
EXISTENTIAL LABEL FLOW
INFERENCE VIA CFL

REACHABILITY

Polyvios Pratikakis
Jeffrey S. Foster

Michael Hicks

University of Maryland, College Park

Label Flow Analysis With Existential Polymorphism – p.1/23

Flow Analysis — Applications
Points-to Analysis

Information Flow

Type Qualifier Inference

Code Optimizations

“Guarded-by” analysis (race detection)
Used in LOCKSMITH race detection tool, PLDI 2006

Label Flow Analysis With Existential Polymorphism – p.2/23

Precise Flow Analysis
Analyze function calls context sensitively

As if every function was inlined at every call site

Problem with data structures
Most analyses conflate all elements of a data structure
Usually, important flow relations occur among members
of each individual element
Such flow is sound, even when the element cannot be
precisely identified

Label Flow Analysis With Existential Polymorphism – p.3/23

Analyzing Data Structures
Motivation: inference of “guarded by” relation between
elements of a struct:

struct list {
lock t lock;

int* data;

struct list *next;

}
Within each element, lock protects *data

Label Flow Analysis With Existential Polymorphism – p.4/23

The Problem
Actual data structure

lock data lock data lock data

Label Flow Analysis With Existential Polymorphism – p.5/23

The Problem
Actual data structure

lock data lock data lock data

Summarized by the analysis

lock data

Label Flow Analysis With Existential Polymorphism – p.5/23

The Problem
Actual data structure

lock data lock data lock data

Summarized by the analysis

lock data

Which models

lock data lock data lock data

Label Flow Analysis With Existential Polymorphism – p.5/23

The Problem
Actual data structure

lock data lock data lock data

Summarized by the analysis

lock data

Which models

lock data lock data lock data

...a “blob”

Label Flow Analysis With Existential Polymorphism – p.5/23

Contributions
Label flow analysis with support for flow within data structure
elements

Formalized as type-based label flow analysis
Flow within data structure elements is existentially
quantified

Proof of soundness
Type-based formulation allows us to use type-system
proof techniques
Type-soundness implies sound analysis

Encoded as a CFL reachability problem

Solvable in O(n3)

Label Flow Analysis With Existential Polymorphism – p.6/23

Previous Work
Context insensitive type-based label flow analysis

Add context sensitivity
Abstract over the context where a function is defined
Instantiate to the calling context when it is called
Encoded as (bounded) universal polymorphism [Mossin]:
∀~̀[C].τ
Can be implemented without copying using CFL
reachability [Fähndrich et al]

Label Flow Analysis With Existential Polymorphism – p.7/23

Main idea
Use existential polymorphism to model data structures

Universal and existential polymorphism are dual
∀: Abstract context at the definition and instantiate
(inline) on every use
∃: Abstract the context of every use and instantiate at the
definition

Idea: use ∀/∃ duality to encode existential polymorphism
Allows reuse of the same techniques used for normal
context sensitivity

Unfortunately, it’s not trivial — complications:
Existential types are first-class
Possible ambiguity when we can quantify both
existentially and universally

Label Flow Analysis With Existential Polymorphism – p.8/23

Type-Based Flow Analysis
“Does the value of expression e1 flow to expression e2?”

Annotate all types with labels ` (e.g. int〈`〉)

Typecheck the program, creating flow constraints:
“`1 flows to `2” (`1 ≤ `2) forming a flow graph

Answer flow question:
Type expressions e1 and e2 with annotated types

e1 : τ〈`1〉
1 , e2 : τ〈`2〉

2

Check for flow from `1 to `2 in the graph

Label Flow Analysis With Existential Polymorphism – p.9/23

Context Insensitive Analysis

let id = λa〈`a〉.a
〈
`′a
〉
in

let x〈`x〉 = id 1〈L1〉 in

let y〈`y〉 = id 2〈L2〉 in

y

Imprecise! 1 flows to y!

`a `′a

L1 `x

L2 `y

id has type int〈`a〉→ int〈`
′
a〉 where `a flows to `′a

x,y have types int〈`x〉, int〈`y〉

1,2 have types int〈L1〉, int〈L2〉

Label Flow Analysis With Existential Polymorphism – p.10/23

Context Insensitive Analysis

let id = λa〈`a〉.a
〈
`′a
〉
in

let x〈`x〉 = id 1〈L1〉 in

let y〈`y〉 = id 2〈L2〉 in

y

Imprecise! 1 flows to y!

`a `′a

L1 `x

L2 `y

Label Flow Analysis With Existential Polymorphism – p.10/23

Context Insensitive Analysis

let id = λa〈`a〉.a
〈
`′a
〉
in

let x〈`x〉 = id 1〈L1〉 in

let y〈`y〉 = id 2〈L2〉 in

y

Imprecise! 1 flows to y!

`a `′a

L1 `x

L2 `y

Label Flow Analysis With Existential Polymorphism – p.10/23

Context Insensitive Analysis

let id = λa〈`a〉.a
〈
`′a
〉
in

let x〈`x〉 = id 1〈L1〉 in

let y〈`y〉 = id 2〈L2〉 in

y

Imprecise! 1 flows to y!

`a `′a

L1 `x

L2 `y

Label Flow Analysis With Existential Polymorphism – p.10/23

Context Insensitive Analysis

let id = λa〈`a〉.a
〈
`′a
〉
in

let x〈`x〉 = id 1〈L1〉 in

let y〈`y〉 = id 2〈L2〉 in

y

Imprecise! 1 flows to y!

`a `′a

L1 `x

L2 `y

Label Flow Analysis With Existential Polymorphism – p.10/23

Let’s Add Context Sensitivity
Analyze a function f:

Generate the flow graph C f from the function body

Assign the type ∀`1, . . . , `n[C f].τ→ τ′ to the function

At every call site, instantiate C f :
Insert a fresh copy of C f

Amounts to inlining the function body on all calls

Label Flow Analysis With Existential Polymorphism – p.11/23

Example — Context-Copying

let id = λa〈`a〉.a
〈
`′a
〉
in

let x〈`x〉 = id 1〈L1〉 in

let y〈`y〉 = id 2〈L2〉 in y

`a `′a

L1 `x

L2 `y

id

id has type int〈`a〉 → int
〈
`′a
〉

or
∀`a, `

′
a[`a ≤ `′a]. int〈`a〉→ int〈`

′
a〉

In the first call, we instantiate id to int〈L1〉 → int〈`x〉

In the second call, we instantiate id to int〈L2〉 → int〈`y〉
The function body subgraph (−→) is copied on every call

Label Flow Analysis With Existential Polymorphism – p.12/23

Example — Context-Copying

let id = λa〈`a〉.a
〈
`′a
〉
in

let x〈`x〉 = id 1〈L1〉 in

let y〈`y〉 = id 2〈L2〉 in y

`a `′a

L1 `x

L2 `y

id

id has type int〈`a〉 → int
〈
`′a
〉

or
∀`a, `

′
a[`a ≤ `′a]. int〈`a〉→ int〈`

′
a〉

In the first call, we instantiate id to int〈L1〉 → int〈`x〉

In the second call, we instantiate id to int〈L2〉 → int〈`y〉
The function body subgraph (−→) is copied on every call

Label Flow Analysis With Existential Polymorphism – p.12/23

Example — Context-Copying

let id = λa〈`a〉.a
〈
`′a
〉
in

let x〈`x〉 = id 1〈L1〉 in

let y〈`y〉 = id 2〈L2〉 in y

`a `′a

L1 `x

L2 `y

id

id has type int〈`a〉 → int
〈
`′a
〉

or
∀`a, `

′
a[`a ≤ `′a]. int〈`a〉→ int〈`

′
a〉

In the first call, we instantiate id to int〈L1〉 → int〈`x〉

In the second call, we instantiate id to int〈L2〉 → int〈`y〉

The function body subgraph (−→) is copied on every call

Label Flow Analysis With Existential Polymorphism – p.12/23

Example — Context-Copying

let id = λa〈`a〉.a
〈
`′a
〉
in

let x〈`x〉 = id 1〈L1〉 in

let y〈`y〉 = id 2〈L2〉 in y

`a `′a

L1 `x

L2 `y

id

id has type int〈`a〉 → int
〈
`′a
〉

or
∀`a, `

′
a[`a ≤ `′a]. int〈`a〉→ int〈`

′
a〉

In the first call, we instantiate id to int〈L1〉 → int〈`x〉

In the second call, we instantiate id to int〈L2〉 → int〈`y〉
The function body subgraph (−→) is copied on every call

Label Flow Analysis With Existential Polymorphism – p.12/23

Can We Avoid Copying Subgraphs?
More efficient encoding:

Reuse the function body subgraph, without copying it
Still differentiate between call sites

Use a unique name i per call site

Link the function body subgraph to the call site context as in
the context insensitive case

Name all the “link” edges with the name of the call site

Only consider flow along paths that correspond to valid
call-return pairs

Label Flow Analysis With Existential Polymorphism – p.13/23

Encoding as CFL Reachability
Reps et al first proposed using CFL reachability for program
analysis

Fähndrich et al encoded polymorphic label flow as
parenthesis-matching

When flow enters a function’s subgraph at call site i,
label edges with (i

When flow exits a function’s subgraph at call site i, label
edges with)i

Valid flow only on paths without mismatched parentheses
Parenthesis matching (CFL-reachability) is solvable in
O(n3)

Proof by reduction to Context-Copying system

Label Flow Analysis With Existential Polymorphism – p.14/23

Example — CFL

let id = λa〈`a〉.a
〈
`′a
〉
in

) j (j

let x〈`x〉 = id j 1〈L1〉 in

)k (k

let y〈`y〉 = idk 2〈L2〉 in

y

id has type ∀`a, `
′
a. int〈`a〉→ int〈`

′
a〉

In context i, we instantiate id to int〈`1〉→ int〈`x〉

In context j, we instantiate id to int〈`2〉→ int〈`y〉

There is no explicit constraint copying

Solution in O(n3)

`a `′a

L1 `x

L2 `y

id

Label Flow Analysis With Existential Polymorphism – p.15/23

Example — CFL

let id = λa〈`a〉.a
〈
`′a
〉
in

) j (j

let x〈`x〉 = id j 1〈L1〉 in

)k (k

let y〈`y〉 = idk 2〈L2〉 in

y

id has type ∀`a, `
′
a. int〈`a〉→ int〈`

′
a〉

In context i, we instantiate id to int〈`1〉→ int〈`x〉

In context j, we instantiate id to int〈`2〉→ int〈`y〉

There is no explicit constraint copying

Solution in O(n3)

`a `′a

L1 `x

L2 `y

id
(j) j

Label Flow Analysis With Existential Polymorphism – p.15/23

Example — CFL

let id = λa〈`a〉.a
〈
`′a
〉
in

) j (j

let x〈`x〉 = id j 1〈L1〉 in
)k (k

let y〈`y〉 = idk 2〈L2〉 in

y

id has type ∀`a, `
′
a. int〈`a〉→ int〈`

′
a〉

In context i, we instantiate id to int〈`1〉→ int〈`x〉

In context j, we instantiate id to int〈`2〉→ int〈`y〉

There is no explicit constraint copying

Solution in O(n3)

`a `′a

L1 `x

L2 `y

id
(j) j

(k)k

Label Flow Analysis With Existential Polymorphism – p.15/23

Example — CFL

let id = λa〈`a〉.a
〈
`′a
〉
in

) j (j

let x〈`x〉 = id j 1〈L1〉 in

)k (k

let y〈`y〉 = idk 2〈L2〉 in

y

id has type ∀`a, `
′
a. int〈`a〉→ int〈`

′
a〉

In context i, we instantiate id to int〈`1〉→ int〈`x〉

In context j, we instantiate id to int〈`2〉→ int〈`y〉

There is no explicit constraint copying

Solution in O(n3)

`a `′a

L1 `x

L2 `y

id
(j) j

(k)k

Label Flow Analysis With Existential Polymorphism – p.15/23

Example — CFL

let id = λa〈`a〉.a
〈
`′a
〉
in

) j (j

let x〈`x〉 = id j 1〈L1〉 in

)k (k

let y〈`y〉 = idk 2〈L2〉 in

y

id has type ∀`a, `
′
a. int〈`a〉→ int〈`

′
a〉

In context i, we instantiate id to int〈`1〉→ int〈`x〉

In context j, we instantiate id to int〈`2〉→ int〈`y〉

There is no explicit constraint copying

Solution in O(n3)

`a `′a

L1 `x

L2 `y

id
(j) j

(k)k

Label Flow Analysis With Existential Polymorphism – p.15/23

The Problem with Data Structures

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

(f j,1〈L1〉)
else

(gk,2〈L2〉)
in
let (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

f is only applied to 1, g is only applied to 2

Constructor L1 is only consumed by destructor L3, L2 by L4
Label Flow Analysis With Existential Polymorphism – p.16/23

The Problem with Data Structures

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

(f j,1〈L1〉)
else

(gk,2〈L2〉)
in
let (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

Label Flow Analysis With Existential Polymorphism – p.16/23

The Problem with Data Structures

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

(f j,1〈L1〉)
else

(gk,2〈L2〉)
in
let (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

(j) j
(j) j

Label Flow Analysis With Existential Polymorphism – p.16/23

The Problem with Data Structures

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

(f j,1〈L1〉)
else

(gk,2〈L2〉)
in
let (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

(j) j

Label Flow Analysis With Existential Polymorphism – p.16/23

The Problem with Data Structures

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

(f j,1〈L1〉)
else

(gk,2〈L2〉)
in
let (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

(j) j
(k)k

(k)k

Label Flow Analysis With Existential Polymorphism – p.16/23

The Problem with Data Structures

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

(f j,1〈L1〉)
else

(gk,2〈L2〉)
in
let (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

(j) j
(k)k

Label Flow Analysis With Existential Polymorphism – p.16/23

The Problem with Data Structures

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

(f j,1〈L1〉)
else

(gk,2〈L2〉)
in
let (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

(j) j
(k)k

Label Flow Analysis With Existential Polymorphism – p.16/23

The Problem with Data Structures

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

(f j,1〈L1〉)
else

(gk,2〈L2〉)
in
let (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

(j) j
(k)k

(j

Label Flow Analysis With Existential Polymorphism – p.16/23

Duality of ∀ and ∃
Existential abstraction is dual to universal abstraction

For functions:
Abstract the body of the function when it is defined
Instantiate at every use of the function
Amounts to copying the flow graph from the definition to
the use

For data structures it is dual:
Abstract (capture) the context on every use
Instantiate (inline) at the definition
Amounts to copying the flow graph from the use to the
definition

Label Flow Analysis With Existential Polymorphism – p.17/23

Duality: Direction of Inlining Contexts
Functions

let f = . . . in
. . .

f
. . .

f
. . .

Data structures

let p = pack(. . .) in
. . .
unpack p in

. . .
. . .
unpack p in

. . .
. . .

Label Flow Analysis With Existential Polymorphism – p.18/23

Example — Existential Polymorphism

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

packm(f j,1〈L1〉)
else

packn(gk,2〈L2〉)
in
unpack (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

Label Flow Analysis With Existential Polymorphism – p.19/23

Example — Existential Polymorphism

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

packm(f j,1〈L1〉)
else

packn(gk,2〈L2〉)
in
unpack (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

Label Flow Analysis With Existential Polymorphism – p.19/23

Example — Existential Polymorphism

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

packm(f j,1〈L1〉)
else

packn(gk,2〈L2〉)
in
unpack (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

)m (m
)m (m

Label Flow Analysis With Existential Polymorphism – p.19/23

Example — Existential Polymorphism

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

packm(f j,1〈L1〉)
else

packn(gk,2〈L2〉)
in
unpack (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

)m (m

(m
(m

Label Flow Analysis With Existential Polymorphism – p.19/23

Example — Existential Polymorphism

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

packm(f j,1〈L1〉)
else

packn(gk,2〈L2〉)
in
unpack (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

)m (m

(m

)n (n

)n
(n

Label Flow Analysis With Existential Polymorphism – p.19/23

Example — Existential Polymorphism

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

packm(f j,1〈L1〉)
else

packn(gk,2〈L2〉)
in
unpack (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

)m (m

(m

)n (n

(n
(n

Label Flow Analysis With Existential Polymorphism – p.19/23

Example — Existential Polymorphism

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

packm(f j,1〈L1〉)
else

packn(gk,2〈L2〉)
in
unpack (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

)m (m

(m

)n (n

(n

Label Flow Analysis With Existential Polymorphism – p.19/23

Example — Existential Polymorphism

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

packm(f j,1〈L1〉)
else

packn(gk,2〈L2〉)
in
unpack (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

(m
)n (n

(n

(m

)m

Label Flow Analysis With Existential Polymorphism – p.19/23

Example — Existential Polymorphism

let f = λa〈` f 〉.(a+〈L3〉42)

〈
`′f
〉
in

let g = λb〈`g〉.(b−〈L4〉42)

〈
`′g
〉
in

let p = if . . . then

packm(f j,1〈L1〉)
else

packn(gk,2〈L2〉)
in
unpack (p1, p2) = p in

p1 p2

p: (int〈`1〉 → int〈`2〉)× int〈`3〉

` f L3 `′f

`g L4 `′g

L1

L2

`1 `3 `2

)m (m

(n
(m

(n

)n

Label Flow Analysis With Existential Polymorphism – p.19/23

Finally...
From

lock data lock data lock data

to

lock data lock data lock data

Benefit
Internal flow is precisely modeled. . .
. . . even when elements are conflated by static analysis

Label Flow Analysis With Existential Polymorphism – p.20/23

Differences
Existentials are first-class

Can be passed around, across contexts before
unpacking
Our solution: restrict existentially quantified variables
from escaping the unpack

Quantified types can include other quantified types
Sometimes it is possible to quantify label ` both
existentially and universally: ∀`.∃ /0.int` or ∀ /0.∃`.int`

There is no optimal strategy that always yields smaller
(more precise) flow
Our solution: existentials explicitly state which labels are
quantified

Label Flow Analysis With Existential Polymorphism – p.21/23

Other Uses of Existentials
Data structures containing:

Closures: a function together with its arguments
Objects: a set of functions together with a this pointer
Array bounds: an array with an int that corresponds to its
length
. . .

Label Flow Analysis With Existential Polymorphism – p.22/23

Conclusions
Existential Label Flow Analysis

Better handling of data structures

Dual to universal polymorphism
Use the same context-sensitivity techniques
“Copy” the constraints backwards, from use to definition

Inference of flow graph and solution in O(n3)

Proof of soundness
Formalized context-copying system, proved sound
Formalized CFL system, proved by reduction to copying

Future work
Infer what can be existentially quantified
Allow flow to escape unpacks similarly to the universal
case

Label Flow Analysis With Existential Polymorphism – p.23/23

	
	Flow Analysis --- Applications
	Precise Flow Analysis
	Analyzing Data Structures
	The Problem
	Contributions
	Previous Work
	Main idea
	Type-Based Flow Analysis
	Context Insensitive Analysis
	Let's Add Context Sensitivity
	Example --- Context-Copying
	Can We Avoid Copying Subgraphs?
	Encoding as CFL Reachability
	Example --- CFL
	The Problem with Data Structures
	Duality of $�orall $ and $exists $
	Duality: Direction of Inlining Contexts
	Example --- Existential Polymorphism
	Finally...
	Differences
	Other Uses of Existentials
	Conclusions

