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Abstract—Direct numerical simulation (DNS) of turbulence
is computationally very intensive and typically relies on some
form of parallel processing. Spectral kernels used for spatial
discretization are a common computational bottleneck on dis-
tributed memory architectures. One way to increase the efficiency
of DNS algorithms is to parallelize spectral kernels using tightly-
coupled Single-Program-Multiple-Data (SPMD) multiprocessor
units with minimal inter-processor communication latency. We
present techniques to map DNS computations to modern Graph-
ics Processing Units (GPUs), which are characterized by a very
high memory bandwidth and hundreds of SPMD processors. We
compare and contrast the performance of our parallel algorithm
running on a GPU versus the associated CPU implementation ofa
solver for one of the fundamental nonlinear models of turbulence
theory. We also demonstrate a prototype of a scalable computa-
tional steering framework based on turbulence simulation and
visualization coupling on the GPU.

Index Terms—GPU Programming, Scientific Computing, Nu-
merical Simulations, Plasma Turbulence

I. I NTRODUCTION

M AGNETIZED plasma (ionized gas) is the main fuel
component in controlled thermonuclear fusion devices.

Turbulence in plasma can lead to energy losses and various
catastrophic events. It is therefore highly beneficial to develop
a predictive understanding of plasma turbulence via high-
fidelity numerical simulations. Currently such simulations are
typically carried out on large parallel supercomputers, the
access to which is generally limited, and whose cost of
operation is high.

Inspired by the latest trends and developments in graph-
ics processing technology we propose a new paradigm for
implementing some of the major aspects of the plasma tur-
bulence program. We argue that physically meaningful turbu-
lence problems can be mapped efficiently to modern graphics
processors, dramatically reducing cost while increasing both
accessibility and performance In fact, in our preliminary
investigations we have observed that simulation codes that
can be run entirely on the graphics processor unit outperform
considerably their CPU counterparts. We believe that bringing
plasma turbulence simulations to the desktop PC will empower
the current generation of plasma physicists with a computa-
tional tool that could increase significantly the productivity of
their research.

This paper is organized as follows: in Section II we give
an overview of some current trends in graphics processing
architectures. Section III discusses the role of spectral methods
in DNS of turbulence. In Sections IV and V we outline the
theoretical aspects of the Hasegawa-Mima fluid turbulence
model and its implementation on the graphics processor.

Section VI discusses the performance of our Hasegawa-Mima
solver relative to its conventional CPU implementation.

II. OVERVIEW OF GPU COMPUTING

Graphics processors have always been characterized by
parallelism, pipelining, large memories, and high bandwidths.
Over the years, the graphics architecture has migrated from
mainframes to workstations to PC cards, and now to Graphics
Processing Units (GPUs). Modern GPUs exhibit two kinds of
parallelism – functional parallelism (by pipelining) and data
parallelism. The GPUs have sustained a super-Moore’s law
rate of growth for over a decade now [14]. The primary drivers
of this phenomenal growth have been the highly parallel nature
of graphics processing predicated on paradigms suchs as order-
independence, pipelining, and streaming.

As a reference, the performance of the top NVIDIA G80
model is over 375 GFLOPS (about $1.50/GFLOPS) whereas
the performance of a 3.0 GHz Intel Core2 Duo CPU is about
50 GFLOPS (about $4/GFLOPS) [1]. Note that this improved
performance is achievable only if the problem maps well to
the underlying processor architecture.

Fig. 1. Performance Comparison Among NVIDIA GPUs and Intel CPUs

The diagram on Fig. 1 is based on data compiled from [14],
[1], and shows the rapid rise in the floating-point performance
of NVIDIA GPUs as compared to Intel CPUs. GPU mem-
ory size is also growing, albeit more slowly, with current
generation GPUs offering up to 1.5 GB of RAM. Current
GPUs support only single-precision floating point arithmetic,
but double precision support is expected on NVIDIA GPUs
by the second half of 2008

On the latest generation of NVIDIA GPUs, the G8x series,
the vertex and fragment processors from previous generations
have been unified, and models with up to 128 such unified
processors are available. The G8x also provides fast shared
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memory that can be used for inter-processor communication.
Perhaps the biggest benefit of the new G8x GPU however,
is the introduction of NVIDIA’s Compute Unified Device
Architecture (CUDA) [1]. Rather than using a standard graph-
ics driver, CUDA accesses the hardware through a special
driver designed for general purpose computing. CUDA also
allows GPU programs to be written in ANSI C (with a
few extensions), rather than languages like Cg or GLSL that
were designed for shading algorithms. Finally, CUDA provides
BLAS and FFT libraries intended to take advantage of the
hardware’s new capabilities. The GPU programming model is
an approximation of the streaming-model of data computation.
The ideal computational problem for such a model is one
in which a small program (the kernel) operates upon an
input stream of data to generate an output stream. The GPUs
also permit parallel scatter and gather operations over the
processors through shared memory (Fig. 2(a))

(a) Memory Model

(b) Thread-Block Hierarchy

Fig. 2. Memory and Programming Model Diagrams of NVIDIA’s G8x GPU

The programming model of the CUDA architecture turns
the NVIDIA G8x into a computing device equivalent to a
highly multithreaded coprocessor. The parallelism of CUDA
is exposed through a hierarchical execution grid structure
consisting logically of threads and blocks (Fig. 2(b)). The
indexing scheme supported by CUDA features up to three-
dimensional indexing of threads within each block and inde-
pendent two-dimensional indexing of blocks within the grid.
Typically, when a kernel program is executed on the device, a

given thread operates on a single element of each input/output
array. The CUDA indexing scheme allows for easy one-to-
one association between threads and individual elements of
multi-dimensional arrays.

III. FFT: THE BASIC COMPUTATIONAL KERNEL OF

TURBULENCE CODES

A fundamental challenge in the simulation of turbulent
dynamical systems is that relevant features need to be resolved
over a wide range of length scales. Spectral methods provide
an efficient way to deal with this issue without sacrificing ac-
curacy. The basic tool used in spectral methods is the Discrete
Fourier Transform (DFT) which translates the original partial
differential equations into a system of algebraic equations in
wave-vector space. Unlike Finite Difference/Finite Element
schemes, spectral methods are global in that the evaluation
of a quantity at a given computational grid node requires
access to information at all other nodes. For instance, suppose
{φ(n)}, n = 0, 1, . . . , N , are samples of a continuous function
φ over a finite interval. In the one-dimensional case the Dis-
crete Fourier Transform maps the vector(φ(0), . . . , φ(N −1))
to a vector(φ̂(0), . . . , φ̂(N − 1)), such that:

φ̂(k) =

N∑

n=0

φ(n)e
πkn

N

The Inverse DFT is given by

φ(n) =

N∑

n=0

φ̂(k)e−
πkn

N

Evaluation of the derivative∂/∂x in wave-vector space trans-
lates simply into multiplication byk. However, to obtain the
corresponding value in physical space the Inverse DFT needs
to be applied: this clearly requires access to the entire vector
{φ̂(n)}.

The global nature of spectral methods inherent in the DFT
posits a challenge in parallelizing simulation codes that rely
on such methods. Traditional domain partitioning techniques
benefit from algorithms where most of the information is
computed locally; global communication is needed only along
partition boundaries. For spectral codes, several paralleliza-
tion strategies exist: for instance, use a massively parallel
vector processing architecture with Remote Memory Access
functionality, such as the Earth Simulator [18]; this has the
advantage of performing spectral discretization over the entire
domain; the obvious disadvantages are access and cost. A
more balanced approach is to use algorithms with spectral
discretization along a subspace, and a local discretization
scheme (usually finite differencing) along the complement.
The applicability of such algorithms is dictated by the physical
nature of the problem. In plasma turbulence, for example, there
are regimes in which small scale turbulent structures develop
in subspaces perpendicular to magnetic field lines, whereas
along field lines characteristic scale lengths are comparatively
long and thus do not require high spatial resolution in simu-
lations [9], [3].

We focus on DNS methods for turbulence problems which
admit such dimensional splitting. Suppose we have a 3D
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domain such that spectral discretization is carried out along
planesPz perpendicular to thez-axis. An optimal paralleliza-
tion scheme would map a collection ofPz ’s to a single
processor, thus ensuring that each DFT will be performed
locally. In this sense the DFT on a rectangular box in each
Pz can be considered as theminimal parallelization unit
(MPU) of the implementation: further domain partitioning
within Pz would be inefficient. The performance bottleneck
of a simulation code in this scenario is determined by the
speed of computing each MPU, which in turn depends on the
performance characteristics of the underlying CPU architec-
ture.

A typical paradigm for distributed memory architectures is
to compute each MPU on a single processor in serial fashion
using some implementation of the Fast Fourier Transform
(FFT) algorithm. But the 2D FFT is a tensor product operation:
it is carried out as a sequence of one-dimensional FFT’s
successively along the columns and the rows of the input array.
Performing multiple one-dimensional FFT’s simultaneously
has the potential for achieving further data-parallelism and
therefore bigger code acceleration. It is thus natural to map
the computation of each 2D FFT to the Graphics Process-
ing Unit (GPU) whose tightly-coupled multiprocessor SPMD
architecture and high memory bandwidth facilitates the extra
parallelization step with virtually no communication overhead.

The CUDA software development environment comes
equipped with a high-performance FFT library, which is
optimized for the specific architecture. It provides a simple
interface for computing FFT’s efficiently by leveraging the
floating-point power and parallelism of the GPU. It supports
batch execution for performing multiple 1D transforms in
parallel and arbitrary array sizes up to 16384 per batch (not
restricted to powers of 2). We have tested the performance of
the CUFFT library in comparison with one of the most widely
used CPU implementations of the FFT, the Fastest Fourier
Transform in the West [5]. Figure (3) shows that even for
relatively small array sizes speed gain can be considerable.

Fig. 3. CUFFT vs. FFTW on batches of parallel 1d FFT. Array size refers
to the size of each batch; the number of batches run in parallel is set to 2048.
The CPU is a 3GHz 64-bit Xeon

IV. T HE HASEGAWA-M IMA EQUATION

The quintessential nonlinear model for plasma turbulence
theory for over three decades has been the Hasegawa-Mima
model: [8]

∂(1 −∇2

⊥
)Φ

∂t
+ v∗

∂Φ

∂y
− vE · ∇∇2

⊥
Φ = 0 (1)

In this equation,vE ≡ c/B0(b̂×∇Φ), v∗ is proportional to the
gradient of density in the plasma configuration, andΦ is the
electrostatic potential. In general magnetic field-line-following
coordinates, it is possible to express the nonlinear term as

−vE · (∇2

⊥
Φ) ≡ −{Φ,∇2

⊥
Φ},

where{f, g} denotes the Poisson bracket, whose derivatives
are evaluated in the plane locally perpendicular to the magnetic
field. In Cartesian coordinates with the magnetic field in the
z−direction, this would be{f, g} = fxgy − fygx.

Physically, the Hasegawa-Mima equation describes the per-
pendicular motions of incompressible plasma turbulence ina
strong magnetic field. The dynamics along the field line evolve
separately from the dynamics perpendicular to the field line.
The only nonlinearities are of the Poisson bracket type, in the
perpendicular plane. Numerous models of magnetized plasma
dynamics generally share these properties. The Hasegawa-
Mima model is the simplest, as it involves a single field
Φ(x, y) on a two-dimensional, periodic domain. More sophis-
ticated models, such as Reduced MHD (RMHD), involve mul-
tiple fields and include parallel (along the field line) dynamics
[12]. The simulation algorithm for the RMHD and other
models could be very similar to the one used for the Hasegawa-
Mima equation. Typically the difference is in the number of
Poisson brackets, and consequently Fourier Transforms, that
need to be evaluated at each time step. This number can be
thought of as an estimate of the “computational intensity” of a
particular algorithm. To the extent that this intensity measure
maps well into the capabilities of the computing device and
reflects the relative physical realism of the given simulation
model, it is natural to expect very high performance from the
GPU architecture for plasma turbulence simulations.

V. CUDA I MPLEMENTATION OF THE HASEGAWA-M IMA

EQUATION SOLVER

For our experiments we started with our own CPU im-
plementation of a Hasegawa-Mima (HM) solver written in
Fortran 90. We had a choice of using the Fortran code as a
control module that makes calls to CUDA kernel wrappers for
all computationally intensive array operations. This approach
was useful for initial testing but it became clear that in order
to achieve optimal efficiency we must reduce data transfer
to and from the GPU to a minimum. Even with the current
fast PCI-Express bus, read/write operations are slow compared
to memory transfer within the GPU. Thus we converted the
majority of the Fortran code into C/CUDA and we left only
data initialization and output diagnostics on the Fortran side.
Once data has been passed to GPU memory it stays in until
the end of the simulation.

The HM solver follows a classical time-stepping algorithm
based on the4th order Runge-Kutta Method. The most compu-
tationally intensive operation performed within a time-stepping
cycle is the FFT. Our implementation of the HM solver
requires 20 FFT’s per time step: 16 complex-to-real and 4 real-
to-complex. Arrays are kept in reduced complex format; due
to its inherent Hermitian symmetry, the FFT image of a real
array of sizeN1 ×N2 can be represented by a complex array
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of sizeN1×(N2/2+1). For grid sizes larger than 1024x1024
grid points, this type of reduction is essential in order to avoid
the 768MB memory limitation of most G8x cards. All other
operations required in the time-stepping loop are linear- or
sublinear-in-time pointwise vector arithmetic operations.

Figures (4) and (5) illustrate the basic steps in our HM
solver implementation.

Fig. 4. Overview of the HM Solver on the GPU

Fig. 5. The Time-stepping Algorithm

A. Visualization and Computational Steering

Since data is already available on the GPU, it is natural
to visualize the results of the turbulence simulation directly
from the graphics card. This is important since turbulence
simulation diagnostics keep track not of individual scalarfield
values but of derived statistical quantities, typically a few
numbers per time frame, thus obviating the need to transfer
significant amounts of data back to CPU memory.

Data produced by the simulation is processed for imme-
diate rendering at each time step. The visualization follows
a familiar pipeline starting with a GPU kernel function to
perform color mapping of data values. The resulting buffer of
RGB color values is then bound as an OpenGL buffer object
using CUDA’s OpenGL interoperability functions. This buffer
of pixel data is made available for rendering either by binding
it as a texture map and then rendering a textured polygon,
or by drawing its pixels directly to the screen. Figure (6)
shows the electric potential field at the onset of turbulence
in a Hasegawa-Mima simulation at resolution512 × 512.

Fig. 6. Concurrent Visualization: Onset and Development ofTurbulence

In addition to visualizing the simulation as it runs, simu-
lation parameters can also be interactively adjusted. We call
the GPU simulation kernel from a CPU driver function that
repeatedly makes calls to the kernel in a loop to advance the
current time step. This loop also checks for user input events,
and can modify parameters correspondingly for the next kernel
call.

VI. PERFORMANCERESULTS

We have evaluated the performance of our CUDA imple-
mentation of the Hasegawa-Mima equation solver versus the
corresponding Fortran implementation running on a3.0GHz
64-bit Intel Xeon processor. We measured the wall clock time
for executing 100 steps of the simulation’s main loop with
identical setup parameters. For small input array sizes the
CUDA implementation is relatively slower due to overhead
in kernel call initialization latency. At array sizes larger than
128×128, however, we observed increasingly bigger speedup
factor, with maximum of14 at resolution1024×1024. Results
from our comparison experiments are presented in Fig. 7. It is
important to note that bigger relative speedup can be achieved
if all Fourier Transforms are performed in full complex-to-
complex format, at the expense of doubling the simulation’s
memory footprint and increasing the absolute execution time.

We have also evaluated the performance of a CUDA im-
plementation for a numerical solver of the Reduced MHD
equations [16]. In this case we observe a speedup factor of
25-30, depending on the size of the computational grid (see
Fig. 8). This increase in CUDA-to-CPU speedup compared
to the Hasegawa-Mima solver is mainly due to the larger
number of nonlinear terms present in the RMHD equations
(three vs one for Hasegawa-Mima). Since each nonlinear term
translates computationally into a set of Fourier Transforms,
more nonlinear terms means a larger portion of the simulation
is spent calculating FFTs, i.e. on operations for which CUDA’s
performance gain over the CPU is much higher compared
to those used elsewhere in the code (see also discussion in
Section VII).

VII. C ONCLUSION

We have demonstrated that carrying out DNS of plasma
turbulence on the GPU provides a significant performance
benefit in comparison with the CPU; also, implementation
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Fig. 7. CUDA/CPU performance comparison for the Hasegawa-Mima solver.
On the vertical axis is wall clock time for the execution of 100 steps of the
main loop

Fig. 8. CUDA/CPU Performance Comparison for the RMHD Solver. The
horizontal axis represents the sizeN of one of the grid’s two dimensions.
The total grid size isN × N

is greatly facilitated by the latest CUDA programming en-
vironment on NVIDIA’s G8x cards. Due to the considerable
overhead of data transfers to and from the graphics card,
the major limitation is GPU memory size. However, many
physically meaningful simulations fit within the current GPU
memory limits In particular, for many problems of interest
in fusion energy research, spectral resolution of1024 × 1024
can be fairly sufficient [3], [10]; usually of bigger concern
is the inclusion of extra non-linear terms in the modeling
equation. These non-linear terms correspond to interactions
among physical quantities tracked by the model and thus
contribute to the simulation of various important physical
effects; mathematically they can be expressed in the form
of Poisson brackets, which in turn translate into extra FFT’s
per time step. This increase in the relative dominance of
computational complexity over memory requirements is one of
the major leveraging factors in favor of implementing spectral
DNS methods on the GPU. In summary, for a fixed spectral
resolutionthe more physics is added to the model, the bigger
the expected speedup factor over the CPU.

As future work we envision a thorough performance anal-
ysis of the GPU implementation of a general class of spectral
methods for direct numerical simulation of turbulence. In
particular, it is important to quantify the average speedup
factor per non-linear term at various resolutions.

We also plan to study the implementation of a different class
of methods, namely those based on particle-in-cell simulations
[15]. These methods require tracking of a large number of

virtual particles whose positions and velocities are updated at
each time step according to a system of ordinary differential
equations. We expect that even in the absence of bottlenecks
of “hyper-linear” computational complexity such as the FFT, a
GPU particle code implementation will still have a measurable
speedup factor over the CPU. This is due to the fact that
particles are advected independently of one another and thus
can be partitioned in any arbitrary fashion; this allows for
optimal kernel parameter configuration and hence should lead
to achieving maximum performance. In contrast with spec-
tral methods, however, particle resolution and hence memory
complexity has larger relative significance: the number of
particles strongly affects the accuracy of the simulation.One
approach to this problem is to scale the implementation to a
GPU-enabled PC cluster using standard domain partitioning
techniques. A GPU cluster based on previous generation of
NVIDIA cards has already been used successfully in applying
a parallel Lattice Boltzmann Method to several problems in
computational fluid dynamics [17]. We plan to investigate the
efficiency of mapping particle-in-cell algorithms for plasma
dynamics to scalable high-performance distributed GPU ar-
chitectures.

Concurrent visualization is another direction of research
which is important to pursue. Moving from two- to multi-
dimensional data is likely to put non-trivial burden on the
GPU especially if computationally intensive techniques such
as volumetric rendering are being used. In order to main-
tain user interactivity it will become expedient to rely on
multi-GPU nodes where several GPUs would typically run
the simulation and one would handle visualization. Dealing
with synchronization and load balancing would become of
critical importance. We plan to investigate the viability of
implementing a scalable computational steering framework
based on GPU technology in the context of DNS of plasma
turbulence.
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