EXISTENTIAL LABEL FLOW INFERENCE VIA CFL REACHABILITY

Polyvios Pratikakis Jeffrey S. Foster Michael Hicks

University of Maryland, College Park

Label Flow Analysis With Existential Polymorphism – p.1/23

Flow Analysis — Applications

- Points-to Analysis
- Information Flow
- Type Qualifier Inference
- Code Optimizations
- "Guarded-by" analysis (race detection)
 - Used in LOCKSMITH race detection tool, PLDI 2006

Precise Flow Analysis

- Analyze function calls context sensitively
 - As if every function was inlined at every call site
- Problem with data structures
 - Most analyses conflate all elements of a data structure
 - Usually, important flow relations occur among members of each individual element
 - Such flow is sound, even when the element cannot be precisely identified

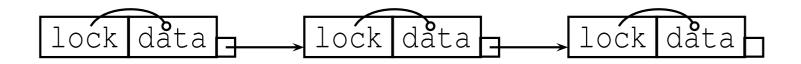
Analyzing Data Structures

Motivation: inference of "guarded by" relation between elements of a struct:

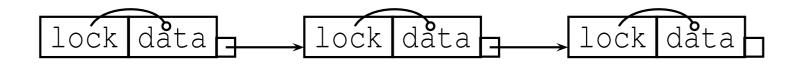
```
struct list {
   lock_t lock;
   int* data;
   struct list *next;
}
```

Within each element, lock protects *data

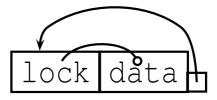
Actual data structure

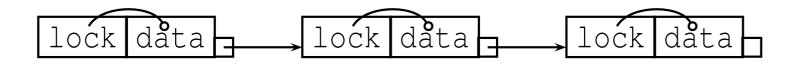


Actual data structure

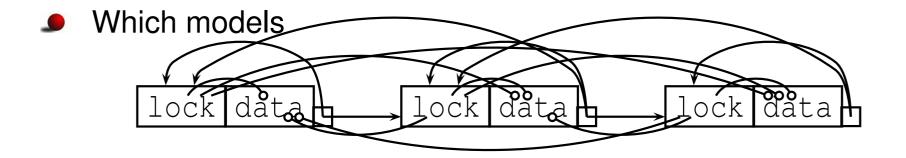


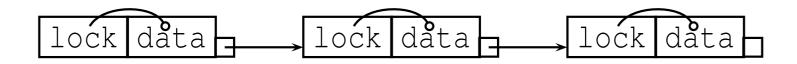
Summarized by the analysis



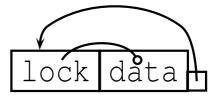


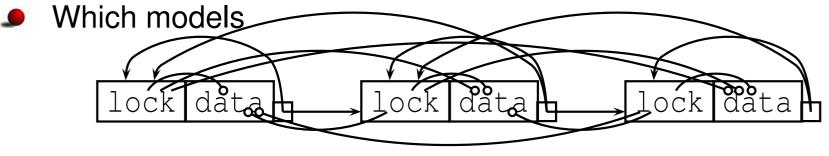
Summarized by the analysis





Summarized by the analysis





...a "blob"

Contributions

- Label flow analysis with support for flow within data structure elements
 - Formalized as type-based label flow analysis
 - Flow within data structure elements is existentially quantified
- Proof of soundness
 - Type-based formulation allows us to use type-system proof techniques
 - Type-soundness implies sound analysis
- Encoded as a CFL reachability problem
 - Solvable in $O(n^3)$

Previous Work

- Context insensitive type-based label flow analysis
- Add context sensitivity
 - Abstract over the context where a function is defined
 - Instantiate to the calling context when it is called
 - Encoded as (bounded) universal polymorphism [Mossin]: $\forall \vec{\ell}[C]. \tau$
 - Can be implemented without copying using CFL reachability [Fähndrich et al]

Main idea

- Use existential polymorphism to model data structures
- Universal and existential polymorphism are dual

 - ∃: Abstract the context of every use and instantiate at the definition

Idea: use \forall/\exists duality to encode existential polymorphism

- Allows reuse of the same techniques used for normal context sensitivity
- Unfortunately, it's not trivial complications:
 - Existential types are first-class
 - Possible ambiguity when we can quantify both existentially and universally

Type-Based Flow Analysis

"Does the value of expression e_1 flow to expression e_2 ?"

- Annotate all types with labels ℓ (e.g. $int^{\langle \ell \rangle}$)
- Typecheck the program, creating *flow constraints*: " ℓ_1 flows to ℓ_2 " ($\ell_1 \leq \ell_2$) forming a *flow graph*
- Answer flow question:
 - Type expressions e_1 and e_2 with annotated types $e_1: \tau_1^{\langle \ell_1 \rangle}$, $e_2: \tau_2^{\langle \ell_2 \rangle}$
 - Check for flow from ℓ_1 to ℓ_2 in the graph

let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell'_a \rangle}$$
 in
let $x^{\langle \ell_x \rangle} = id \ 1^{\langle L_1 \rangle}$ in
let $y^{\langle \ell_y \rangle} = id \ 2^{\langle L_2 \rangle}$ in
y

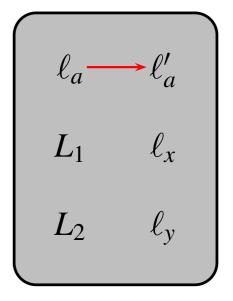
$$egin{array}{ccc} \ell_a & \ell_a' \ L_1 & \ell_x \ L_2 & \ell_y \end{array}$$

- id has type $int^{\langle \ell_a \rangle} \to int^{\langle \ell_a \rangle}$ where ℓ_a flows to ℓ_a'
- x, y have types $int^{\langle \ell_x \rangle}, int^{\langle \ell_y \rangle}$

1, 2 have types
$$int^{\langle L_1 \rangle}, int^{\langle L_2 \rangle}$$

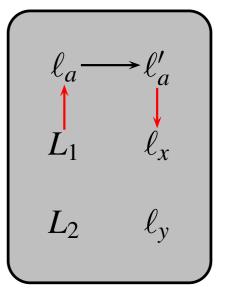
let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell_a \rangle}$$
 in
let $x^{\langle \ell_x \rangle} = id \ 1^{\langle L_1 \rangle}$ in
let $y^{\langle \ell_y \rangle} = id \ 2^{\langle L_2 \rangle}$ in

y

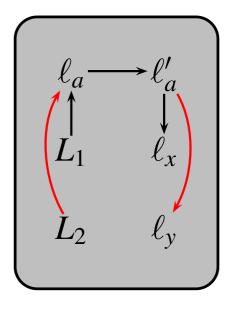


let $id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell'_a \rangle}$ in let $x^{\langle \ell_x \rangle} = id \ 1^{\langle L_1 \rangle}$ in

let
$$y^{\langle \ell_y
angle} = id \; 2^{\langle L_2
angle}$$
 in



let $id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell'_a \rangle}$ in let $x^{\langle \ell_x \rangle} = id \ 1^{\langle L_1 \rangle}$ in let $y^{\langle \ell_y \rangle} = id \ 2^{\langle L_2 \rangle}$ in

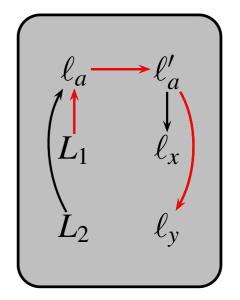


y

let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell_a \rangle}$$
 in
let $x^{\langle \ell_x \rangle} = id \ 1^{\langle L_1 \rangle}$ in
let $y^{\langle \ell_y \rangle} = id \ 2^{\langle L_2 \rangle}$ in

У

Imprecise! 1 flows to *y*!



Let's Add Context Sensitivity

Analyze a function f:

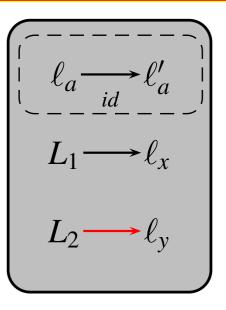
- Generate the flow graph C_f from the function body
- Assign the type $\forall \ell_1, \ldots, \ell_n[C_f]. \tau \rightarrow \tau'$ to the function
- At every call site, *instantiate* C_f :
 - Insert a fresh copy of C_f
- Amounts to inlining the function body on all calls

let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell_a \rangle}$$
 in
let $x^{\langle \ell_x \rangle} = id \ 1^{\langle L_1 \rangle}$ in
let $y^{\langle \ell_y \rangle} = id \ 2^{\langle L_2 \rangle}$ in y
I d has type $int^{\langle \ell_a \rangle} \to int^{\langle \ell_a \rangle}$ or
 $\forall \ell_a, \ell_a' [\ell_a \leq \ell_a'] . int^{\langle \ell_a \rangle} \to int^{\langle \ell_a' \rangle}$

let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell'_a \rangle}$$
 in
let $x^{\langle \ell_x \rangle} = id \ 1^{\langle L_1 \rangle}$ in
let $y^{\langle \ell_y \rangle} = id \ 2^{\langle L_2 \rangle}$ in y
id has type $int^{\langle \ell_a \rangle} \to int^{\langle \ell'_a \rangle}$ or
 $\forall \ell_a, \ell'_a[\ell_a \leq \ell'_a]. int^{\langle \ell_a \rangle} \to int^{\langle \ell'_a \rangle}$

• In the first call, we *instantiate* id to $int^{\langle L_1 \rangle} \to int^{\langle \ell_x \rangle}$

let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell_a' \rangle}$$
 in
let $x^{\langle \ell_x \rangle} = id \ 1^{\langle L_1 \rangle}$ in
let $y^{\langle \ell_y \rangle} = id \ 2^{\langle L_2 \rangle}$ in y



- id has type $int^{\langle \ell_a \rangle} \to int^{\langle \ell'_a \rangle}$ or $\forall \ell_a, \ell'_a[\ell_a \leq \ell'_a]. int^{\langle \ell_a \rangle} \to int^{\langle \ell'_a \rangle}$
- In the first call, we *instantiate* id to $int^{\langle L_1 \rangle} \to int^{\langle \ell_x \rangle}$
- In the second call, we instantiate id to $int^{\langle L_2 \rangle} \rightarrow int^{\langle \ell_y \rangle}$

let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell'_a \rangle}$$
 in
let $x^{\langle \ell_x \rangle} = id \ 1^{\langle L_1 \rangle}$ in
let $y^{\langle \ell_y \rangle} = id \ 2^{\langle L_2 \rangle}$ in y

$$\begin{array}{c} \downarrow \quad \ell_a \xrightarrow{id} \\ \downarrow \quad \underline{l_1} \xrightarrow{id} \\ L_1 \xrightarrow{l} \\ L_2 \xrightarrow{l} \end{array}$$

- id has type $int^{\langle \ell_a \rangle} \to int^{\langle \ell'_a \rangle}$ or $\forall \ell_a, \ell'_a[\ell_a \leq \ell'_a]. int^{\langle \ell_a \rangle} \to int^{\langle \ell'_a \rangle}$
- In the first call, we *instantiate* id to $int^{\langle L_1 \rangle} \to int^{\langle \ell_x \rangle}$
- In the second call, we instantiate id to $int^{\langle L_2 \rangle} \to int^{\langle \ell_y \rangle}$
- The function body subgraph (\longrightarrow) is copied on every call

Can We Avoid Copying Subgraphs?

- More efficient encoding:
 - Reuse the function body subgraph, without copying it
 - Still differentiate between call sites
- Use a unique name i per call site
- Link the function body subgraph to the call site context as in the context insensitive case
- Name all the "link" edges with the name of the call site
- Only consider flow along paths that correspond to valid call-return pairs

Encoding as CFL Reachability

- Reps et al first proposed using CFL reachability for program analysis
- Fähndrich et al encoded polymorphic label flow as parenthesis-matching
 - When flow enters a function's subgraph at call site i, label edges with (i
 - When flow exits a function's subgraph at call site *i*, label edges with $)_i$
 - Valid flow only on paths without mismatched parentheses
 - Parenthesis matching (CFL-reachability) is solvable in $O(n^3)$
 - Proof by reduction to Context-Copying system

let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell_a \rangle}$$
 in

let
$$x^{\langle \ell_x
angle} = i d^{j} \; 1^{\langle L_1
angle}$$
 in

let
$$y^{\left< \ell_y \right>} = i d^k \, 2^{\left< L_2 \right>}$$
 in

$$\begin{bmatrix} \ell_a & \ell'_a \\ \ell_a & \ell'_a \end{bmatrix}$$

$$L_1 & \ell_x$$

$$L_2 & \ell_y$$

y

• id has type $\forall \ell_a, \ell'_a. int^{\langle \ell_a \rangle} \to int^{\langle \ell'_a \rangle}$

let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell'_a \rangle}$$
 in
)_j
let $x^{\langle \ell_x \rangle} = id^j 1^{\langle L_1 \rangle}$ in

let
$$y^{\langle \ell_y
angle} = i d^k \, 2^{\langle L_2
angle}$$
 in

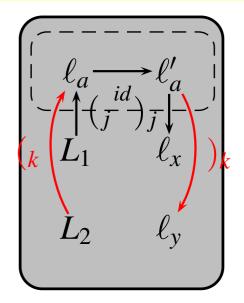
$$\begin{bmatrix}
\ell_a & \ell'_a \\
\ell_a & \ell'_a \\
\ell_j & \ell'_j \\
L_1 & \ell_x
\end{bmatrix}$$

$$L_2 & \ell_y$$

У

- In the stype $orall \ell_a, \ell_a'$ int $\langle \ell_a
 angle o int \langle \ell_a'
 angle$
- In context *i*, we *instantiate* id to $int^{\langle \ell_1 \rangle} \rightarrow int^{\langle \ell_x \rangle}$

let
$$id = \lambda a^{\langle \ell_a \rangle} . a^{\langle \ell'_a \rangle}$$
 in
let $x^{\langle \ell_x \rangle} = id^j 1^{\langle L_1 \rangle}$ in
 k
let $y^{\langle \ell_y \rangle} = id^k 2^{\langle L_2 \rangle}$ in



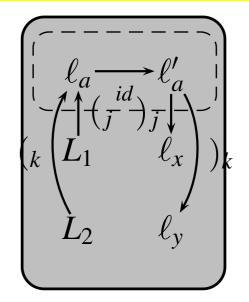
y

- In the second second second states $orall \ell_a, \ell_a'. int^{\langle \ell_a
 angle} o int^{\langle \ell_a'
 angle}$
- In context *i*, we *instantiate* id to $int^{\langle \ell_1 \rangle} \rightarrow int^{\langle \ell_x \rangle}$
- In context j, we *instantiate* id to $int^{\langle \ell_2 \rangle} \to int^{\langle \ell_y \rangle}$

let
$$id = \lambda a^{\langle \ell_a
angle}.a^{\langle \ell_a'
angle}$$
 in

let
$$x^{\langle \ell_x
angle} = i d^{j} \; 1^{\langle L_1
angle}$$
 in

let
$$y^{\left< \ell_y \right>} = i d^{k} \, 2^{\left< L_2 \right>}$$
 in



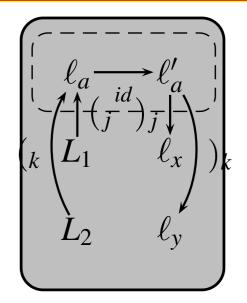
У

- In the second second states $orall \ell_a, \ell_a'$ int $\langle \ell_a
 angle o int \langle \ell_a'
 angle$
- In context *i*, we *instantiate* id to $int^{\langle \ell_1 \rangle} \rightarrow int^{\langle \ell_x \rangle}$
- In context j, we *instantiate* id to $int^{\langle \ell_2 \rangle} \to int^{\langle \ell_y \rangle}$
- There is no explicit constraint copying

let
$$id = \lambda a^{\left< \ell_a \right>}.a^{\left< \ell_a \right>}$$
 in

let
$$x^{\langle \ell_x
angle} = i d^{j} \; 1^{\langle L_1
angle}$$
 in

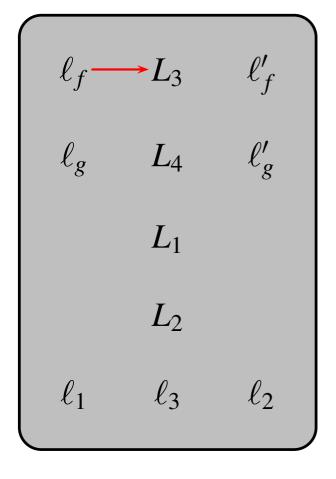
let
$$y^{\langle \ell_y
angle} = i d^{k} \, 2^{\langle L_2
angle}$$
 in



У

- id has type $orall \ell_a, \ell_a'$. $int^{\langle \ell_a
 angle} o int^{\langle \ell_a'
 angle}$
- In context *i*, we *instantiate* id to $int^{\langle \ell_1 \rangle} \rightarrow int^{\langle \ell_x \rangle}$
- In context j, we instantiate id to $int^{\langle \ell_2 \rangle} \to int^{\langle \ell_y
 angle}$
- There is no explicit constraint copying
 - Solution in $O(n^3)$

let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ...$ then
 $(f^j, 1^{\langle L_1 \rangle})$
else
 $(g^k, 2^{\langle L_2 \rangle})$
in
let $(p1, p2) = p$ in
 $p1 p2$

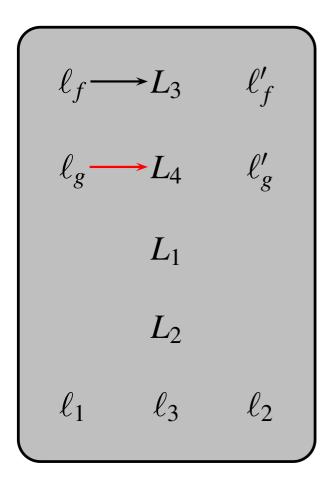


p: $(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$

- f is only applied to 1, g is only applied to 2
- *Constructor* L_1 is only consumed by *destructor* L_3 , L_2 by L_4

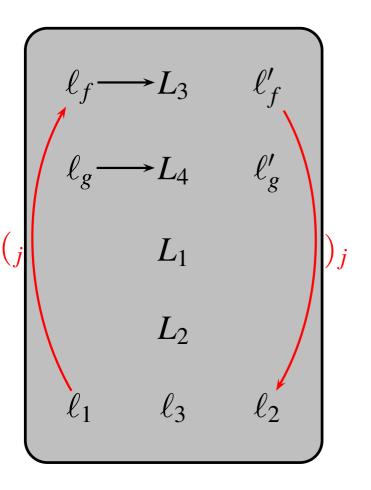
let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ... \text{ then}$
 $(f^j, 1^{\langle L_1 \rangle})$
else
 $(g^k, 2^{\langle L_2 \rangle})$
in
let $(p1, p2) = p$ in
 $p1 p2$

p:
$$(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$$

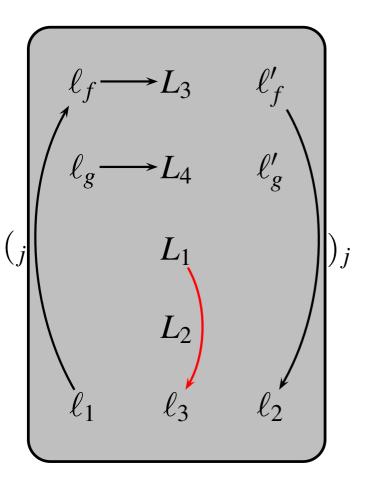


n

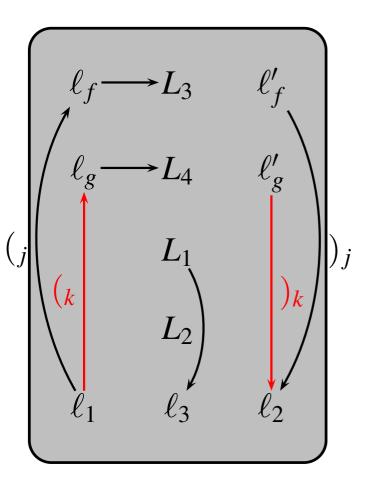
$$\begin{aligned} \det f &= \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle} \text{ in } \\ \det g &= \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle} \text{ in } \\ \det p &= \text{ if } \dots \text{ then } \\ (f^j, 1^{\langle L_1 \rangle}) \\ &\text{ else}_j \\ (g^k, 2^{\langle L_2 \rangle}) \\ \text{ in } \\ \det (p1, p2) &= p \text{ in } \\ p1 \ p2 \end{aligned}$$
p: $(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$



let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ...$ then
 $(f^j, 1^{\langle L_1 \rangle})$
else
 $(g^k, 2^{\langle L_2 \rangle})$
in
let $(p1, p2) = p$ in
 $p1 p2$
p: $(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$

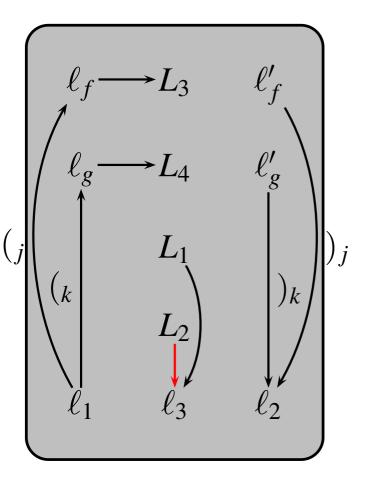


$$\begin{split} &| \text{et } f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle} \text{ in } \\ &| \text{et } g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle} \text{ in } \\ &| \text{et } p = \text{if } \dots \text{ then } \\ &(f^j, 1^{\langle L_1 \rangle}) \\ &\text{else} \\ &(g^k, 2^{\langle L_2 \rangle}) \\ &\text{in } \\ &| \text{et } (p1, p2) = p \text{ in } \\ &p1 \ p2 \\ p: (int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle} \end{split}$$



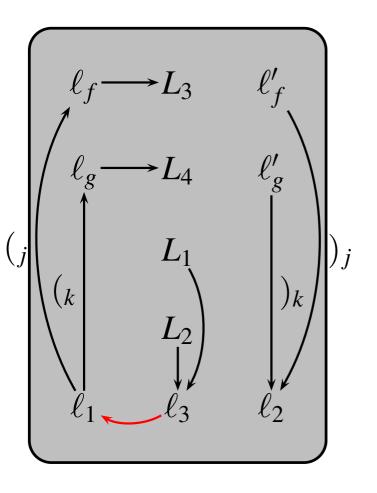
$$\begin{aligned} \det f &= \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle} \text{ in} \\ \det g &= \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle} \text{ in} \\ \det p &= \text{if } \dots \text{ then} \\ (f^j, 1^{\langle L_1 \rangle}) \\ \text{else} \\ (g^k, 2^{\langle L_2 \rangle}) \\ \text{in} \\ \det (p1, p2) &= p \text{ in} \\ p1 \ p2 \end{aligned}$$
$$: (int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle} \end{aligned}$$

р



let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ...$ then
 $(f^j, 1^{\langle L_1 \rangle})$
else
 $(g^k, 2^{\langle L_2 \rangle})$
in
let $(p1, p2) = p$ in
 $p1 p2$

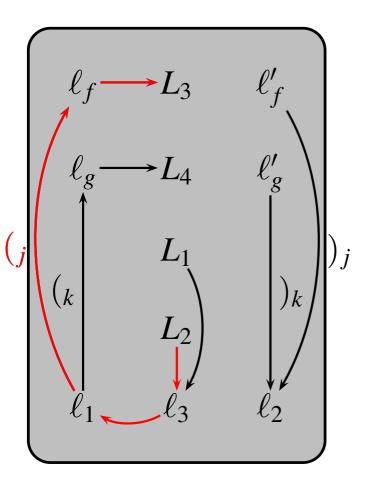
p:
$$(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$$



The Problem with Data Structures

let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ...$ then
 $(f^j, 1^{\langle L_1 \rangle})$
else
 $(g^k, 2^{\langle L_2 \rangle})$
in
let $(p1, p2) = p$ in
 $p1 p2$

p:
$$(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$$

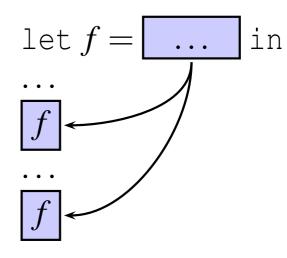


Duality of \forall and \exists

- Existential abstraction is dual to universal abstraction
- For functions:
 - Abstract the body of the function when it is defined
 - Instantiate at every use of the function
 - Amounts to copying the flow graph from the definition to the use
- For data structures it is dual:
 - Abstract (capture) the context on every use
 - Instantiate (inline) at the definition
 - Amounts to copying the flow graph from the use to the definition

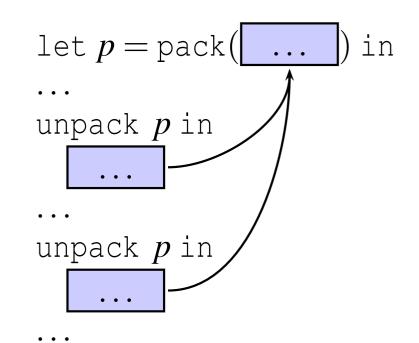
Duality: Direction of Inlining Contexts

Functions



• • •

Data structures



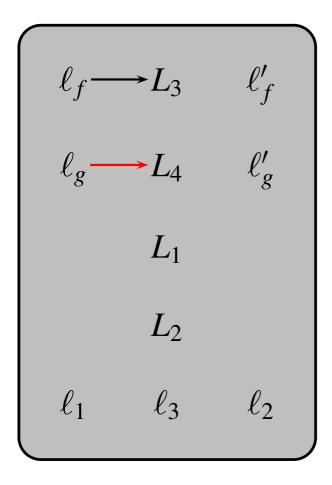
let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell_g \rangle}$ in
let $p = \text{if} ... \text{then}$
 $pack^m (f^j, 1^{\langle L_1 \rangle})$
else
 $pack^n (g^k, 2^{\langle L_2 \rangle})$
in
 $unpack (p1, p2) = p \text{ in}$
 $p1 p2$

p:
$$(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$$

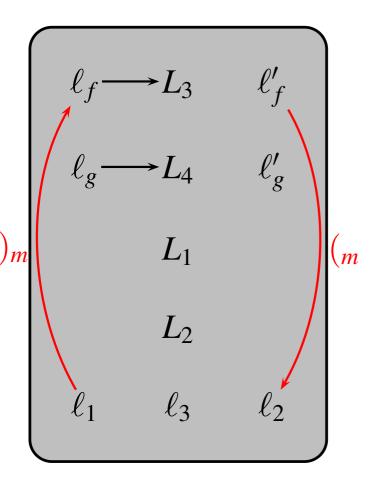
$$\begin{array}{cccc} \ell_{f} & L_{3} & \ell_{f}' \\ \ell_{g} & L_{4} & \ell_{g}' \\ & L_{1} \\ & L_{2} \\ \ell_{1} & \ell_{3} & \ell_{2} \end{array}$$

let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ...$ then
 $pack^m (f^j, 1^{\langle L_1 \rangle})$
else
 $pack^n (g^k, 2^{\langle L_2 \rangle})$
in
unpack $(p1, p2) = p$ in
 $p1 p2$

p:
$$(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$$

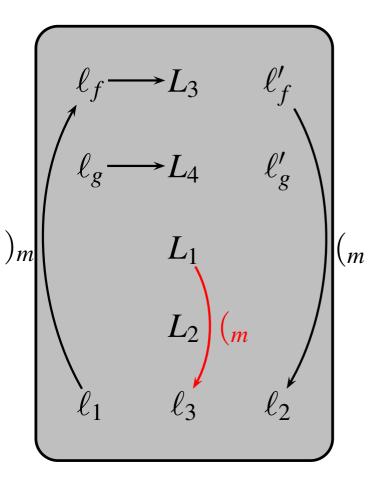


$$\begin{split} & |\det f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle} \text{ in } \\ & |\det g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle} \text{ in } \\ & |\det p = \text{if } \dots \text{ then } \\ & \text{pack}^m(f^j, 1^{\langle L_1 \rangle}) \\ & \text{else}_m \\ & \text{pack}^n(g^k, 2^{\langle L_2 \rangle}) \text{ (m } \\ & \text{in } \\ & \text{unpack}(p1, p2) = p \text{ in } \\ & p1 \ p2 \\ & \text{p: } (int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle} \end{split}$$

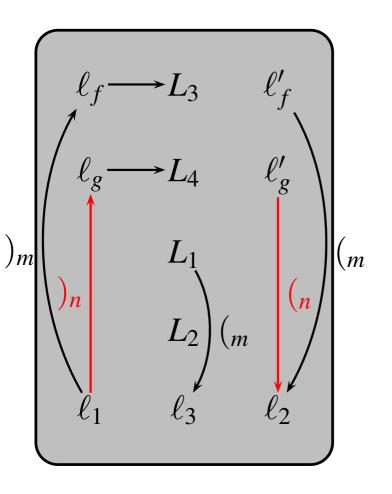


$$\begin{aligned} & |\det f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle} \text{ in} \\ & |\det g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle} \text{ in} \\ & |\det p = \text{if} \dots \text{ then} \\ & \text{pack}^m (f^j, 1^{\langle L_1 \rangle}) \\ & \text{else} \\ & \text{pack}^n (g^k, 2^{\langle L_2 \rangle}) \\ & \text{in} \\ & \text{unpack} (p1, p2) = p \text{ in} \\ & p1 \ p2 \end{aligned}$$

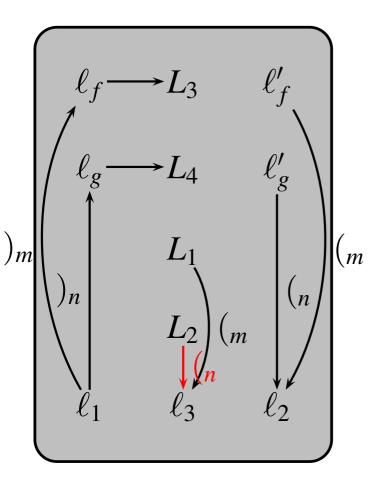
р



$$\begin{split} &| \text{et } f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle} \text{ in } \\ &| \text{et } g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle} \text{ in } \\ &| \text{et } p = \text{if } \dots \text{ then } \\ &| \text{pack}^m(f^j, \mathbf{1}^{\langle L_1 \rangle}) \\ &| \text{else} \\ &| p \text{ack}^n(g^k, 2^{\langle L_2 \rangle}) \\ &| \text{in } \\ &| \text{unpack } (p1, p2) = p \text{ in } \\ &| p1 \\ p2 \\ \\ p: (int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle} \end{split}$$

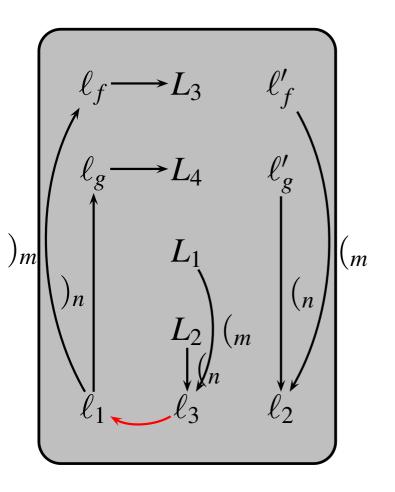


let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ...$ then
pack^m $(f^j, 1^{\langle L_1 \rangle})$
else
packⁿ $(g^k, 2^{\langle L_2 \rangle})$
in
unpack $(p1, p2) = p \ln^n p1 p2$
p: $(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$



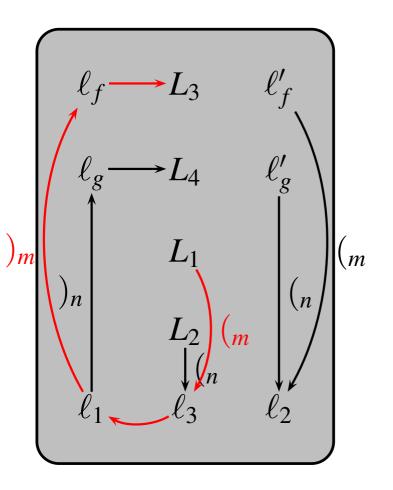
let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ... \text{then}$
 $pack^m (f^j, 1^{\langle L_1 \rangle})$
else
 $pack^n (g^k, 2^{\langle L_2 \rangle})$
in
unpack $(p1, p2) = p$ in
 $p1 p2$

p:
$$(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$$



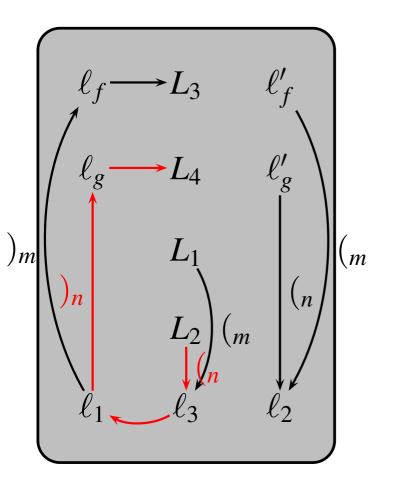
let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ... \text{then}$
 $pack^m (f^j, 1^{\langle L_1 \rangle})$
else
 $pack^n (g^k, 2^{\langle L_2 \rangle})$
in
unpack $(p1, p2) = p$ in
 $p1 p2$

p:
$$(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$$

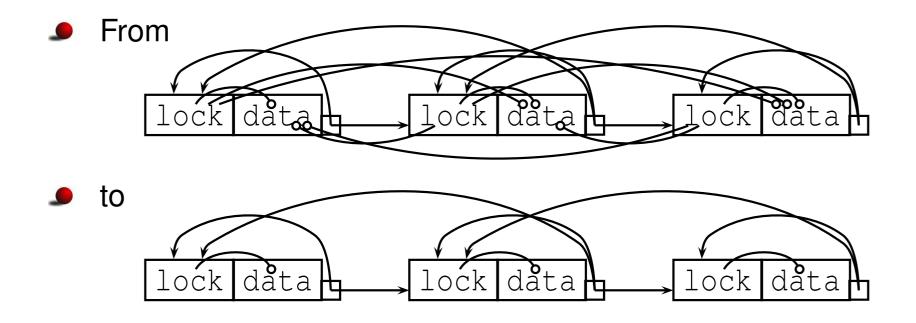


let
$$f = \lambda a^{\langle \ell_f \rangle} . (a + \langle L_3 \rangle 42)^{\langle \ell'_f \rangle}$$
 in
let $g = \lambda b^{\langle \ell_g \rangle} . (b - \langle L_4 \rangle 42)^{\langle \ell'_g \rangle}$ in
let $p = \text{if} ... \text{then}$
 $pack^m (f^j, 1^{\langle L_1 \rangle})$
else
 $pack^n (g^k, 2^{\langle L_2 \rangle})$
in
unpack $(p1, p2) = p$ in
 $p1 p2$

p:
$$(int^{\langle \ell_1 \rangle} \to int^{\langle \ell_2 \rangle}) \times int^{\langle \ell_3 \rangle}$$



Finally...



- Benefit
 - Internal flow is precisely modeled...
 - sum even when elements are conflated by static analysis

Differences

Existentials are first-class

- Can be passed around, across contexts before unpacking
- Our solution: restrict existentially quantified variables from escaping the unpack
- Quantified types can include other quantified types
 - Sometimes it is possible to quantify label ℓ both existentially and universally: $\forall \ell. \exists 0.int^{\ell}$ or $\forall 0. \exists \ell.int^{\ell}$
 - There is no optimal strategy that always yields smaller (more precise) flow
 - Our solution: existentials explicitly state which labels are quantified

Other Uses of Existentials

- Data structures containing:
 - Closures: a function together with its arguments
 - Objects: a set of functions together with a this pointer
 - Array bounds: an array with an int that corresponds to its length

_ ...

Conclusions

- Existential Label Flow Analysis
 - Better handling of data structures
- Dual to universal polymorphism
 - Use the same context-sensitivity techniques
 - "Copy" the constraints backwards, from use to definition
 - Inference of flow graph and solution in $O(n^3)$
- Proof of soundness
 - Formalized context-copying system, proved sound
 - Formalized CFL system, proved by reduction to copying
- Future work
 - Infer what can be existentially quantified
 - Allow flow to escape unpacks similarly to the universal case