Thumb Movement:

Designing for One-Handed Use of Small Devices

1 June 2006

Amy Karlson
Ben Bederson
Jose Contreras-Vidal
Background:

Mobile Device Trends

- Increasing...
 - Power
 - Speed
 - Storage
 - Personalization
 - Services
 - Market Penetration
 - Functions
Background:
Mobile Device Trends

- Increasing...

Role in users’ lives!
Background:

Device Styles & Use Patterns

- **Cell phone style**
 - Compact keypad
 - Display for output only
 ➡️ One Hand

- **PDA style**
 - Minimal buttons
 - Touch sensitive display
 ➡️ Two Hands
Motivation:

Single Handed Use

- Mobile Scenarios

- Web Survey: Hands Used

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PDA</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

www.cs.umd.edu/hcil/mobile/survey/
Motivation:

Case In Point

Standard data access applications can be unusable with thumbs.

- Start menu too far
- Many widgets too far
- Many widgets too small

Pocket PC Contacts
Motivation: One-Handed Device Research

- Spatial Orientation (e.g., tilt to scroll)
 - [Rekimoto, 1996]
 - [Harrison, Fishkin, et al., 1998]
 - [Hinckley, Pierce, et al., 2000]
 - [Widgor and Balakrishnan, 2003]

- Minimal Attention Interfaces
 - [Kristoffersen and Ljungberg, 1999]
 - [Pascoe, Ryan, et al., 2000]
 - [Brewster, Lumsden, et al., 2003]
 - [Pirhonen, Brewster, et al., 2002]
Approach:

Foundations in Thumb Movement

- Goal: Capture thumb capabilities
- Measure: Tapping Speed
- Hypotheses: Performance depends on...
 - Device **Size**
 - Movement **Direction**
 - Interaction **Location**
Approach:

Device Sizes

- Four typical devices
- Varying sizes and shapes

Small Candy bar Flip Phone Large Candy bar PDA

Increasing Size
Approach:

Device Sizes

- Four typical devices
- Varying size and shape

Increasing Size
Study:

Device Models

- Models remove tactile features
Study:

Capturing Thumb Movement

Light Emitting Diodes

3D spatial positions tracked with a motion analysis system
Study:

Formal Study Design

- Participants: 20
- Devices: 4
- Tasks: Reciprocal Tapping
 - Directions: ↑ ↔ ↘ ↗
 - Locations: All Possible
- Distances:

Measures: Tap **Speed** Easy and **Hard** input areas
Analysis:

Deriving Tap Speed

- Middle 3 seconds
- Low points as taps
 - Automated
 - Verified by hand

Avg. Tap Speed = \frac{\text{Time of Last Tap} - \text{Time of First Tap}}{\text{Total Taps} - 1}

\[2.52 - 0.31 = 0.32\text{ sec}\]

\[\frac{0.32}{7} = 0.0457\text{ sec}\]
Results:

Does device size affect performance?

- No time diff. between comparable areas

- Still, we are cautious about large devices:
 - Heavier devices → more strain over time?
 - Observed much more grip re-adjustment
Results:

Does movement direction affect performance?

11%-14% faster than
Results:

Does *movement direction* affect performance?

Note: participants were all *right* handed
Does interaction location affect performance?

Subjective Preferences

Small Candy bar

Flip Phone

Large Candy bar

PDA

Easiest Hardest
Results: Does interaction location affect performance?

Fastest regions 7%-12% faster than slowest regions, per device.
Examples:

Better One-Handed Interfaces?

- Application navigation
- Hardware

LaunchTile

AppLens

Compact navigation & control

www.cs.umd.edu/hcil/mobile/

Palm Treo 700w
Lessons

- **For all** devices
 - Avoid diagonal movement for **repetitive** tasks

- **For larger** devices
 - Strive for interaction targets toward the **center** of the device
 - To minimize re-gripping, keep total interaction area **compact**

Supports left and right-handed use
Special Thanks To:

- François Guimbretière
 CS, HCIL
- Kent Norman
 Psychology
- Study Participants

Funded by Microsoft Research
Questions?

- Contacts
 - Amy Karlson (akk@cs.umd.edu)
 - Ben Bederson
 - Jose Contreras-Vidal

- Resources
 - One-handed application navigation
 - Device usage survey