global constant for
the value of ∆z we use a per-surfel estimate of ∆z = γσ3

p. This ensures that
we can efficiently use EWA splatting even during view dependent rendering. In
each pass, we discard surfel pixel fragments that have a weight value of zero. In
the second pass we render the surfels without any ∆z offset and accumulate the
cumulative weight at a pixel using blending. The results of the second pass are
shown in figure 16(a). In the third pass, we again render the surfels without any
∆z offset, and for each pixel fragment of a surfel, we divide the weighted color of
the surfel by the cumulative weight at that pixel (from pass 2). This is shown in
figure 16(b). Our method of per-pixel normalization using three passes follows the
approach of [Zwicker 2004]. However, it can be done with just two passes using
the per-surfel normalization technique of [Ren et al. 2002]. We found the rendering
quality of our statistical point generation scheme to be comparable to splatting (see
figures 16(b) and 16(c)). However, point generation is about 2× to 3.5× faster than
splatting since all our rendering can be done in a single pass.
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 21

9. PCA IN THE UNIFIED ATTRIBUTE SPACE

So far, our basic approach to estimating the statistical information of a point cloud
data has been to analyze their attributes separately. While this approach has the
advantage that it gives us information specific to the individual attributes (eg. the
size of the spatial ellipsoids in the screen space), it loses important information
about the correlation between the different attributes. This can be overcome by
doing a PCA in the unified space of all the attributes.

Consider a PCA analysis of the points, xi = (xi, yi, zi, θi, φi, ri, gi, bi), ∀i =
0, . . . , N , in the 8D space of position (3D), normal (2D), and color (3D). Here
the normals are represented by their angles (θ, φ) ∈ ([0, π], (−π, π]). A PCA analy-
sis in this space first requires us to compute the mean. The mean in this case is the
Euclidean mean in all the dimensions except in the normal space since it is spheri-
cal. We compute the mean normal, (µθ, µφ), using the approach proposed by [Buss
and Fillmore 2001] who compute the weighted average on a sphere using a least
squares minimization method that respects spherical distances. Their approach is
based on the logarithmic map and its inverse, the exponential map. The next step
in the PCA analysis is the computation of the covariance matrix. This requires us
to define the distance vector, xi − µ. The individual components of this difference
vector are the standard Euclidean difference in all the dimensions except for the
(θ, φ) dimensions. We compute the difference between two (θ, φ) values by project-
ing them to the logarithmic space defined on the plane tangent to the unit sphere
centered at the mean normal (µθ, µφ). The rest of the PCA analysis proceeds as
usual. The eigenanalysis of the covariance matrix gives us eight 8D eigenvectors
and the variances along these vectors. As before, we maintain a minimum value for
the standard deviations (set to 10−15 in our tests).

We compute Gaussian random numbers in the 8D space by uniformly sampling
points on a 8D hypersphere [Marsaglia 1972] and radially distorting them according
to a Gaussian distribution of unit variance – a generalization of our 3D sampling
approach of §6. As before, we generate new points for each node by transforming
these Gaussian numbers to the 8D PCA parameters of the node (mean, standard
deviation, and basis frame). Since the normals generated this way are still in the
2D logarithmic space, we convert them to normals in 3D by using the exponential
map with respect to the mean (µθ, µφ) [Buss and Fillmore 2001].

This approach of generating points in the 8D space can also be used during view
dependent rendering. This requires us to estimate the screen-space projection area
of a node. For this we consider a 8D hyper-ellipsoid with intercepts of γσ along
its respective principal axes. We project these intercepts to the 3D spatial domain
and use the maximum of these projections as the radius of the sphere bounding
the spatial attributes of the node. We then use the screen-space projection of this
radius as the index into table I and determine the number of points to generate.

Generation of samples in the combined 8D space is more expensive than our ear-
lier approach for several reasons: (1) the cost of matrix fetch and multiplication is
higher in the 8D space, (2) we generate more points since the spherical screen-space
area estimation is conservative, and (3) generating points on the GPU is not viable
since transferring the 64-element matrix to the GPU is expensive. Moreover, we
found that the correlation of the attributes does not add much perceptual improve-

ACM Journal Name, Vol. V, No. N, March 2005.

22 · Kalaiah and Varshney

(a) (b)

(c)

(d)

Fig. 17. Points generated from a low-resolution cut (level 12) of the tree. (a): Points
generated by sampling the individual Gaussian distributions of the position, normal, and
color attributes. (b): Points generated by sampling the Gaussian distribution in the unified
attribute space. There are 4096 nodes in each figure with each node generating the same
number of points that it represents. (c): View-dependent rendering on 512×512 window
using PCA analysis in the individual attribute spaces (33.7K nodes, 61.08K generated
points, 31.2 FPS). (d): View-dependent rendering of the Chameleon model built using
PCA in the unified attribute space (34.7K nodes, 645K generated points, 1.6 FPS).

ment in higher resolutions (see figures 17(c) and 17(d)). These factors make PCA
in the unified PCA space unattractive for view-dependent rendering. However, this
approach can serve to represent lower resolution versions of the data very well.

10. RESULTS

In this section we detail its benefits of our approach for compression, network
transmission, and efficient rendering. We did all our tests on a 2.4 GHz Pentium
IV PC with 2GB RAM and a NVIDIA Quadro4 GPU. Our test models were the
Stanford’s David’s Head, the David’s Statue, the Lucy model, and the St. Matthews
face. We added colors to the David and Lucy models by solid texturing. We
have also tested our work on two raw LIDAR range scans of a room (Murder
Scene). Except for registration, we did not do any other processing on the two
scans. These datasets took no more than two hours of preprocessing each, with
our naive classification phase taking up most of the time. Advanced clustering
schemes should improve this speed dramatically [Duda et al. 2001]. The values
of the constants η0 and η1 used for computing the β factor (see section 3) were
experimental. We found that the values of η0 = 1

2 and η1 = 1
6 gave us good results.

10.1 Compression

One typically requires 8 bytes per point – two bytes for each of the x, y, and z
components and two bytes for the normal. Our PCA representation can encode
a set of points with just 13 bytes, which means that we start saving with a PCA
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 23

(a) (b) (c) (d)

Fig. 18. Figure (a) shows that the basic shape of the Lucy model is captured with just
32 PCA nodes. Figures (b) and (c) show a closeup of the Lucy model when rendered
with 14 million points generated from 480K nodes at level 19 of the hierarchy with 24
levels. This corresponds to 2.32 bits/vertex approximation of the geometry and normals
with about 71dB PSNR (Hausdorff) error while maintaining the same number of samples
(14 million points) as the original Lucy model. Figure (c) is rendered with hardware anti-
aliasing, while figure (b) is rendered without anti-aliasing. Figure (d) shows the original
Lucy model with 14 million points (rendered with anti-aliasing).

representation as soon as the number of points in the set exceeds two. The pro-
cessing of the Lucy dataset produced a hierarchy of about 1.33 million nodes of
which about 665K nodes are at the leaf level. We classified the variances into 2400
classes of spatial variances σp, 1800 classes of normal variances σn, and 64 classes of
color variances σc. While the original 14 million points of the Lucy dataset required
about 112MB of data, our total representation including the hierarchy and the clas-
sification requires about 18MB. Hence, we can achieve significant compression by
substituting the original point set with the same number of points generated with
quasi-random sampling.

This compression, however, comes at the cost of an approximation error. Fig-
ures 18(a) shows the nodes of the Lucy model at a coarse resolution. Figure 18(b)
shows the approximation of the Lucy dataset with 2.32 bits per vertex for geometry
and normals. We measure the approximation error as the Peak Signal to Noise Ra-
tio (PSNR) as measured by the Hausdorff distance metric [Praun and Hoppe 2003].
At each node, we generate the same number of points as the original number of
points in that node and determine the nearest original point for each generated
point. This nearest-neighbor association is a conservative estimate of the Haus-
dorff distance between the original and the generated points. The PSNR is given
as 20 log10(Peak/d), where d is the root-mean-squared distance of the generated
points from the original points in the Hausdorff distance metric and Peak is the
length of the diagonal of the bounding box. Figure 19(a) shows our rate-distortion
curve for various datasets. Our results compare well to the compression results
by [Praun and Hoppe 2003]. We also compare our compression to that of [Botsch
et al. 2002]. While the PSNR error rates for their compression are not available,

ACM Journal Name, Vol. V, No. N, March 2005.

24 · Kalaiah and Varshney

(a) (b) (c)

Fig. 19. Figure (a) shows our rate-distortion curves for compressing various models.
Figure (b) shows the reduction in network bandwidth while figure (c) shows our rendering
speedup. Comparisons in figures (b) and (c) are with respect to QSplat.

we get a rendering quality similar to theirs using 13.25 bits/vertex for position
and normal (David’s Head). In figure 19(a) this corresponds to 8.66 bits/vertex
for encoding just the position. For the David’s Head model, [Botsch et al. 2002]
needed 10.2 bits/vertex (position and normal) on the hard disk after gzipping, and
their memory foot print was 32 bits/vertex. Our byte requirements are the same
for both disk and RAM. Hence an octree is better when it comes to storage on disk
while our approach is better in terms of memory footprint. Note that the memory
footprint is especially important when visualizing large models.

10.2 Network Bandwidth Reduction

The compression of the geometry reduces the storage size on the disk. However,
the growing use of graphics over networks makes geometry bandwidth reduction
very important. This can be critical for several communication channels such as
the Internet, Wi-Fi 802.11b, Universal Serial Bus (USB), and DSL links. Moreover,
geometry bandwidth is also an issue for distributed-computing environments where
the bandwidth is not large enough to keep the graphics cards busy [Humphreys et al.
2002]. To illustrate the reduction in the network bandwidth we setup an experiment
where the camera eye is placed at various distances relative to the object center
and the object is visualized in a view-dependent fashion. For every such distance,
we rotated the object around an axis aligned with the y-axis of the camera and we
measured the average network bandwidth required to transmit the PCA information
of the nodes. We did all our tests on a 1024×1024 test window and compared the
results of our approach with QSplat. The results are shown in figure 19(b) and
a few snapshots of the test are shown in figure 20. QSplat is actually designed
for network streaming. However, by the strength of its broad approach, it doubles
up as the state-of-the-art in point-based network graphics. The results show that
we consistently achieve several-fold reduction in network bandwidth. This may be
attributed to the better representation of the local geometry by our anisotropic
probability distribution. However, we note that this improvement is at the cost of
approximately regenerating the original data.
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 25

QSplat Our QSplat Our QSplat Our
Approach Approach Approach

Nodes 124K 121K 667K 44K 47K 26K

Frames/sec 4.8 10.2 9.6 25.0 14.3 31.2

Bandwidth 4.9 MB 1.6 MB 2.7 MB 0.57 MB 1.9 MB 0.35 MB

Gen. Pts. - 311K - 121K - 73K

Fig. 20. We compare our view-dependent rendering results with QSplat for varying dis-
tances between the camera and the object. Here we report the number of nodes chosen for
rendering, the frame rates, the geometry bandwidth, and the number of generated points.

10.3 Rendering

The best rendering quality currently available for rendering points is through splat-
ting [Zwicker et al. 2001; Botsch et al. 2002]. As we have shown in §8.4, our approach
can deliver a rendering quality similar to splatting at much less cost. In this section,
we report results related to rendering and compare them with the state-of-the art.

Our approach was able to deliver about 29 FPS for a VLOD (view-dependent
level-of-detail) rendering of the Chameleon model on a 512×512 window. Our
rendering speed (10 FPS for the Davids Head model) is better than the VLOD
splatting scheme of [Pajarola 2003] (1 FPS). It is comparable to the speed of non-
hierarchical splatting of [Ren et al. 2002] (19 FPS on GeForce4 Ti4400 for the
Chameleon model). [Botsch and Kobbelt 2003] got superior speeds of 70 FPS for
a non-hierarchical rendering of the Chameleon model by keeping the geometry in
the video memory. [Guennebaud and Paulin 2003] could achieve similar rendering
speeds for comparable geometry sizes. Our approach matches the rendering speed
(9.5 FPS) of [Botsch and Kobbelt 2003] for the David’s Head model. Moreover,
since [Botsch and Kobbelt 2003] use the video memory to store the geometry they
cannot accommodate large models (e.g. they have to subsample the Davids Head
model to about 1 million points). This is not a problem for our approach since the
dataset resides in the system memory. In addition, our approach can deliver much
higher rendering speeds when the object is far away. Therefore with respect to
the current state of the art, we are comparable to non-hierarchical-splatting at full
screen resolution and are significantly better than current VLOD-based splatting.

While splatting can deliver a high quality rendering it can be slower than a point-
or a quad-based rendering. The best publicly available software for fast point-based
rendering of large datasets is QSplat [Rusinkiewicz and Levoy 2000]. We outperform
QSplat by a factor of 2× to 3× (see figures 20 and 19(c)). [Dachsbacher et al. 2003]

ACM Journal Name, Vol. V, No. N, March 2005.

26 · Kalaiah and Varshney

Fig. 21. The Murder Scene as seen from various distances from the eye. These renderings
were made on a 1024×1024 window. Note that the noise in the scanned data (black cloud)
and edges are well handled.

map QSplat to GPU and render their nodes as opaque squares. By keeping the
entire dataset on the graphics card they can deliver a rendering speed of nearly 50
million points per second (MPS) on ATI Radeon 9700. We could get a rendering
speed of 56 MPS (with color) for the David’s Statue model (see figure 22). Moreover,
since our data is system memory resident, we can handle much larger datasets.

Higher rendering quality can be derived by rendering using the PCA parameters
in the unified attribute space (see figure 17). However it can be computation-
ally expensive. A view-dependent rendering of the David’s Head model gave us a
rendering speed of about 1 frame per second on a 512x512 window.

10.4 Comparison to Octree-based Representations

Octree-based point geometry hierarchies are very popular [Zwicker et al. 2001;
Woolley et al. 2002; Botsch et al. 2002; Pajarola 2003]. because:

(1) The implicit structure of the octree can be used to efficiently represent the
means of the nodes [Samet 1990; Botsch et al. 2002].

(2) It can be used for reducing the cumulative computation in applications such as
hierarchical rendering [Botsch et al. 2002] and hierarchical computation of the
covariance matrix [Pajarola 2003].

However, a key disadvantage of the octree subdivision is that it can be highly
imbalanced. To illustrate the importance of a balanced tree we did an octree
subdivision of the point set and computed the PCA attributes of the points in each
node. We cut off the octree subdivision when the number of points in a node was
less than the user-specified cutoff value (we used the same value that we also used
for our method). We then visualized it in a view-dependent fashion by estimating
the screen-space area of the nodes and generating points accordingly. Our findings
ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 27

(a) (b)

Fig. 22. Rendering of the David model on a 1600 × 1153 window. (a) Rendering without
color at 57 million points per second (MPS) (182K nodes, 11.1M generated points, 5.1
FPS). (b) Rendering with color at 56.1 MPS (182K nodes, 11.1 M generated points, 5.04
FPS). The MPS figure for the David’s model is higher than in figure 21 because it is not
as detailed as the Murder scene model and hence has to generate more points since the
screen space area of the leaf nodes are higher in this case.

are shown in table II. The table shows that our method leads to a tree with a lesser
number of nodes with a average partitioning ratio (APR) closer to 1. This shows
that our partitioning is much more balanced than a plain octree-based partitioning.
Moreover, when we compared the standard deviations (σ1

p) of the children (see the
“σAPR” column) the ratio was even closer to 1 . This shows that not only does
our partitioning balance the number of points, it also balances the volume of the
partitions. Also note that a 1-to-2 partitioning offers a more finer control in setting
the tree cut when compared to a 1-to-8 partitioning. This advantage, combined
with the balanced nature of our tree, gave us a big reduction in the number of
nodes in the tree cut during view dependent rendering (see the “# TCN” column
of table II). This typically translates to a higher rendering speed since the main
bottlenecks are at the CPU and the AGP bus. Both the renderings were made
without normal culling. For the results shown in table II we used the recursive tree
traversal of QSplat [Rusinkiewicz and Levoy 2000] for rendering both trees. Our
renderings (without normal culling) were roughly twice as fast as the octree case.

11. DISCUSSION AND CONCLUSIONS

We have presented a novel framework for a statistical representation of the ge-
ometry and its attributes. Our approach is based on a k-means-clustering-based
hierarchical partitioning and statistical analysis of the point set using PCA. We ap-
proximate the original data with little discrepancy using quasi-random sampling.
We present a unified client-server model that handles our rendering algorithm on a
variety of communication channels and client rendering devices. Our quasi-random
sampling method can handle temporal aliasing and we perform hardware-supported
screen-space anti-aliasing. Our rendering quality is comparable to that of splatting.
We have shown the benefits of our approach for compression, geometry bandwidth
reduction, and rendering speedup.

ACM Journal Name, Vol. V, No. N, March 2005.

28 · Kalaiah and Varshney

Model Tree # Node # Leaf APR σAPR # NTC FPS
Octree 1012K 784K 5.19 33.4K 201.8K 6.3David Head
SPG 903K 452K 1.24 1.14 80.4K 9.7
Octree 1882K 1445K 5.04 11.4K 53.3K 24.1David Statue
SPG 1843K 921K 1.20 1.16 21.8K 35.2
Octree 1525K 1204K 12.25 4.9K 74.0K 17.6Lucy
SPG 1330K 665K 1.17 1.06 28.3K 26.8

Table II. Comparison of our hierarchy (SPG) with an octree-based hierarchy. APR: av-
erage partitioning ratio, i.e. the average ratio of the largest and smallest cardinalities
amongst the children of a node. σAPR: the average ratio of the maximum and minimum
values of σ1

p amongst the children of a node. NTC: Number of nodes in the tree cut.
We rendered both hierarchies with view-dependent rendering (without normal culling) on
a 512×512 window at 2.5× distance from the object center.

Our representation can be used for a number of applications. For example the
probabilistic model can be used for collision detection. It could also be used in ray-
tracing for efficient estimation of ray-object intersections. Our k-means-clustering-
based hierarchical partitioning method gives us a good hierarchy. A similar ap-
proach based on geodesic distances could be extended for segmenting raw point
geometry. Higher-order tools of statistical analysis are also interesting not only for
representation, but potentially for other applications such as geometry recognition.

Acknowledgements

We will like to acknowledge several people who have helped significantly improve
this paper. Ramani Duraiswami, David Mount, and George Stanchev shared their
insights in quasi-random sampling, clustering, and exponential maps. Thomas Baby
helped with coding the classification of the variances. The anonymous reviewers
gave us several excellent suggestions, including PCA in the unified-attribute space
and splatting of the statistical nodes. The datasets used in this paper were gra-
ciously provided to us by the Stanford Graphics Lab (David’s Head, David, Lucy,
and the St. Matthews face), 3rd Tech Inc.(Murder Scene dataset), and the Com-
puter Graphics Lab at ETH-Zurich (the Chameleon dataset). This work was sup-
ported by NSF grants IIS 00-81847, CCF 04-29753, and CNS 04-03313.

REFERENCES

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Silva, C., and Levin, D. 2001. Point set
surfaces. In IEEE Visualization 2001. 21–28.

Alliez, P. and Desbrun, M. 2001. Progressive compression for lossless transmission of triangle
meshes. In Proceedings of SIGGRAPH 2001. ACM Press / ACM SIGGRAPH, 195–202.

Amenta, N., Bern, M., and Kamvysselis, M. 1998. A New Voronoi-Based Surface Reconstruc-
tion Algorithm. In Proceedings of SIGGRAPH 98. ACM Press / ACM SIGGRAPH, 415–422.

Botsch, M. and Kobbelt, L. 2003. High-Quality Point-Based Rendering on Modern GPUs. In
Pacific Graphics’03. 335–346.

Botsch, M., Wiratanaya, A., and Kobbelt, L. 2002. Efficient high quality rendering of point
sampled geometry. In Rendering Techniques’02. Eurographics, 53–64.

Box, G. E. P. and Muller, M. E. 1958. A note on the generation of random normal deviates.
Ann. Math. Stat. 28, 610–611.

ACM Journal Name, Vol. V, No. N, March 2005.

Statistical Geometry Representation for Efficient Transmission and Rendering · 29

Brodsky, D. and Watson, B. 2000. Model simplification through refinement. In Proceedings of
Graphics Interface 2000. 221–228.

Buss, S. R. and Fillmore, J. P. 2001. Spherical averages and applications to spherical splines
and interpolation. ACM Transactions on Graphics 20, 2, 95–126.

Chen, B. and Nguyen, M. X. 2001. POP: A hybrid point and polygon rendering system for
large data. In IEEE Visualization’01. 45–52.

Cohen-Or, D., Levin, D., and Remez, O. 1999. Progressive compression of arbitrary triangular
meshes. In IEEE Visualization ’99. 67–72.

Dachsbacher, C., Vogelgsang, C., and Stamminger, M. 2003. Sequential point trees. ACM
Transactions on Graphics 22, 3, 657–662.

Deering, M. F. 1995. Geometry compression. In Proceedings of SIGGRAPH’95. ACM Press /
ACM SIGGRAPH, 13–20.

Dey, T. K. and Hudson, J. 2002. PMR: Point to Mesh Rendering, A Feature-Based Approach.
In IEEE Visualization’02. 155–162.

Duda, R. O., Hart, P. E., and Stork, D. G. 2001. Pattern Classification, 2 ed. John Wiley &
Sons, Inc., New York.

Ebert, D., Musgrave, F., Peachey, P., Perlin, K., and Worley, S. 2002. Texturing & Mod-
eling: A Procedural Approach, 3rd ed. AP Professional, San Diego.

Fleishman, S., Cohen-Or, D., Alexa, M., and Silva, C. T. 2003. Progressive point set surfaces.
ACM Transactions on Graphics 22, 4, 997–1011.

Gandoin, P.-M. and Devillers, O. 2002. Progressive lossless compression of arbitrary simplicial
complexes. ACM Transactions on Graphics 21, 372–379. Proceedings of SIGGRAPH’02.

Grossman, J. P. and Dally, W. J. 1998. Point sample rendering. In Rendering Techniques ’98.
Eurographics. Springer-Verlag Wien New York, 181–192.

Guennebaud, G., Barthe, L., and Paulin, M. 2004. Deferred splatting. Computer Graphics
Forum (Proceedings of Eurographics) 23(3), 653–660.

Guennebaud, P. and Paulin, M. 2003. Efficient screen space approach for hardware accelerated
surfel rendering. In 8th Fall Workshop on Vision, Modeling, and Visualization. 485–493.

Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P. D., and
Klosowski, J. T. 2002. Chromium: A stream-processing framework for interactive render-
ing on clusters. ACM Transactions on Graphics 21, 3 (July), 693–702.

Isenburg, M. and Snoeyink, J. 2000. Face fixer: Compressing polygon meshes with properties.
In Proceedings SIGGRAPH 2000. ACM Press / ACM SIGGRAPH, 263–270.

Johnson, C. and Sanderson, A. 2003. A next step: Visualizing errors and uncertainty. IEEE
Computer Graphics and Applications 23, 5 (Sept.), 6–10.

Kalaiah, A. and Varshney, A. 2003a. Modeling and rendering points with local geometry. IEEE
Transactions on Visualization and Computer Graphics 9, 1 (January), 30–42.

Kalaiah, A. and Varshney, A. 2003b. Statistical point geometry. In Eurographics Symposium
on Geometry Processing. 113–122.

Karni, Z. and Gotsman, C. 2000. Spectral compression of mesh geometry. In Proceedings of
SIGGRAPH 2000. ACM Press / ACM SIGGRAPH, 279–286.

Keller, A. 1996. Quasi-Monte Carlo Methods in Computer Graphics: The Global Illumination
Problem. In Lectures in Applied Mathematics. Vol. 32. SIAM, 455–469.

Khodakovsky, A., Schröder, P., and Sweldens, W. 2000. Progressive geometry compression.
In Proceedings of SIGGRAPH 2000. ACM Press / ACM SIGGRAPH, 271–278.

Kumar, S., Manocha, D., Garrett, W., and Lin, M. 1996. Hierarchical back-face computation.
In Rendering Techniques ’96. Eurographics. Springer-Verlag Wien New York, 231–240.

Levoy, M. and Whitted, T. 1985. The use of points as a display primitive. In Technical Report
85-022, Computer Science Department, UNC, Chapel Hill.

Marsaglia, G. 1972. Choosing a point from the surface of a sphere. Ann. Math. Stat. 43, 2
(Apr.), 645–646.

Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. In
CBMS-NSF Regional Conference Series in Applied Mathematics. Vol. 63. SIAM.

ACM Journal Name, Vol. V, No. N, March 2005.

30 · Kalaiah and Varshney

Pajarola, R. 2003. Efficient level-of-details for point based rendering. In Proceedings IASTED
Computer Graphics and Imaging Conference (CGIM).

Pauly, M. and Gross, M. 2001. Spectral processing of point-sampled geometry. In Proceedings
of SIGGRAPH’01. ACM Press / ACM SIGGRAPH, 379–386.

Pauly, M., Gross, M., and Kobbelt, L. P. 2002. Efficient simplification of point-sampled
surfaces. In IEEE Visualization 2002. 163–170.

Pauly, M., Keiser, R., Kobbelt, L. P., and Gross, M. 2003. Shape modeling with point-
sampled geometry. ACM Transactions on Graphics 22, 3 (July), 641–650.

Pfister, H., Zwicker, M., van Baar, J., and Gross, M. 2000. Surfels: Surface elements as
rendering primitives. In Proceedings of SIGGRAPH 2000. ACM Press / ACM SIGGRAPH,
335–342.

Praun, E. and Hoppe, H. 2003. Spherical parametrization and remeshing. ACM Transactions
on Graphics 22, 3 (July), 340–349.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. 2003. Numerical
Recipes in C : The Art of Scientific Computing, 2 ed. Cambridge University Press.

Press, W. H. and Teukolsky, S. A. 1989. Quasi- (that is, sub-) random numbers. Computers
in Physics 3, 6, 76–79.

Reeves, W. T. 1983. Particle systems — A technique for modeling a class of fuzzy objects.
Computer Graphics 17, 3 (July), 359–376.

Ren, L., Pfister, H., and Zwicker, M. 2002. Object space EWA surface splatting: A hardware
accelerated approach to high quality point rendering. Computer Graphics Forum (Proceedings
of Eurographics) 21(3), 461–470.

Ritter, J. 1990. Fast 2D-3D Rotation. In Graphics Gems, A. Glassner, Ed. Academic Press,
Boston, 440–441.

Rusinkiewicz, S. and Levoy, M. 2000. QSplat: A multiresolution point rendering system for
large meshes. In Proceedings of SIGGRAPH 2000. ACM Press / ACM SIGGRAPH, 343–352.

Samet, H. 1990. Applications of Spatial Data Structures: Computer Graphics, Image Processing,
and GIS. Addison-Wesley, Reading, MA.

Schilling, A. 2001. Antialiasing of environment maps. Computer Graphics Forum 20, 1, 5–11.

Taubin, G., Gueziec, A., Horn, W., and Lazarus, F. 1998. Progressive forest split compression.
In Proceedings of SIGGRAPH 98. ACM Press / ACM SIGGRAPH, 123–132.

Taubin, G. and Rossignac, J. 1998. Geometric compression through topological surgery. ACM
Transactions on Graphics 17, 2 (Apr.), 84–115.

Touma, C. and Gotsman, C. 1998. Triangle mesh compression. In Graphics Interface. 26–34.

Wand, M., Fischer, M., Peter, I., Heide, F. M., and Straßer, W. 2001. The randomized
z-buffer algorithm: Interactive rendering of highly complex scenes. In Proceedings of SIG-
GRAPH’01. ACM Press / ACM SIGGRAPH, 361–370.

Welsh, T. and Mueller, K. 2003. A frequency-sensitive point hierarchy for images and volumes.
In IEEE Visualization’03. 425–432.

Wong, T.-T., Luk, W.-S., and Heng, P.-A. 1997. Sampling with hammersley and halton points.
Journal of Graphics Tools 2, 2, 9–24.

Woolley, J. C., Luebke, D., and Watson, B. 2002. Interruptible rendering. In SIGGRAPH’02
Technical Sketch. ACM Press / ACM SIGGRAPH, 205.

Wu, J. and Kobbelt, L. 2004. Optimized sub-sampling of point sets for surface splatting.
Computer Graphics Forum (Proceedings of Eurographics) 23(3), 643–652.

Wulf, W. A. and McKee, S. A. 1995. Hitting the memory wall: Implications of the obvious.
Computer Architecture News 23, 1 (Mar.), 20–24.

Zwicker, M. 2004. Hardware accelerated point-based rendering. In Online at:
http://courses.dce.harvard.edu/ cscie236/lecture11/11.Point-Rendering-Zwicker.pdf. 1–28.

Zwicker, M., Pfister, H., van Baar, J., and Gross, M. 2001. Surface splatting. In Proceedings
of SIGGRAPH 2001. ACM Press / ACM SIGGRAPH, 371–378.

Received March 3, 2005

ACM Journal Name, Vol. V, No. N, March 2005.

