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Abstract—Direct numerical simulation (DNS) of turbulence
is computationally very intensive and typically relies on sme
form of parallel processing. Spectral kernels used for spaal
discretization are a common computational bottleneck on di-
tributed memory architectures. One way to increase the effiency
of DNS algorithms is to parallelize spectral kernels usingightly-
coupled Single-Program-Multiple-Data (SPMD) multiprocessor
units with minimal inter-processor communication latency We
present techniques to map DNS computations to modern Graph-
ics Processing Units (GPUSs), which are characterized by a me
high memory bandwidth and hundreds of SPMD processors. We
compare and contrast the performance of our parallel algorihm
running on a GPU versus the associated CPU implementation &f
solver for one of the fundamental nonlinear models of turbuénce
theory. We also demonstrate a prototype of a scalable compart
tional steering framework based on turbulence simulation ad
visualization coupling on the GPU.

Index Terms—GPU Programming, Scientific Computing, Nu-
merical Simulations, Plasma Turbulence

I. INTRODUCTION

AGNETIZED plasma (ionized gas) is the main fue
component in controlled thermonuclear fusion device
Turbulence in plasma can lead to energy losses and varid

catastrophic events. It is therefore highly beneficial toetiap

a predictive understanding of plasma turbulence via hig

fidelity numerical simulations. Currently such simulasoare

typically carried out on large parallel supercomputerg tt

access to which is generally limited, and whose cost
operation is high.

Inspired by the latest trends and developments in grapé
ics processing technology we propose a new paradigm °
implementing some of the major aspects of the plasma ti
bulence program. We argue that physically meaningful turb

Section VI discusses the performance of our Hasegawa-Mima
solver relative to its conventional CPU implementation.

II. OVERVIEW OF GPUCOMPUTING

Graphics processors have always been characterized by
parallelism, pipelining, large memories, and high bandksd
Over the years, the graphics architecture has migrated from
mainframes to workstations to PC cards, and now to Graphics
Processing Units (GPUs). Modern GPUs exhibit two kinds of
parallelism — functional parallelism (by pipelining) andtd
parallelism. The GPUs have sustained a super-Moore’s law
rate of growth for over a decade now [14]. The primary drivers
of this phenomenal growth have been the highly parallelneatu
of graphics processing predicated on paradigms suchs as ord
independence, pipelining, and streaming.

As a reference, the performance of the top NVIDIA G80
model is over 375 GFLOPS (about $1.50/GFLOPS) whereas
the performance of a 3.0 GHz Intel Core2 Duo CPU is about
p0 GFLOPS (about $4/GFLOPS) [1]. Note that this improved
%grformance is achievable only if the problem maps well to
e underlying processor architecture.
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lence problems can be mapped efficiently to modern graph
processors, dramatically reducing cost while increasioth b
accessibility and performance In fact, in our preliminargig. 1.
investigations we have observed that simulation codes that
can be run entirely on the graphics processor unit outprfor The diagram on Fig. 1 is based on data compiled from [14],
considerably their CPU counterparts. We believe that fimong [1], and shows the rapid rise in the floating-point perforoean
plasma turbulence simulations to the desktop PC will empowaf NVIDIA GPUs as compared to Intel CPUs. GPU mem-
the current generation of plasma physicists with a compuiary size is also growing, albeit more slowly, with current
tional tool that could increase significantly the produtgiwf generation GPUs offering up to 1.5 GB of RAM. Current
their research. GPUs support only single-precision floating point arithiciet
This paper is organized as follows: in Section Il we givbut double precision support is expected on NVIDIA GPUs
an overview of some current trends in graphics processihy the second half of 2008
architectures. Section Ill discusses the role of specteghods  On the latest generation of NVIDIA GPUs, the G8x series,
in DNS of turbulence. In Sections IV and V we outline théhe vertex and fragment processors from previous genestio
theoretical aspects of the Hasegawa-Mima fluid turbulenbave been unified, and models with up to 128 such unified
model and its implementation on the graphics processprocessors are available. The G8x also provides fast shared
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memory that can be used for inter-processor communicatigiven thread operates on a single element of each inputibutp
Perhaps the biggest benefit of the new G8x GPU howevarray. The CUDA indexing scheme allows for easy one-to-
is the introduction of NVIDIA's Compute Unified Device one association between threads and individual elements of
Architecture (CUDA) [1]. Rather than using a standard grapmulti-dimensional arrays.

ics driver, CUDA accesses the hardware through a special
driver designed for general purpose computing. CUDA also HIl. FFT: THE BASIC COMPUTATIONAL KERNEL OF

allows GPU programs to be written in ANSI C (with a TURBULENCE CODES

few extensions), rather than languages like Cg or GLSL thatA fundamental challenge in the simulation of turbulent
were designed for shading algorithms. Finally, CUDA presid dynamical systems is that relevant features need to bevezsol
BLAS and FFT libraries intended to take advantage of tif&ver a wide range of length scales. Spectral methods provide
hardware’s new capabilities. The GPU programming model & efficient way to deal with this issue without sacrificing ac
an approximation of the streaming-model of data computaticcuracy. The basic tool used in spectral methods is the Descre
The ideal computational problem for such a model is orfeourier Transform (DFT) which translates the original fart

in which a small program (the kernel) operates upon dlifferential equations into a system of algebraic equation
input stream of data to generate an output stream. The GPUgye-vector space. Unlike Finite Difference/Finite Eleme
also permit parallel scatter and gather operations over tghemes, spectral methods are global in that the evaluation

processors through shared memory (Fig. 2(a)) of a quantity at a given computational grid node requires
access to information at all other nodes. For instance,caep
Grid {¢(n)},n=0,1,..., N, are samples of a continuous function
Block Eiaek ¢ over a finite interval. In the one-dimensional case the Dis-
crete Fourier Transform maps the vectg(0), ..., ¢(N —1))
STl M SHEUER ey to a vector(¢(0),...,¢(N — 1)), such that:
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(a) Memory Model lates simply into multiplication by:. However, to obtain the
corresponding value in physical space the Inverse DFT needs
to be applied: this clearly requires access to the entiréovec

Grid

Block 1 Block 2 {a(n)}
reac | [raveao 2 oveac 1| [rovead 2 The global nature of spectral methods inherent in the DFT
posits a challenge in parallelizing simulation codes tledy r
] [ B (= on such methods. Traditional domain partitioning techagju

benefit from algorithms where most of the information is
computed locally; global communication is needed only glon
partition boundaries. For spectral codes, several péralte
B B B N tion strategies exist: for instance, use a massively pmrall
vector processing architecture with Remote Memory Access
functionality, such as the Earth Simulator [18]; this has th
advantage of performing spectral discretization over thtee
domain; the obvious disadvantages are access and cost. A
more balanced approach is to use algorithms with spectral
Fig. 2. Memory and Programming Model Diagrams of NVIDIAs Ggpu  discretization along a subspace, and a local discretizatio
scheme (usually finite differencing) along the complement.
The programming model of the CUDA architecture turn$he applicability of such algorithms is dictated by the gbgk
the NVIDIA G8x into a computing device equivalent to anature of the problem. In plasma turbulence, for exampéeth
highly multithreaded coprocessor. The parallelism of CUDAre regimes in which small scale turbulent structures dgvel
is exposed through a hierarchical execution grid structuire subspaces perpendicular to magnetic field lines, whereas
consisting logically of threads and blocks (Fig. 2(b)). Thalong field lines characteristic scale lengths are compatgat
indexing scheme supported by CUDA features up to threleng and thus do not require high spatial resolution in simu-
dimensional indexing of threads within each block and indéations [9], [3].
pendent two-dimensional indexing of blocks within the grid We focus on DNS methods for turbulence problems which
Typically, when a kernel program is executed on the deviceadmit such dimensional splitting. Suppose we have a 3D
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domain such that spectral discretization is carried oubgloln this equationyg = c/BO(BxV@, v, IS proportional to the
planesP, perpendicular to the-axis. An optimal paralleliza- gradient of density in the plasma configuration, ahds the
tion scheme would map a collection df,’s to a single electrostatic potential. In general magnetic field-lio#efwing
processor, thus ensuring that each DFT will be performedordinates, it is possible to express the nonlinear term as
locally. In this sense the DFT on a rectangular box in each
P, can be considered as thminimal parallelization unit —vi - (Vi0) = —{®,Vie},
(MPU) of the implementation: further domain partitioningwvhere { f, g} denotes the Poisson bracket, whose derivatives
within P, would be inefficient. The performance bottleneclgre evaluated in the plane locally perpendicular to the ratgn
of a simulation code in this scenario is determined by tif2ld. In Cartesian coordinates with the magnetic field in the
speed of computing each MPU, which in turn depends on the direction, this would be(f, g} = f.g, — fy9a-
performance characteristics of the underlying CPU archite physically, the Hasegawa-Mima equation describes the per-
ture. pendicular motions of incompressible plasma turbulenca in
A typical paradigm for distributed memory architectures istrong magnetic field. The dynamics along the field line exolv
to compute each MPU on a single processor in serial fashiggparately from the dynamics perpendicular to the field. line
using some implementation of the Fast Fourier Transforme only nonlinearities are of the Poisson bracket typehén t
(FFT) algorithm. But the 2D FFT is a tensor product operatioperpendicular plane. Numerous models of magnetized plasma
it is carried out as a sequence of one-dimensional FFldgnamics generally share these properties. The Hasegawa-
successively along the columns and the rows of the inpuy.arrpima model is the simplest, as it involves a single field
Performing multiple one-dimensional FFT's simultanegusld(z,y) on a two-dimensional, periodic domain. More sophis-
has the potential for achieving further data-parallelisnd a ticated models, such as Reduced MHD (RMHD), involve mul-
therefore bigger code acceleration. It is thus natural t@ méple fields and include parallel (along the field line) dyriesn
the computation of each 2D FFT to the Graphics Procegs2]. The simulation algorithm for the RMHD and other
ing Unit (GPU) whose tightly-coupled multiprocessor SPMDnodels could be very similar to the one used for the Hasegawa-
architecture and high memory bandwidth facilitates theaextMima equation. Typically the difference is in the number of
parallelization step with virtually no communication oiead. Poisson brackets, and consequently Fourier Transforras, th
The CUDA software development environment comeseed to be evaluated at each time step. This number can be
equipped with a high-performance FFT library, which ishought of as an estimate of the “computational intensifyd o
optimized for the specific architecture. It provides a sinpbarticular algorithm. To the extent that this intensity sie=
interface for computing FFT's efficiently by leveraging thenaps well into the capabilities of the computing device and
floating-point power and parallelism of the GPU. It supportgflects the relative physical realism of the given simofati
batch execution for performing multiple 1D transforms imodel, it is natural to expect very high performance from the
parallel and arbitrary array sizes up to 16384 per batch (n@PU architecture for plasma turbulence simulations.
restricted to powers of 2). We have tested the performance of
the CUFFT library in comparison with one of the most widel
used CPU imple};nentatiopns of the FFT, the Fastest Four)i/e\r/' CUDA IMPLEMENTATION OF THE HASEGAWA-MIMA
Transform in the West [5]. Figure (3) shows that even for
relatively small array sizes speed gain can be considerable For our experiments we started with our own CPU im-
plementation of a Hasegawa-Mima (HM) solver written in
CUFFT on G80 vs. FFTW on Xeon Fortran 90. We had a choice of using the Fortran code as a
a control module that makes calls to CUDA kernel wrappers for
all computationally intensive array operations. This aagh
— was useful for initial testing but it became clear that inesrd
A o) to achieve optimal efficiency we must reduce data transfer
- to and from the GPU to a minimum. Even with the current
—g——_”’—’r_/:/ e fast PCI-Express bus, read/write operations are slow cogdpa
Array Size to memory transfer within the GPU. Thus we converted the
o ‘ majority of the Fortran code into C/CUDA and we left only
e s el B e e i data Inialization and output diagnosiics on the Forrales
The CPU is a 3GHz 64-bit Xeon Once data has been passed to GPU memory it stays in until
the end of the simulation.
The HM solver follows a classical time-stepping algorithm
IV. THE HASEGAWA-MIMA EQUATION based on thdth order Runge-Kutta Method. The most compu-

tationally intensive operation performed within a timeggting

The quintessential nonlinear model for plasma turbulene9c|e is the FFT. Our implementation of the HM solver
theory for over three decades has been the Hasegawa—Mp@euires 20 FFT's per time step: 16 complex-to-real and 4 rea

model: [8] to-complex. Arrays are kept in reduced complex format; due
o(1-vV?%)e to its inherent Hermitian symmetry, the FFT image of a real
ot array of sizeN; x N, can be represented by a complex array
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of size Ny x (N2/2+1). For grid sizes larger than 1024x1024 N A\
grid points, this type of reduction is essential in ordervoid ‘ ‘
the 768MB memory limitation of most G8x cards. All other \\!
operations required in the time-stepping loop are linear- o \
sublinear-in-time pointwise vector arithmetic operation
Figures (4) and (5) illustrate the basic steps in our HM

solver implementation.

Fig. 4. Overview of the HM Solver on the GPU
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Fig. 6. Concurrent Visualization: Onset and DevelopmenTubulence
Fourier Physical
Space Space
Bt FFT V:r‘ef;’ig"m In addition to visualizing the simulation as it runs, simu-
eny mx ¥, lation parameters can also be interactively adjusted. le ca
1 ! the GPU simulation kernel from a CPU driver function that
Pl B S— I S repeatedly makes calls to the kernel in a loop to advance the
current time step. This loop also checks for user input eyent
— - —

and can modify parameters correspondingly for the nextetern
call.

VI. PERFORMANCERESULTS

We have evaluated the performance of our CUDA imple-
mentation of the Hasegawa-Mima equation solver versus the
corresponding Fortran implementation running o8.6GHz
64-bit Intel Xeon processor. We measured the wall clock time

1 | Fer for executing 100 steps of the simulation’s main loop with
o identical setup parameters. For small input array sizes the
’ ’_ Eaclt CUDA implementation is relatively slower due to overhead
1 | iFeT in kernel call initialization latency. At array sizes largban

128 x 128, however, we observed increasingly bigger speedup
factor, with maximum ofi 4 at resolutionl 024 x 1024. Results

from our comparison experiments are presented in Fig. 8. It i
important to note that bigger relative speedup can be aetliev
if all Fourier Transforms are performed in full complex-to-
complex format, at the expense of doubling the simulation’s
memory footprint and increasing the absolute executiortim
A. Visualization and Computational Steering We haye also evaluateq the performance of a CUDA im-
. . : i ementation for a numerical solver of the Reduced MHD
Sllnce _data is already available on the C’PU' '_t IS naturgy, ations [16]. In this case we observe a speedup factor of
to visualize the results of the turbulence simulation diyec 25-30, depending on the size of the computational grid (see
from the graphics card. This is important since turbulenq_qg_ 8). This increase in CUDA-to-CPU speedup compared
simulation diagnostics keep track not of individual scdikid to the Hasegawa-Mima solver is mainly due to the larger

valu%s but of .den\f/ed stat;\stmalbqya_nuues, typ|fjally awf umber of nonlinear terms present in the RMHD equations
humbers per time frame, thus obviating the need to transiglqq ys one for Hasegawa-Mima). Since each nonlinear term

significant amounts of data back to CPU memory. translates computationally into a set of Fourier Transgrm

Data produced by the simulation is processed for MMEore nonlinear terms means a larger portion of the simulatio

diate rendering at each time step. The visualization fcﬂlovys spent calculating FFTs, i.e. on operations for which Cl4DA
a familiar pipeline starting with a GPU kernel function t ’

. _ erformance gain over the CPU is much higher compared
perform calor mapping of data values. The resuliing buffer_ 0 those used elsewhere in the code (see also discussion in
RGB color values is then bound as an OpenGL buffer Obje§5ction viI).
using CUDA's OpenGL interoperability functions. This beiff
of pixel data is made available for rendering either by kigdi
it as a texture map and then rendering a textured polygon,
or by drawing its pixels directly to the screen. Figure (6) We have demonstrated that carrying out DNS of plasma
shows the electric potential field at the onset of turbulenterbulence on the GPU provides a significant performance

in a Hasegawa-Mima simulation at resolutioi2 x 512. benefit in comparison with the CPU; also, implementation

Fig. 5. The Time-stepping Algorithm

VIl. CONCLUSION



virtual particles whose positions and velocities are updait
each time step according to a system of ordinary differentia
equations. We expect that even in the absence of bottlenecks
of “hyper-linear” computational complexity such as the F&T
/ GPU particle code implementation will still have a meastlgab
. ’ speedup factor over the CPU. This is due to the fact that
/ . . particles are advected independently of one another arsl thu
/ : 5 can be partitioned in any arbitrary fashion; this allows for
E . optimal kernel parameter configuration and hence shouftl lea
aw mw mes wee e e e www o to achieving maximum performance. In contrast with spec-
tral methods, however, particle resolution and hence mgmor
complexity has larger relative significance: the number of
Fig. 7. CUDA/CPU performance comparison for the Hasegaimdvolver. particles strongly affects the accuracy of the simulatione
nowgi;hﬁx\)/smcal axis is wall clock time for the execution of0l§teps of the approach to this problem is to scale the implementation to a
GPU-enabled PC cluster using standard domain partitioning
techniques. A GPU cluster based on previous generation of
NVIDIA cards has already been used successfully in applying
a parallel Lattice Boltzmann Method to several problems in
L computational fluid dynamics [17]. We plan to investigate th
T efficiency of mapping particle-in-cell algorithms for ptaa
e . g dynamics to scalable high-performance distributed GPU ar-
) . chitectures.
. ) Concurrent visualization is another direction of research
which is important to pursue. Moving from two- to multi-
dimensional data is likely to put non-trivial burden on the
fio 8. CUDAICPU Perf c on for the RMHD Soldn GPU especially if computationally intensive techniqueshsu
hngr.izohtaI axis represeﬁtrso;hmeag(i:zeé o?rgr?:rg‘opheogridi two dimeonsio?]s. as_ vqume_trlc ren_d_enn_g a_re being used. In_ order to main-
The total grid size isV x N tain user interactivity it will become expedient to rely on
multi-GPU nodes where several GPUs would typically run
the simulation and one would handle visualization. Dealing
is greatly facilitated by the latest CUDA programming enwith synchronization and load balancing would become of
vironment on NVIDIAs G8x cards. Due to the considerableritical importance. We plan to investigate the viabilitf o
overhead of data transfers to and from the graphics cansplementing a scalable computational steering framework
the major limitation is GPU memory size. However, manpased on GPU technology in the context of DNS of plasma
physically meaningful simulations fit within the current GP turbulence.
memory limits In particular, for many problems of interest
in fusion energy research, spectral resolution @4 x 1024
can be fairly sufficient [3], [10]; usually of bigger concern
is the inclusion of extra non-linear terms in the modeling The authors would like to thank Dr. David Luebke for
equation. These non-linear terms correspond to interastidiis support and assistance with the CUDA programming
among physical quantities tracked by the model and thesvironment. We are grateful Dr. Tomoya Tatsuno and Kyle
contribute to the simulation of various important physicabustafson for helpful discussions on the physics of plasma
effects; mathematically they can be expressed in the fotorbulence simulations. We thank Prof. Ramani Duraiswami
of Poisson brackets, which in turn translate into extra BFTand Dr. Nail Gumerov for sharing their experience with CUDA
per time step. This increase in the relative dominance sfientific computing. We also appreciate all comments and
computational complexity over memory requirements is dne suggestions made by the paper referees.
the major leveraging factors in favor of implementing spgct  This work was partially supported by NSF grant # CISE RI
DNS methods on the GPU. In summary, for a fixed spectré-03313.
resolutionthe more physics is added to the model, the bigger
the expected speedup factor over the CPU.
As future work we envision a thorough performance anal-
ysis of the GPU implementation of a general class of spectrél] CUDA Developer's Zone. http://www.nvidia.com/objémida home.

methods for direct numerical simulation of turbulence. In__ Ntmi. 2008. _ . .

. L. . 2] lan Buck. Gpu computation strategies & tricks. 8WGGRAPH ' 05:
particular, it is important to quantify the average speedup” acwm SGGRAPH 2005 Courses, page 134, New York, NY, USA, 2005.
factor per non-linear term at various resolutions. ACM Press.

We also plan to study the implementation of a different clas&] W. Dorland, F. Jenko, M. Kotschenreuther, and B. RogeBectron

. . .. temperature gradient turbulencehys. Rev. Lett., 85:5579, 2000.
of methods, namely those based on particle-in-cell siroriat 4 p. H'? E. Dubiﬁ 3. A. Krommes C%berman and W. W. Lee. Nmar

[15]. These methods require tracking of a large number of gyrokinetic equationsPhysics of Fluids, 26:3524, 1983.
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