












 

 

Participants 
To recruit participants, we posted Human Intelligence Tasks 
(HITs) on Amazon Mechanical Turk. The recruitment qual-
ification requirements were set to historical performance of 
at least 90% approval rate and at least 1,000 HITs complet-
ed. We geographically limited participation to the U.S. We 
rejected participation from mobile devices and screen sizes 
with less than 1280×800 pixel resolution to ensure the tasks 
were fully visible, and the physical device size was not 
small. We did not allow a participant to partake in multiple 
experiments. We designed three experiments such that they 
could be completed within 7 minutes, and rewarded the 
participants with $0.95, on a targeted $8/hour rate.  

Training Trials 
We presented training trials in the beginning of an experi-
ment using simpler versions of the task to ensure that the 
participant was able to understand the tasks and learn the 
chart structure. The participants could only proceed when 

they answered training trials correctly, and they were al-
lowed to repeat trials until they found the correct answer. In 
experiment trials, participants were not allowed to change 
their answers. Upon selecting an answer, the answer and 
response time were recorded, and the study progressed with 
a new trial. The training trials were not used to remove par-
ticipants or their answers in analysis of responses. Howev-
er, we logged the number of failed training trials per each 
participant. The marked block(s), if the task required, were 
visible until the task was answered. We displayed a second 
ticker next to the task. At 10 seconds, the ticker color and 
text changed to 10! to make participants aware of the pass-
ing time on the task. Considering that participants may lose 
their focus on task while repeatedly answering the same 
task, we presented a training trial, selected among the first 
set of training trials, after ⅓ and ⅔ of experiment trials. 
Similar to other training trials, participants needed to an-
swer these trials correctly in order to proceed, and they 
could repeat their attempts until finding the correct answer. 

EXPERIMENT 1: COMPARISON 
For each trial in the comparison experiment, the participant 
observed a chart with two blocks marked using two colors 
(█, █), considering common color blindness conditions. We 
asked the participant to estimate what percentage the small-
er block is of the larger block. Each participant answered 30 
trials in randomized order on a single chart type with 10 
conditions on true percent of difference (8, 17, 23, 38, 47, 
53, 62, 77, 83, 92)%, and 3 conditions on data density (75, 
150, 300)# or column layout (3, 6, 11)C. Across five trial 
groups, 100 participants answered 3,000 comparisons. 

We assessed perceptual comparison by first asking, “The 
larger block is █ or █?”, with blocks randomly ordered. 
After selecting an answer (e. g., █), the second question 
asked, “The size of █ is approximately [__] % of the size of 
█.”, with block order based on the previous answer. The 
second answer was selected among choices in 5% incre-
ments, ordered from 95% to 5% under the question. This 
design is based on previous studies [23,29] that report free-
text answer to comparison task were commonly at multiples 
of 5%. Our design aimed to assist participants in focusing 
on their judgment at commonly expressed perception 
granularity. We selected ten true-percentages at non-regular 
points in relation 5% intervals (±2%), such that the accura-
cy of an answer could be measured within 1% difference. 

The comparison trials used uniformly random data. 60 data 
configurations were generated, with 30 corresponding to 
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Figure 8. The high-level overview of graphical perception performance results across two settings and three chart types. Each box 
plot includes 20 participants. Comparison and ranking plots include 600 responses each, and overview includes 540 responses. The 

bars in box-plots show percentiles in 10% increments, ▌shows the median, ▲ shows the mean of values within 10-90 percentile. 
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Figure 7. Sample charts from comparison experiments. 



 

 

Density setting [(10)TP × (75, 150, 300)#], and the other 30 
corresponding to Layout setting [(10)TP × (3, 6, 11)C]. The 
same data was used across chart types. The larger block 
was picked randomly among the top 25% of the sorted ran-
dom data. The smaller value was computed using true per-
centage, and it replaced the smallest value. The marked bars 
were checked for no overlaps in piled bars chart. We used 
five training trials with 75# records and (10, 30, 50, 70, 
90)% for true-percentages and answer options. 

Results and Discussion 
To analyze the perceptual performance in comparison, we 
measured the error as the absolute difference between the 
response percentage and the true percentage difference of 
marked blocks. Only 62 responses (%2) misidentified the 
larger block. Among those, 35 were for (83 or 92)% true 
percentage. Only 92 responses (%3) had an error >30%. 

Based on the overview of the responses across five groups 
(Figure 8), the participants made the least amount of errors 
with piled-bars, and the most with treemaps. The differ-
ences across chart designs are substantial. The analysis of 
the number of errors on training trials (Figure 9) also fol-
lows the pattern in accuracy. These results affirm that the 
shared-baseline of PB helps the comparison across records, 
and the area encoding of TM hinders visual comparison, in 
line with results in earlier studies [7,18]. Our results, which 
show PB have higher accuracy than WB, are also parallel to 
the reported accuracy differences across aligned vs. una-
ligned bars. The response time has a smaller variation com-
pared to accuracy. Among all groups, TM lead to the fastest 
responses in all percentiles and average values. PB under 

varying number of columns was the slowest. 

To analyze the effect of data density (75, 150, 300)# and 
column layout (3, 6, 11)C across three chart types, we used 
bootstrapping with 95% confidence intervals [9], with re-
sults shown in Figure 10. With increasing record count, the 
accuracy with treemaps suffered substantially, while with 
piled bars, the accuracy improved slightly. The improve-
ment may be due to the gradients within border-marked 
bars that may give cues on size differences. The loss of 
accuracy in TM with a higher record count is potentially 
due to the smaller block size with increased record count. 
While WB also suffered in accuracy due to smaller bar 
widths given more records, there is no significant difference 
across 150 and 300 records. Our results show no substantial 
effect of multi-column layout on the comparison accuracy. 
The effects are minor across chart types, although PB out-
performed the WB in all column configurations. 

EXPERIMENT 2: RANKING 
For each trial in the ranking experiment, the participant 
observed a chart with a block marked as █. The trial ques-
tion asked, “The marked block █ is ranked closest to num-
ber [__] out of N blocks”, where N was the number of rec-
ords shown in the chart. To uniformly cover rank positions 
within a chart from the top to bottom, the marked blocks 
were based on 10 percent-based rankings (8, 17, 23, 38, 47, 
53, 62, 77, 83, 92)%, rounded to an integer. For example, a 
23% ranked record across 150 records is positioned at abso-
lute rank 35. We asked answers as absolute ranks as well 
since it is the common form of interpreting ranking infor-
mation across a list of records. Each participant answered 
30 trials in randomized order on a single chart type. Across 
five trial groups, 100 participants answered 3,000 rankings. 

The data was generated using random normal distribution 
with µ:2 and σ:0.8, with absolute positive values. We used 
seven training trials with 75# records and (5, 15, 25, 35, 45, 
55, 65) options for true-ranks and answers. We showed 
index labels for the first and last ranked records on the cor-
ners of the chart to clarify the task and help the participant 
read the chart structure using visual anchors. 

Results and Discussion 
We measure the accuracy of a ranking response, which is 
an absolute rank index, using its difference from true rank 
of the marked block, normalized by the number of blocks in 
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Figure 9. Plotting the number of wrong answers per training 
trial. There are 20 participants for each TM plot and 40 par-
ticipants for WB and PB. In comparison task, TM resulted in 
more wrong answers, while in ranking task, PB was the worst 
performing with near 3.5 wrong answer average per trial task 

(among 7 options). For overview task, TM had most errors, 
and PB had the least. WB had similar performance to TM 

with fewer errors, but also included some larger errors as TM. 
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Figure 10. Analysis of accuracy (% error) in comparison task 
across data density and column layout settings. • shows the 
mean, the bars show 95 confidence intervals. Each column 

includes 200 responses (20 participants on 10 TPs). 
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Figure 11. Analysis of accuracy (% error) in ranking task 

across data density and column layout settings. • shows the 
mean, the bars show 95 confidence intervals. Each column 

includes 200 responses (20 participants on 10 TPs). 



 

 

the chart. This allows us to use the same accuracy metric, 
percent difference, across different data densities. 

Based on the overview of the responses across five groups 
(Figure 8), the participants made the least error with 
wrapped bars, and the most error with piled bars. The dif-
ferences across chart types are substantial. The analysis of 
the number of errors on training trials (Figure 9) also fol-
lows the pattern in accuracy. The high error ratio in PB 
suggests that the PB was unfamiliar and many participants 
did not interpret this chart correctly, as ranking task re-
quires understanding the overall chart structure. The infor-
mal feedback from our pilot studies also suggested this 
drawback of PB. An analysis on the response time shows 
that the participants took longer to response with wrapped 
bars. This suggests that the layout of WB encouraged the 
participants to count the rows and columns, resulting in 
more accurate answers while still maintaining around a six 
second response time on average. 

To analyze the effect of data density (75, 150, 300)# and 
column layout (3, 6, 11)C across three chart types, we used 
bootstrapping with 95% confidence intervals. With increas-
ing record count, the accuracy with wrapped bars suffered, 
while the accuracy with treemaps was not affected. The 
reason of similar accuracy with differing record count under 
TM is likely due to its layout, which positions records with 
similar ranking near the same position with similar data 
distributions. The gap of difference between WB and TM is 
still substantial in all data densities. Column layout also 
effects ranking accuracy. The effect of increased column 
count with the same number of columns is the worst for PB. 
This suggests that the increase of overlaps in PB makes the 
chart harder to read. An increase in column count also 
negatively affects accuracy with WB, although its perfor-
mance is still better than PB. 

EXPERIMENT 3: DISTRIBUTION OVERVIEW 
For the overview task, the participant stated their agreement 
to a data distribution statement given a chart, on a 7-option 
Likert scale as shown in Figure 6. The chart and the ques-
tion of a trial were selected among three distribution char-
acteristics, resulting in nine permutations. Since each trial 
group is based on three conditions on data size or column 
layout, each participant answered 27 experiment trials in 
randomized order. We generated 10 groups of random data 
distributions for 27 trials. Each group was answered by two 
participants, totaling to 20 participants answering 540 trials. 

The three data distribution characteristics of this experiment 
as the following, with explanations presented in our exper-
iments: (i) Uniform distribution, i.e. “There is a block of all 
possible sizes”. (ii) Skewed distribution, i.e. “There are a 
few blocks that are substantially larger than all the rest”. An 
example is the population of countries (Figure 1), where a 
few countries have substantially larger populations that 
separate them from the rest, and the rest of the populations 
follows a long tail. (iii) Normal distribution, i.e. “There are 
more medium-sized blocks than small and large blocks.” 

Following the ranking task results that suggested piled bars 
were difficult to interpret for a first-time observer, we in-
troduced a training sequence before the training trials for 
this task. In this sequence, the participant first saw 75 rec-
ords on a single column scrolling bar chart, and an animat-
ed scrolling showed all the records. Then, on clicking a 
button, the single-column chart was transitioned to the chart 
type of the experiment with animation. The participant 
could replay the animated sequences. We presented one 
sequence for each data distribution, along with a text de-
scribing the distribution characteristics of the chart. After 
the sequence, three training trials were shown with 
“agree/disagree” options. When the statement matched the 
chart type, agreement was accepted, and vice versa.  

Results and Discussion 
To analyze the overview responses, we identified each re-
sponse as true, false, or no decision based on agreement 
with the statement and the chart distribution, and converted 
the agreement scale to correctness scale. For example, a 
"strongly agree" response to a uniform statement for a uni-
form data distribution is converted to "strongly true", and 
"somewhat disagree" response to a normal statement for a 
skewed distribution is converted to "somewhat false". We 
present aggregated analysis of answers on a "strongly false" 
to "strongly true" scale in Figure 12. 

TM had a higher percentage of false answers than WB and 
PB, which commonly show a similar accuracy as shown in 
Figure 8 and Figure 12. For example, for responses under 
Data Density setting, TM had 46% false responses, while 
WB had 30% and PB had 33%. When response confidence 
is focused, WB commonly has the highest ratio of “strong-
ly” confident (false or true) responses. Changing column 
layout with more column count (and thicker bars) increases 
the likelihood of an undecided or false response while the 

 
Figure 12. Responses from the overview task. True/False val-
ues are color-coded using green/red on a scale from maximum 
of row to zero. “No decision” (neither agree/disagree) is color-

coded in yellow along its column. 



 

 

data density remains the same. 16-pixel bars performed 
better in such comparison of column layouts. 

Analysis of the time to respond on overview task (Figure 8) 
shows that TM was the slowest, compared to WB and PB 
under varying data density. A comparison across experi-
ment settings for WB and PB shows that responses to varia-
tions in column layout were slower compared to variations 
in data density. PB responses were slightly, not significant-
ly, faster in average. Given similar accuracy performance 
across PB and WB, piled bars have an edge by a small mar-
gin based on responses to the overview experiment. 

SUMMARY OF RESULTS 
Overall, wrapped bars yielded a high accuracy among the 
three chart designs. It outperformed treemaps and piled bars 
for ranking tasks, fell behind piled bars for comparison 
task, and performed similar to piled bars for overview task. 
Its performance is likely due to its clean, easy to interpret, 
non-overlapping design. It strikes a balance between a sim-
ple sorted barchart and the complexity of multi-columns by 
explicit separation of columns. Given that its design can be 
extended by use of multiple colors and bi-directional axis, 
and flexibility to support text labels in various forms, it is a 
perceptually well performing design to present dense num-
ber of records in wider chart areas than a standard bar list. 

Treemaps did not perform the best in any task in our exper-
iments. Its lower performance for comparison is predictable 
since treemaps rely on area assessment whereas the multi-
column bars rely on length assessment on a baseline [7]. 
Treemaps performed better than piled bars in ranking, but 
this may be due to the lack of sufficient training for piled 
bars that reduced their performance. When we showed 
training sequences with animated transitions to introduce 
chart designs, TM no longer outperformed PB. Results from 
the overview task show that it does not perform better than 
multi-column bars. Overall, our results suggest that 
treemaps may not be a preferable design when records do 
not have an explicit grouping or hierarchy. 

Piled bars is a new multi-column bar design. Compared to 
wrapped bars, its shared baseline increases data resolution 
along the horizontal space by using the full width of the 
chart. Compared to the virtual resolution of horizon graphs 
[19], it does not use collapsed bands, and is aimed for sort-
ed numeric data instead of time series. Its increased data 
resolution leads to its high performance for the comparison 
task. However, its unconventional design requires more 
training effort to interpret the chart as a whole, as shown by 
the high rate of failure in the training trials for ranking. 
Once we provided more training before experiments, this 
effect was no longer observed. Thus, the results suggest that 
given enough training, piled bars can be a preferred chart 
design with its increased performance in comparison. 

Limitations 
Our experiments focused on basic graphical chart designs 
without labels, legends or axis. The tasks did not require 

reading or searching within labels. The display of labels 
may impact readability of the chart. Our experiments did 
not evaluate designs with color or bi-directional axis, which 
can be used to display negative values or to categorically 
group records. We did not display axis labels or gridlines in 
multi-column charts for fair, graphical comparison vs. 
treemaps. Including such guides is likely to further improve 
chart interpretation and accuracy for multi-column charts. 
Another limitation of our study is that we could not report 
on subjective preferences across chart designs since we 
used a between-subjects design where each participant only 
saw one of three chart types. 

We reported results from data densities of up to 300 records 
in a 800×450 pixel chart area, with randomly generated 
uniform, normal, and skewed distributions. Figure 7 
demonstrates that 300 records create a highly dense setting 
for casual use of the designs alternatives; doubling the scale 
would impact the size and readability of individual records. 
If this requirement is relaxed and experienced data analysts 
become the target audience, the number of records can be 
scaled up further. Our findings may not extrapolate to high-
er data densities, or substantially smaller (mobile) or larger 
displays. Future work should study larger data densities 
with wider ranging distributions on different display sizes 
and viewing configurations. This may amplify the strength 
of treemaps: its space-filling, non-overlapping design, and 
emphasis of part-of-whole relations in cases few records 
take a larger portion of the complete dataset. 

CONCLUSION 
How often do we encounter sortable numeric data? Since 
numeric analysis and sorting are core practices in data visu-
alization, this type of data is ubiquitous. We have investi-
gated potential chart designs that can present this infor-
mation in a compact form. A scrolling bar chart is the norm 
in interactive media to show more records. Other represen-
tations either cut a single-column list at the visible ranking, 
or occasionally use the space-filling approach of treemaps 
on a wider chart area. The multi-column chart designs pre-
sent an alternative approach in comparable chart sizes. We 
discussed two techniques in depth, wrapped bars (a multi-
column evolution of sorted bar charts) and its novel varia-
tion piled bars, which differ on their use of the data axis on 
a shared baseline vs. a baseline for each column. 

We reported results from crowdsourced graphical percep-
tion experiments evaluating comparison, ranking, and over-
view performance of the three chart designs. Our results 
suggest that treemaps, while increasingly being employed 
for non-hierarchical data, may not be an optimal choice. 
Wrapped bars performed well overall in terms of accuracy 
in three tasks. Piled bars can further improve performance 
for comparison and overview. However, with its unconven-
tional overlapping design, piled bars require further training 
for correct interpretation of data overview. 
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