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Abstract

Recent trends in parallel computer architecture strongly suggest the need to improve

the arithmetic intensity (the compute to bandwidth ratio) for greater performance

in time-critical applications, such as interactive 3D graphics. At the same time,

advances in stream programming abstraction for graphics processors (GPUs) have

enabled us to use parallel algorithm design methods for GPU programming. Inspired

by these developments, this paper explores the interactions between multiple data

streams to improve arithmetic intensity and address the input geometry bandwidth

bottleneck for interactive 3D graphics applications. We introduce the idea of creating

vertex and transformation streams that represent large point data sets via their

interaction. We discuss how to factor such point datasets into a set of source vertices

and transformation streams by identifying the most common translations amongst

vertices. We accomplish this by identifying peaks in the cross-power spectrum of the

dataset in the Fourier domain. We validate our approach by integrating it with a

view-dependent point rendering system and show significant improvements in input

geometry bandwidth requirements as well as rendering frame rates.

Key words: Stream programming, arithmetic intensity, geometry instancing,

transformation encoding, streaming algorithms
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1 Introduction

The recent evolution of graphics processing units (GPUs) into powerful and

programmable stream processors is revolutionizing the way we look at the

traditional graphics pipeline. Recent advances in the development of a stream

programming environment for GPUs (1) and the use of stream programming

for GPUs (2) have enabled graphics researchers and practitioners alike to

view graphics operations in the context of data parallel semantics. The stream

programming abstraction allows us to consider graphics primitives as streams

of records and graphics operations as kernels that operate on such streams.

This simple and yet compelling abstraction has not only had a powerful impact

on graphics applications, it has also enabled a wide variety of applications

from diverse disciplines such as scientific computing, machine learning, signal

processing, computer vision, real-time audio, and computational biology to be

mapped on to the GPUs. An important factor behind this success has been

the power of the stream programming abstraction to embody, implicitly or

explicitly, several important parallel algorithm design considerations such as

data parallelism, task parallelism, coherence and latency of memory accesses,

producer-consumer locality, and arithmetic intensity.

As the size of a floating-point unit on a 90 nm chip has decreased to almost

0.1% of its area, the challenge has gradually shifted away from trying to ac-

commodate multiple processing units on a single chip towards maximizing the

returns from the available bandwidth. In other words, arithmetic is cheap and

bandwidth is the critical problem (3).

This paper presents a novel method to dramatically enhance the arithmetic in-
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Fig. 1. Rendering with Transformation Streams can dramatically improve the

arithmetic intensity for conventional graphics rendering applications, such as

view-dependent rendering. This image shows the Troll model rendered with our ap-

proach with 274% improvement in communication bandwidth and 20% improvement

in frame rates.

tensity (the compute to bandwidth ratio) (4), for vertex streams on the GPUs.

The inspiration for our work lies in the idea that two interacting streams are

significantly more powerful than a single stream. This basic idea has been

around in computer architecture for a while (it was used in IBM 7950 as early

as 1961 (5)) but its applications to graphics were not yet possible due to lack

of programmatic and hardware support at the graphics processor level. The

recent emergence of instance streams in modern GPUs (6) has allowed us to

formulate and validate our ideas on representing geometry as two interacting

streams of coordinates and transformations.

The main contributions of this paper are:

(1) Interacting Streams: We introduce the idea of interacting vertex and
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transformation streams to encode general point cloud datasets and dis-

cuss how these streams can be decoded using modern vertex shaders.

(2) Vertex-Transformation Pools: We discuss how to efficiently build ver-

tex and transformation streams from a pool of paired vertices and trans-

formations.

(3) Transformation Palettes: We outline a method to identify the most

common transformations that can map a set of vertices to itself using the

Fast Fourier Transform.

(4) View-dependent Transformation Streams: We show how our ap-

proach of using transformation streams can improve the arithmetic in-

tensity in a view-dependent rendering application.

2 Related Work

The graphics community has long faced the challenge of interactively exploring

very large 3D graphics models while reconciling the mutually conflicting goals

of scene realism and interactivity. A crucial bottleneck in this has been the

input geometry bandwidth. Consequently, there has been a long history of

work related to reduction of the geometry bandwidth to the graphics processor

to achieve greater interactivity.

Triangle strips and triangle fans are amongst the earliest data-structures de-

signed to address the input geometry bandwidth bottleneck. Although each

triangle can be specified by three vertices, to maximize the use of the avail-

able data bandwidth it is desirable to order the triangles so that consecutive

triangles share an edge. Such ordered sequences of triangles are referred to as

triangle strips or triangle fans. Using such an ordering, only the incremental
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change of one vertex per triangle needs to be specified. These methods re-

quire sending n + 2 vertices for n triangles, instead of 3n vertices, potentially

reducing the input geometry requirements by a factor of three.

Visibility-based culling and level-of-detail-based rendering reduce the input ge-

ometry by reducing the number of graphics primitives. Visibility-based culling

schemes only send those primitives to the graphics processor that are visible

or potentially visible (7). Level-of-detail-based rendering schemes send sim-

pler, lower fidelity representations of an object whenever higher complexity

representations are deemed unnecessary – such as when the object is being

displayed on a small number of pixels on the screen or is otherwise perceptually

less important (8).

Recent improvements in scene acquisition techniques such as laser scanning

and computer-vision-based sensing have resulted in a growing collection of 3D

graphics datasets that are based on points. Consequently, point-based ren-

dering schemes (9; 10; 11; 12; 13; 14) have evolved as a viable alternative

to triangle-based representations. The point primitives can be rendered as

spheres (13), points with attributes (Surfels) (12), tangential disks (Surface

splats) (15; 16; 17; 18; 19), tangential ellipses (20), quadratic surfaces (21),

higher degree (3 or 4) polynomials (22; 23), using wavelet basis (24), and

octree cells (12; 25; 26). These and several other techniques involve transmis-

sion of points and their attributes from the CPU to the GPU every frame.

Points can also be rendered without any CPU involvement by storing the

point geometry directly on the graphics card (17; 18; 27). Temporal coherence

can be exploited by keeping track of the visible Surfels in the frame buffer of

successive frames (28).
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In some ways, the flavor of the approach presented in this paper is closer to

that of triangle strips and triangle fans, that involve re-ordering the input list

of primitives to succinctly represent them as a single data stream. However,

it differs from all previous work in that it addresses the geometry bandwidth

bottleneck by harnessing the power of multiple interacting streams of data,

instead of a single stream. Our approach is complementary to, and can aug-

ment, existing schemes such as level-of-detail-based rendering that reduce the

number of geometry primitives to be rendered.

3 Interacting Streams

Our goal in factoring an input list of vertices into two interacting streams of

vertices and transformations is to reduce the input geometry bandwidth re-

quirements and improve the arithmetic intensity of the participating streams.

As shown in Figure 2, these two streams – the vertex stream and the transfor-

mation stream – can then be combined with each other on a GPU resulting

in an output stream of vertices that is a tensor product of the input streams.

Thus, in the best case, we might be able to factor n vertices into two streams of

size
√

n each, thereby reducing the input bandwidth requirements by a factor

of O(
√

n).

Consider an idealized geometry of 16 points shown by spheres in Figure 3. Let

the four white points comprise the vertex stream. Then using a set of four

translations as shown in the figure, one can generate all the input points. We

include the null translation (0, 0, 0) for completeness.

The vertex transformation streams discussed above are ideal. In practice it
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Fig. 2. Stream Interactions: ‘Vertex Stream’ contains the mesh vertices, ‘Transfor-

mation Stream’ contains instance transformations that will act on the vertices in the

vertex stream. The two streams are combined on the GPU and generate the ‘Tensor

Product Stream’ which has the output vertices for rendering.

Fig. 3. The vertex stream has the four white source vertices and the transformation

stream has four translations. Each of the twelve black vertices can be reached by

applying one of the three non-null translations to the white vertices.

is rare to find such a perfect mapping between vertices and transformations.

Even when we did find such mappings, they covered very small sets of ver-

tices. To get larger interaction streams we decided to generalize our inter-

actions between vertices and transformations. Instead of insisting that every

vertex interacts with every transformation, we allowed some vertex transfor-

mation pairs to not contribute any vertex to the output stream. This simple

generalization allowed us to greatly enhance the scope and size of the ver-

tex transformation streams that our approach could identify. In Figure 4 we

show the relationships between translations and vertices of two sets of geome-
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tries. A 1 indicates that the translation in the row interacts with the vertex

of the column while a 0 indicates non-interaction. Our generalization allows

us to construct interacting streams that can represent the slightly irregular

geometry of Figure 4(b).

We have implemented stream interaction on current-generation GPUs using

the geometry instancing features of the latest vertex shader model (VS 3.0).

Consider the case of n vertices in stream 0 and m transformations in stream

1 as shown in Figure 2. To use the geometry instancing feature of (VS 3.0)

we set the frequency of the vertex stream to m and the frequency of the

transformation stream to 1. As shown in Figure 2, the vertex shader is first

invoked with V0T0. This is followed by V1T0, V2T0, and so on. After all the

vertices for the first transformation(T0) have been processed, the pointer to

vertex stream (stream 0) is reset and the pointer to transformation stream

(stream 1) is incremented to T1 (6).

In our implementation, we specify the frequency of the vertex stream to be

the number of transformations in the transformation stream. Since the ge-

ometry instancing only allows us to achieve all-pairs interactions between the

elements of the two streams, we encode the interaction information between

the transformation and vertex streams using tags that we pass with the ele-

ments of each stream. The transformation stream’s tag is just a short integer

which indicates the index of that transformation in its stream. Thus the ith

transformation’s tag has value i. A vertex’s tag is an occupancy bit vector

that encodes the translations that the vertex should interact with. Therefore,

if we use an unsigned integer as the tag for a vertex, we can encode its interac-

tions with up to 32 translations. Figure 5 shows the pseudo code of the vertex

shader program for checking and implementing such interactions. Note that if
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(a)

(b)

Fig. 4. Interactions between the vertex stream and the transformation stream are

represented by binary tables. In these vertex-transformation tables, a 1 indicates

interaction between a vertex and a translation and 0 indicates no interaction. Figure

(a) shows the table for the idealized point set of Figure 3. Figure (b) shows another

point set and its vertex-transformation table.

the interaction between a vertex and a transformation is not supposed to hap-

pen, our code sets the output vertex to infinity (in homogenous coordinates)
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and the vertex is then culled away. Unfortunately, the current generation of

GPUs do not support bit-wise integer operations. As a result we had to emu-

late these bit operations by using floating-point operations that were available

to us.

Fig. 5. Pseudo-code for a Vertex Shader program shows how we use vertex and trans-

formation tags to determine if a pair of elements across vertex and transformation

streams should interact, and if so how to generate the output stream vertices.

4 Vertex Transformation Pools

In the previous section we discussed how we can generate an output stream

of vertices as a tensor product of vertex and transformation streams. We also

discussed how we can fine-tune (allow or disallow) interactions between the
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two streams by appropriately tagging the elements of the two streams and

using vertex shader programs. In this section we shall discuss how to identify

such streams from raw input point datasets.

Consider a model with n points, ~pi, 0 ≤ i < n. For any pair of points ~pi and ~pj,

0 ≤ i, j < n, consider a transformation that maps ~pi to ~pj. In general, there are

an infinite number of such transformations. Therefore, let us restrict ourselves

to the set of translations. Let translation ~tij be specified as ~tij = ~pj − ~pi.

For n points, we can identify n2 such transformations. Now, for most real-life

datasets we have observed that out of these n2 transformations only m << n2

are unique. We discuss some reasons for this transformation space coherence

and give a method to identify such unique transformations in Section 5. Now

consider a large vertex transformation table whose columns are n vertices and

whose rows are the m unique transformations. The (i, j)th element of this table

is a boolean value which is set to 1 iff ~ti + ~pj = ~pk for some k < n. That is, if

the ith translation maps the jth vertex to some other vertex in the input data,

we flag this as an interaction we permit. Otherwise we set the (i, j)th entry’s

boolean value to 0. If ~ti + ~pj = ~pk, we say that point ~pj covers point ~pk.

In order to get large vertex and transformation streams, our goal is to find the

largest rectangle in the vertex-transformation matrix (after reordering rows

and columns) such that the fraction of ones in it is higher than some threshold

(δ). We refer to such a maximal reordered rectangle as a vertex transforma-

tion pool. Large values of δ tend to return very small vertex-transformation

pools whereas small values of δ result in too many non-interacting vertex-

transformation pairs which will later require culling. We have observed that

δ = 0.5 reconciles these goals well. Identification of the vertex transformation

pools is an iterative process. After we find a vertex transformation pool, we
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zero-out its entries in the vertex transformation table, and repeat the process

to get the next-best vertex transformation pool.

4.1 Finding the First Vertex Transformation Pool

At first glance, the problem of finding good vertex transformation pools re-

sembles the edge-maximizing bipartite clique problem (29; 30), where the rows

are one side of the graph, the columns are the other, and there is an edge be-

tween i and j if the (i, j)th entry’s boolean value is 1. However, our problem

is different because we would also like to include some 0 entries in the pool

as long as it allows us to increase the overall fraction of 1’s in the pool. A

polynomial-time optimal solution to this problem seems unlikely, so we have

used a greedy heuristic.

We first find the vertex ~pj that has the most 1-values in its column. Let the

number of transformations for ~pj be k. We next restrict ourselves to the k rows

for which the column for ~pj has a 1. We then sort all the vertices by the sum

of 1-values they have in these k rows and process them in the decreasing order

of their sums. For each vertex ~pi, we determine the number of vertices it can

cover that were previously not covered. If the number of newly covered vertices

is greater than a threshold, we include ~pi in the pool. In all our experiments

we have set the threshold to be 25% of the value of k for the current pool. We

have observed that this gives us vertex-transformation pools with the fraction

of ones in the pool, δ ≈ 0.5.

It turns out that there can be redundant coverage amongst the vertices in a

pool. Thus, it is possible that ~ti + ~pj = ~ti′ + ~pj′ = ~pk. This is wasteful in that

13



we might end up processing the same vertex multiple times. We handle this

by not counting such previously covered vertices in our quest to maximize the

size of our vertex transformation pools.

4.2 Updating for Subsequent Pools

After identifying a vertex transformation pool we update the vertex transfor-

mation table to discard the covered vertices. Since we prioritize the vertices

based on the number of their 1-entries, the number of vertices that a given ver-

tex covers is actually its importance level for inclusion in future pools. For each

vertex ~pk that our identified pool covers, we decrease the weights of all other

vertices that could cover ~pk. Thus, for each covered vertex ~pk we set all those

(i, j) entries in the vertex transformation table to 0, for which ~ti +~pj = ~pk. We

can do this updating efficiently if each vertex maintains a list of all other ver-

tices that it can cover. Thus, let ~pk have the list of vertices (~pk1, ~pk2, . . . , ~pkl)

that can be reached from itself using its translations (~tk1,~tk2, . . . ,~tkl). Each

of these covered vertices ~pki must have the reverse translation (−~tki) in its

own translation lists. Therefore, we can decrease the importance of those cov-

ered vertices by one by just resetting the appropriate elements in the vertex

transformation table.

4.3 Deciding the Number of Pools

To show how the number of pools affects the overall performance of this al-

gorithm, we have plotted the effect of the number of pools against the vertex

coverage and the final rendering time for the Stanford’s David in Figure 6.
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(a) (b) (c)

Fig. 6. Tradeoffs between the number of pools, vertex coverage, and rendering time

for Stanford’s David model. Figure (a) shows the vertex coverage and figure (b)

shows the rendering time as we increase the number of pools. Figure (c) shows the

changes of the size of each vertex transformation pool, which is the product of the

number of translations and the number of vertices in each pool.

As we increase the number of vertex transformation pools, they can cover

more vertices, but the overall rendering performance drops. There are two

reasons for this. First, using additional blocks incurs the overhead of using

drawCall( ). We have observed that using too many drawCall( )s makes

the applications CPU bound. Second, as we identify more pools, the size of

each pool, which is the product of the translations and the vertices in it,

gets smaller. For small pools, the overhead of using instancing for drawing

outweighs the benefit of transferring less data to the GPU. Based on these

considerations, we decided to select only the first two pools for our results.

The vertices that are not covered by these two pools are rendered without any

geometry instancing using conventional rendering.
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5 Transformation Palettes

We have thus far discussed how to identify maximally-sized vertex-transformation

pools and how to convert them into interacting vertex and transformation

streams. In this section we discuss how to identify the most common transfor-

mations amongst vertices. As we discussed earlier in Section 4, if we consider

a model with n points, ~pi, 0 ≤ i < n and restrict ourselves to translations, it

is possible to get n2 transformations amongst all pairs of points. In the worst

case, each of these n2 transformations can be unique and we will not be able

to benefit from a transformation-based coding of the input data. Fortunately,

real data does have plenty of such coherence due to several factors – input

data symmetries, coherence in procedural or simulation data generation, co-

herence due to acquisition device characteristics, and even coherence due to

quantization algorithms. In a number of real-life datasets, we observe that

certain local geometries may appear in the same configuration in another part

of the model. These symmetries are obvious for architectural CAD (repeated

doors, windows, furniture), mechanical CAD (repeated sub-assemblies, bolts,

cylinders), molecular CAD (repeated amino acids, nucleic acids, alpha helices,

beta sheets), and terrain layouts for games (trees, grass, flowers). Our algo-

rithm can easily detect such symmetries in the transformation space. What

is more interesting, however, is that for several cases, such repeated patterns

might not even be visually obvious. We have observed that a large fraction

of 3D point geometry representing real-life datasets from 3D scanners can be

efficiently expressed in this way. In Figure 7 we show one example of a frequent

translation our algorithm discovered in the Stanford’s David model.

The problem of finding the set of two point pairs which specify the same
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Fig. 7. An example of frequently occurring common translations of vertices identified

by our algorithm in Stanford’s David model. If we quantize the David model on a

1283 grid to 150K quantized points we find the translation (62,−6,−5) ocurring

1261 times as shown.

translation ~t can be reduced from 3SUM problem. The 3SUM problem can be

solved by a simple O(n2) algorithm (31) and recent advances present a sub-

quadratic randomized algorithm (32). Using a finite precision model, a 3SUM

hard problem can be solved in O(n log n) time using the FFT (Fast Fourier

Transform) (33). Here we used the FFT to find the common translations effi-

ciently.

We explain our method in the simplified one-dimensional case. For a point set

P = {p0, p1, p2, ..., pN−1}, 0 ≤ pi ≤ M , we can think of a polynomial A(x)

where the exponent of each term is the coordinate of each point, and we can

think of another polynomial B(x) where the exponent of each term is the

negative value of the exponent of A(x).
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A(x) =
M
∑

i=0

aix
i, where ai =































1, if i ∈ P

0, otherwise

(1)

B(x) =
M
∑

i=0

aix
−i, where ai =































1, if i ∈ P

0, otherwise

(2)

Let C(x) be the polynomial representing the multiplication of polynomials

A(x) and B(x). The exponent of each term in C(x) can be interpreted as the

translation between two points in P , and the coefficient of that term indicates

the frequency of occurrence of the translation. In other words, ci is the number

of points in P which can be translated from other points in P by translation

i.

C(x) =
M
∑

i=−M

cix
i (3)

The multiplication of two polynomials can be computed in O(n lg n) time by

converting polynomials into point-value representations using the FFT, and

then creating the coefficient representation of the multiplication of two point-

value polynomials using the inverse FFT (33). Because B(x) is the transposed

image of A(x), the FFT of C(x) can be computed by transposing the multipli-

cation of the FFT of A(x) by the complex conjugate of the FFT of A(x). For

3D points, we use 3D FFT with the same algorithm as for the 1D case. We

note that this is same as computing the cross-power spectrum in the Fourier

domain, a technique widely used for image registration (34).

We have implemented our method using FFTW package (35) for computing
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the FFT and the inverse FFT, and tested this on several 3D datasets. We are

currently using FFTW since we are dealing with quantized values of points

that is guided by the precision necessary for the view-dependent rendering

application discussed in the next section. After 3D FFT stage, we identify the

most common transformations and label them as the transformation palette.

We currently identify the most common 256 translations and use them in

building the vertex-transformation tables and interacting streams of vertices

and transformations.

6 View-dependent Rendering with Transformation Streams

View-dependent rendering has introduced the concept of rendering different

regions of a scene at varying detail based on their perceptual significance.

Our view-dependent rendering algorithm is similar to the ones generally used

for triangle meshes (8) and points. We first build a binary hierarchy over

the input points by following a principal-component-analysis (PCA)-based

partitioning (36). The PCA of a set of n points in a 3D space gives us the

mean µ, an orthogonal frame f , and the standard deviation σ of the data.

The terms µ and σ are 3D vectors and we refer to their i-th component as µi

and σi respectively, where σi ≥ σj if i > j. The frame f consists of three 3D

vectors with the i-th vector referred to as f i.

The distortion of a partitioning is defined as the sum of the distances of the

points from the partition’s mean (36). In our partitioning scheme we reduce

this distortion by using k-means clustering with k = 2. We initialize the two

starting means (centers) for the k-means algorithm by doing a PCA over the

points and choosing µp +
σ1

p

2
f 1

p and µp − σ1
p

2
f 1

p as the initial guesses. This is a
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Fig. 8. View Dependent Rendering. The entire tree is a complete binary tree. Red

nodes were cut in view-dependent manner. Node ’A’ can be expanded into two nodes,

’B’ and ’C’ for the fine details.

reasonable assumption since the data varies maximally along f 1

p . The k-means

clustering algorithm then iterates over the twin steps of partitioning the point

set according to the proximity of each point to the two means and then up-

dating the two means according to this partitioning. (37) use a geometric way

to separate the point set for their point-based simplification hierarchy. They

separate along the principal direction f 1

p with the separating plane passing

through the mean µp. Their approach is equivalent to the first iteration of

our clustering scheme. Subsequent iterations then successively reduce the dis-

tortion. We stop iterating when the difference in the distortion between two

successive iteration is less than 10−7 or when the number of iterations is more

than 30, whichever happens earlier.

Next, for each node in the binary tree we carry out the steps mentioned ear-

lier in the paper – we identify the most common transformations appropriate

for that node, we build vertex-transformation pools, and identify the trans-

formation vertex streams. At the end of this pre-processing step we store the

transformation vertex streams with each node in the binary hierarchy.

At run time we maintain an active list of nodes representing a cut in this binary
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Fig. 9. Expansion of a node. Consider the node A in Figure 8. We compute how

many pixels the bounding box of the node A occupies when it is projected to the

window and use it to decide whether to split to its children B and C or not.

hierarchy as shown in Figure 8. The points from the active nodes comprise

a level of detail appropriate to a given view. We merge sibling nodes if they

project to a screen-space area below a threshold and split a parent node into its

children if the projected screen-space area is too large. We use the resolution

of the projected screen-space area of a node to guide the quantization of the

vertices in that node. Thus if a node projects onto a screen-space area no

larger than 128
√

2
× 128

√

2
pixels, a 7-bit vertex quantization along each of x, y,

and z axes suffices. While rendering we transform these 7-bit quantized values

using the µ, f , and σ values for the node to locate them in the appropriate

3-space.

For each frame we sequentially visit each of the active nodes and decide

whether for the given view parameters it will be appropriate to render it

directly, or merge it with its siblings, or refine it to its children. Once an

appropriate level of detail for a node has been finalized, we use the vertex
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transformation streams associated with that node to render the points con-

tained in that node.

7 Results

We have validated the results of our approach to efficiently identify and use

interacting streams of vertex and transformation data on a number of 3D

graphics models. We have run our experiments on a 1.6 GHz Pentium IV

Windows PC with 2 GB RAM with a NVIDIA GeForce 6800 Ultra AGP

graphics card. We have used the geometry instancing hardware feature in

vertex shader 3.0 model and used DrawIndexedPrimitive( ) command in

DirectX 9.0 API.

We have compared our results along two dimensions of performance – the

improvement in CPU-GPU communication bandwidth and the improvement

in the frame rates. We have measured the frame rates under a constant GPU

memory usage model. In this model we allocate a fixed amount of memory on

the GPU for rendering using our transformation streams method and using

the conventional point rendering method.

Let us assume there are n vertices and m translations in a vertex transforma-

tion pool and f is the fraction of the vertices that are actually displayed from

the pool (the fraction of unique vertices covered by the pool without redun-

dancy). Then, the pool covers f×n×m vertices. Assume we need Av bytes for

a vertex and At bytes for a translation in our transformation streams model,

and An bytes for a vertex in the traditional point rendering model. Our trans-

formation streams model will therefore use (n × Av + m × At) bytes instead
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of the traditional model’s (f × n × m × An) bytes.

In our experiments Av = 26, At = 12, and An = 8. Here Av is the sum of the

bytes for indexing (2 bytes), the number of bytes for a vertex coordinates (8

bytes), and the number of bytes for vertex tagging (16 bytes). At is the sum of

the number of bytes for translation coordinates (8 bytes) and the number of

bytes for translation tagging (4 bytes). SHORT4 data type is the most compact

representation we can use in DirectX to represent vertices and translations,

even though we only needed 3 shorts (6 bytes). For a fair comparison between

our transformation streams model and the traditional model, we did not ex-

ploit the extra short for tagging purposes. The reason we need so many bytes

for tagging purposes is because the current-generation GPUs do not support

bit-operations for integers in vertex shaders. Therefore, in our experiments

we limited ourselves to four floating-point tags per vertex. In each 4-byte

floating-point tag we used 22 bits of the mantissa as a fixed-point integer.

This allowed us to represent up to 88 translations in a vertex-transformation

pool. We decided to limit ourselves to four floating-point vertex tags because

of two reasons. First, increasing the number of floats costs more in bandwidth

to the vertex shader. Second, using more than four floats required us to dif-

ferentiate amongst multiple inputs to the vertex shader, thereby adding one

more conditional branch in addition to the one shown in Figure 5. If in future

we are allowed to pass 32-bit unsigned integers directly to vertex shaders we

can save 4 bytes for Av while at the same time increase the number of trans-

lations covered to 96. In Section 3, we had proposed using 16-bit translation

tags. The reason why we instead use two shorts (8 bytes) in our implementa-

tion is that we currently pass the remainder and the quotient for the modulo

operation in the vertex shader (Figure 5) to reduce the number of floor and
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Fig. 10. Communication bandwidth improvement for CPU-GPU transmission for

transformation streams model compared to traditional point rendering.

divide operations.

To give you a flavor of our results, our approach achieved n = 150, m = 88 (the

limit due to four floats discussed above), and f = 0.32 for Stanford’s David

model. Figure 10 shows the data transmission gains from using transformation

streams as we increase the number of nodes in the hierarchy. We used a 8-level

hierarchy for view-dependent rendering. The gains shown include the overhead

of sending singleton vertices that our transformation streams model could not

cover.

For comparison of frame rates between the transformation streams model and

the traditional point rendering model, we used a fixed amount of GPU memory.

Let Apools be the amount of data used by the vertex transformation pools in

the transformation streams model. For both models we draw Apools amount of

data from GPU vertex buffers and the rest from conventional memory.
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Fig. 11. Coverage of vertices by transformation streams model when using two vertex

transformation pools.

Our method currently processes geometry without appearance attributes. An

easy way to draw models with appearance attributes using our method is

to use texturing. The use of texturing results in only a 10% overhead with

our method. Visual results of our approach are shown in Figure 12, 13, 14.

We have achieved 200% to 500% improvement in communication bandwidth

to the GPU and 17% to 32% improvement in frame rates. The left and the

center columns of Figures 12, 13, 14 show the conventional rendering and the

rendering by Transformation Streams, respectively. As shown in Figure 11,

two vertex transformation pools can cover about 80% of all the vertices. The

right column of Figures 12, 13, 14 shows the rendering of the vertices covered

by the vertex-transformation pools.
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(a) Conventional (b) TS (c) Coverage by pools

1.69M Verts 1.69M Verts 1.37M Verts

20.3FPS 24.3FPS N/A

12.92MB 3.45MB 997KB

Fig. 12. The left image shows the conventional rendering, the center image shows

the rendering by transformation streams and the right image shows the vertices

covered by the vertex-transformation pools for the Troll model. We report the number

of vertices rendering, the frame rates achieved, and the per-frame communication

bandwidth required for the conventional approach and our approach.

8 Conclusions and Future Work

We have proposed a novel method for representing 3D point data using inter-

acting streams of vertices and transformations. We have validated this method

for accelerating conventional view-dependent rendering applications for points.

Although our method achieves a factor of two to five improvement in the

communication requirements to the GPU, our frame rates do not improve by

a similar factor. As the graphics community engages in image synthesis for

ever larger 3D point datasets and as the gap between processing speeds and
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(a) Conventional (b) TS (c) Coverage by pools

1.17M Verts 1.17M Verts 878K Verts

29.8FPS 35.0FPS N/A

8.90MB 2.92MB 712KB

Fig. 13. The result of rendering Stanford’s David. The numbers have the same mean-

ing as Figure 12.

memory access times grows ever wider, the impact of our method on graphics

rendering performance should rise even further.

One of the important considerations in our method is the space required to

encode the boolean interaction matrix. Recent advances in efficiently com-

pressing boolean matrices (38) are relevant to such encodings and suggest a

fruitful direction for future research. At present the GPU programmability

and the geometry instancing framework offer limited flexibility in exploring

sophisticated boolean interaction matrix compression techniques. Still, such

compression techniques could greatly assist in remote visualization applica-

tions.

We hope that our approach of transformation streams will provide a road-
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(a) Conventional (b) TS (c) Coverage by pools

1.02M Verts 1.02M Verts 926K Verts

32.9FPS 43.4FPS N/A

7.75MB 1.25MB 565KB

Fig. 14. The result of rendering XYZ RGB’s Manuscript. The numbers have the

same meaning as Figure 12.

map for future research into how one can use multiple interacting streams

in the stream-programming abstraction to map other problems of interest

on the GPUs. Our current results appear promising for combining stream

programming abstractions with traditional procedural graphics approaches.

We believe these are first steps towards more general combinations of multiple

data streams for processing geometry, appearance, and physical simulations.
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