
Lock Inference for Atomic Sections

Michael Hicks
University of Maryland, College Park

mwh@cs.umd.edu

Jeffrey S. Foster
University of Maryland, College Park

jfoster@cs.umd.edu

Polyvios Pratikakis
University of Maryland, College Park

polyvios@cs.umd.edu

Abstract
Software transactions allow the programmer to specify sections of
code that should be serializable, without the programmer needing
to worry about exactly how atomicity is enforced. Recent research
proposes using optimistic concurrency to implement transactions.
In this short paper, we propose a pessimistic lock-based technique
that uses the results of static whole-program analysis to enforce
atomicity. The input to our analysis is a program that contains
programmer-specified atomic sections and calls to fork. We present
a sharing inference algorithm that uses the results of points-to anal-
ysis to determine which memory locations are shared. Our analy-
sis usescontinuation effectsto track the locations accessed after a
point in the program. This allows data to be thread-local before a
fork and thread-shared afterward. We then present a mutex infer-
ence algorithm that determines a sufficient set of locks to guard ac-
cesses to shared locations. After mutex inference, a compiler adds
the appropriate lock acquires and releases to the beginning and end
of atomic sections. Our algorithm is efficient, and provides paral-
lelism according to precision of the alias analysis while minimizing
the number of required locks.

1. Introduction
Concurrent programs strive to balancesafetyand liveness. Pro-
grammers typically ensure safety by, among other things, using
blocking synchronization primitives such as mutual exclusion locks
to restrict concurrent accesses to data. Programmers ensure liveness
by reducing waiting and blocking as much as possible, for exam-
ple by using more mutual exclusion locks at a finer granularity.
Thus these two properties are in tension: ensuring safety can re-
sult in reduced parallelism and at worst in deadlock, compromising
liveness, while ensuring liveness could permit concurrent access to
an object (a data race), potentially compromising safety. Balancing
this tension manually can be quite difficult, particularly since tradi-
tional uses of blocking synchronization are not modular, and thus
the programmer must reason about the entire program’s behavior.

Software transactionspromise to improve this situation. A
transaction is a programmer-designated section of code that should
be serializable, so that its execution appears atomic with re-
spect to the other atomic sections in the program. Assuming all
concurrently-shared data is accessed within atomic sections, the
compiler and runtime system guarantee freedom from data races
and deadlocks automatically. Thus, transactions are composable—
they can be reasoned about in isolation, without worry that an
ill-fated combination of atomic sections could deadlock. This frees
programmers from many low-level concerns.

Recent research proposes to implement atomic sections using
optimistic concurrency techniques [5, 7, 13, 6, 12]. Roughly speak-
ing, memory accesses within a transaction are logged, and the log
must be consistent with the current state of memory at the con-
clusion of the transaction; if not, the transaction is rolled back and
restarted. The main drawback with this approach are that it does not

interact well with I/O, which cannot always be rolled back. While
performance can be quite good [12], optimistic concurrency perfor-
mance can also be quite a bit slower than traditional techniques due
to the costs of logging and rollback [9].

In this short paper, we explore using pessimistic techniques
based on the results of a static program analysis to implement
atomic sections. We assume a program contains occurrences of
fork e for creating multiple threads and programmer-annotated
atomic sectionsatomic e for protecting shared data. For such a
program, our algorithm automatically constructs a set of locks and
inserts the necessary lock acquires and releases before and after
statements ins to enforce atomicity while avoiding deadlock. An
important goal of our algorithm is to maximize parallelism. A triv-
ial implementation would be to begin and end all atomic sections
by, respectively, acquiring and releasing a single global lock. We
present an improved algorithm that uses much finer locking but still
enforces atomicity. We present an overview of our algorithm next,
and describe it in detail in the rest of the paper.

1.1 Overview

The main idea of our approach is simple. Suppose we perform a
points-to analysis on the program. This maps each pointer in the
program to an abstract name that represents the memory pointed to
at run time. Then we can create one mutual exclusion lock for each
abstract name from the alias analysis and use it to guard accesses
to the corresponding run-time memory locations. At the start of
each atomic section, the compiler inserts code to acquire all locks
that correspond to the abstract locations accessed within the atomic
section. The locks are released when the section concludes. To
avoid deadlock, locks are always acquired according to a statically-
assigned total order. Since atomic sections might be nested, locks
must also be reentrant. Moreover, locations accessed within an
inner section are considered accessed in its surrounding sections,
to ensure that the global order is preserved.

This approach ensures that no locations are accessed without
holding their associated lock. Moreover, locks are not released
during execution of an atomic section, and hence all accesses to
locations within that section will be atomic with respect to other
atomic sections [4]. Our algorithm assumes that shared locations
are only accessed within atomic sections; this can be enforced with
a small modification of our algorithm, or by using a race detection
tool such as Locksmith [10] as a post-pass.

The algorithm we present here performs two optimizations over
the basic approach sketched above. First, we reduce our consider-
ation to only those abstract locations that may be shared between
threads, since thread-local locations need not be protected by syn-
chronization. Second, we observe that some locks may be coa-
lesced. In particular, if lock̀ is always held with lock̀ ′, then lock
`′ can safely be discarded.

We implement this approach in two main steps. First, we use
a context-sensitive points-to and effect [8] analysis to determine
the shared abstract locations as well as the locations accessed

1 2006/4/14

expressions e ::= x | v | e1 e2 | ref e | ! e | e1 := e2

| if0 e0 then e1 else e2

| forki e | atomici e
values v ::= n | λx.e
types τ ::= int | ref ρ τ | (τ, ε) →χ (τ ′, ε′)
labels l ::= ρ | ε | χ
constraints C ::= ∅ | {l ≤ l′} | C ∪ C

Figure 1. Source Language, Types, and Constraints

within an atomic section (Section 2). The points-to analysis is flow-
insensitive, but the effect analysis calculates per-program point
continuation effectsthat track the effect of the continuation of an
expression. Continuation effects let us model that only locations
that are usedafter a call tofork are shared. This sharing infer-
ence is also used by Locksmith, a race detection tool for C pro-
grams [10]. The sharing analysis presented here is essentially un-
changed from Locksmith’s sharing analysis, which has not been
presented formally before.

Second, given the set of shared locations, we performmutex in-
ferenceto determine an appropriate set of locks to guard accesses
to the shared locations (Section 3). This phase includes a straight-
forward algorithm that performs mutex coalescence, to reduce the
number of locks while retaining the maximal amount of paral-
lelism. Our algorithm starts by assuming one lock per shared lo-
cation and iteratively coarsens this assignment, dropping unneeded
locks. The algorithm runs in timeO(mn2), wheren is the number
of shared locations in the program andm is the number of atomic
sections. We show that the resulting locking discipline provides ex-
actly the same amount of parallelism as the original, non-coalesced
locking discipline, while at the same time potentially uses many
fewer locks.

The remainder of the paper describes our lock inference algo-
rithm in detail.

2. Shared Location Inference
Figure 1 shows the source language we use to illustrate our infer-
ence system. Our language is a lambda calculus extended with inte-
gers, comparisons, updatable references, thread creationforki e,
and atomic sectionsatomici e; in the latter two cases thei is an
index used to refer to the analysis results. The expressionforki e
creates a new child thread that evaluatese and discards the result,
continuing with normal evaluation in the parent thread. Our ap-
proach can easily be extended to support polymorphism and poly-
morphic recursion in a standard way [11], as Locksmith does [10],
but we omit rules for polymorphism because they add complication
but no important issues.

We use a type-based analysis to determine the set of abstract lo-
cationsρ, created byref, that could be shared between threads in
some programe. We compute this using a modifiedlabel flow anal-
ysis[10, 11]. Our system uses two kinds of labels:location labelsρ
andeffectsε andχ, which represent those locationsρ dereferenced
or assigned to during a computation. Typing a program generates
label flow constraintsl ≤ l′ and afterward these constraints are
solved to learn the desired information. The constraintl ≤ l′ is
read “labell flows to labell′.” For example ifx has typeref ρ τ ,
and we have constraintsρ′ ≤ ρ andρ′′ ≤ ρ, thenx may point to
the locationsρ′ or ρ′′.

The typing judgment has the following form

C; ε; Γ ` e : τχ; ε′

This means that in type environmentΓ, expressione has effect
typeτχ given constraintsC. Effect typesτχ consist of a simple
type τ annotated with the effectχ, which approximates the effect
of evaluatinge at run time. Within the type rules, the judgment
C ` l ≤ l′ indicates thatl ≤ l′ can be proven by the constraint set
C. In an implementation, such judgments cause us to “generate”
constraintl ≤ l′ and add itC. Because we assume a call-by-
value semantics, all of the assumptions in type environmentΓ refer
to values, and thus are given simple types. Simple types include
standard integer types; updatable reference typesref ρ τ , which is
decorated with a location labelρ; and function types of the form
(τ, ε) →χ (τ ′, ε′), whereτ andτ ′ are the domain and range types,
andχ is the effect of calling the function. We explainε′ andε on
function types momentarily.

The judgmentC; ε; Γ ` e : τχ; ε′ is standard for effect infer-
ence except forε andε′, which expresscontinuation effects. Here,
ε is theinput effect, which denotes locations that may be accessed
during or after evaluation ofe. Theoutput effectε′ contains loca-
tions that may be accessedafterevaluation ofe (thus all locations in
ε′ will be in ε). We use continuation effects in the rule forfork e
to determine sharing. In particular, we infer that a location is shared
if it is in the input effect of the child thread and the output effect
of thefork (and thus may be accessed subsequently in the parent
thread).

Returning to the explanation of function types, the effect label
ε′ denotes the set of locations accessed after the function returns,
while ε denotes those locations accessed after the function is called,
including any locations inε′.

Example Consider the following program:

let x = ref 0 in
let y = ref 1 in

x := 4;
fork1 (! x; ! y);
/ ∗ (1) ∗ /
y := 5

In this program two variablesx andy refer to memory locations.x
is initialized and updated, but then is handed off to the child thread
and no longer used by the parent thread. Hencex can be treated as
thread-local. On the other hand,y is used both by the parent and
child thread, and hence must be modeled as shared.

Because we use continuation effects, we model this situation
precisely. In particular, the input effect of the child thread is to read
x andy. The effect of the output effect of the fork (i.e. starting at
(1)) is to writey. Thus we determine that onlyy is shared. If instead
we had used regular effects, and we simply intersected the effect of
the parent thread with the child thread, we would think thatx was
shared even though it is handed off and never used again by the
parent thread.

2.1 Type Rules

Figure 2 gives the type inference rules for sharing inference. We
discuss the rules briefly. [Id] and [Int] are straightforward. Notice
that since neither accesses any locations, the input and output
effects are the same, and their effectχ is unconstrained (and hence
will be empty during constraint resolution). In [Lam], we pick some
labelsεin andεout for the input and output effects of the function,
and bind them in the type. Notice that the input and output effects of
λx.e are both justε, since the definition itself does not access any
locations—the code ine will only be evaluated when the function
is applied. Finally, the effectχ of the function is drawn from the
effect ofe.

In [App], the output effectε1 of evaluatinge1 becomes the input
effect of evaluatinge2. This implies a left-to-right order of evalua-

2 2006/4/14

[Id]
C; ε; Γ, x : τ ` x : τχ; ε

[Int]
C; ε; Γ ` n : intχ; ε

[Lam]
C; εin; Γ, x : τin ` e : τχ

out; εout

C; ε; Γ ` λx.e : (τin, εin) →χ (τout, εout); ε

[App]

C; ε; Γ ` e1 : τχ
fun; ε1

τfun = (τin, εin) →χ (τout, εout)
C; ε1; Γ ` e2 : τχ

in; εin

C; ε; Γ ` e1 e2 : τχ
out; εout

[Cond]

C; ε; Γ ` e0 : intχ; ε0

C; ε0; Γ ` e1 : τχ; ε′

C; ε0; Γ ` e2 : τχ; ε′

C; ε; Γ ` if0 e0 then e1 else e2 : τχ; ε′

[Ref]
C; ε; Γ ` e : τχ; ε′

C; ε; Γ ` ref e : (ref ρ τ)χ; ε′

[Deref]

C; ε; Γ ` e : (ref ρ τ)χ; ε′

C ` ρ ≤ ε′ C ` ρ ≤ χ

C; ε; Γ ` ! e : τχ; ε′

[Assign]

C; ε; Γ ` e1 : (ref ρ τ)χ; ε1

C; ε1; Γ ` e2 : τχ; ε2

C ` ρ ≤ ε2 C ` ρ ≤ χ

C; ε; Γ ` e1 := e2 : τχ; ε2

[Sub]

C; ε; Γ ` e : τχ; ε′

C ` τ ≤ τ1 C ` χ ≤ χ1 C ` ε′′ ≤ ε′

C; ε; Γ ` e : τχ1
1 ; ε′′

[Fork]

C; εi
e; Γ ` e : τχ; ε′

e

C ` εi
e ≤ ε C ` εi ≤ ε

C; ε; Γ ` forki e : intχ′
; εi

[Atomic]
C; ε; Γ ` e : τχi

; ε′

C; ε; Γ ` atomici e : τχi

; ε′

Figure 2. Type Inference Rules

tion: Any locations that may be accessed during or after evaluating
e2 also may be accessed after evaluatinge1. The function is invoked
aftere2 is evaluated, and hencee2’s output effect must beεin from
the function signature. [Sub], described below, can always be used
to achieve this. Finally, notice that the effect of the application is
the effectχ of evaluatinge1, evaluatinge2, and calling the func-
tion. [Sub] can be used to make these effects the same.

[Cond] is similar to [App], where one ofe1 or e2 is evaluated
after e0. We require both branches to have the same output effect
ε′ and regular effectχ, and again we can use [Sub] to achieve this.

[Ref] creates and initializes a fresh location but does not have
any effect itself. This is safe because we know that locationρ
cannot possibly be shared yet. In an actual implementation we
always pick location labelρ to be a fresh label. [Deref] accesses
locationρ aftere is evaluated, and hence we require thatρ is in the
continuation effectε′ of e, expressed by the judgmentC ` ρ ≤ ε′.
In addition we requireρ ≤ χ. Note that [Sub] can be applied before

[Sub-Int]
C ` int ≤ int

[Sub-Ref]
C ` ρ1 ≤ ρ2 C ` τ1 ≤ τ2 C ` τ2 ≤ τ1

C ` ref ρ1 τ1 ≤ ref ρ2 τ2

[Sub-Fun]

C ` τ2 ≤ τ1 C ` τ ′
1 ≤ τ ′

2

C ` ε1 ≤ ε2 C ` ε′
2 ≤ ε′

1 C ` χ1 ≤ χ2

C ` (τ1, ε1) →χ1 (τ ′
1, ε

′
1) ≤ (τ2, ε2) →χ2 (τ ′

2, ε
′
2)

Figure 3. Subtyping Rules

applying [Deref] so that this does not constrain the effect ofe. The
rule for [Assign] is similar.

Notice that the output effect of! e is the same the effectε′ of e.
This is conservative becauseρ must be included inε′ but may not
be accessed again following the evaluation of! e. However, in this
case we can always apply [Sub] to remove it.

[Sub] introduces sub-effecting to the system. In this rule, we
implicitly allow χ1 andε′′ to be fresh labels. In this way we can
always match the effects of subexpressions, e.g., ofe1 ande2 in
[Assign], by creating a fresh variableχ and lettingχ1 ≤ χ and
χ2 ≤ χ by [Sub], whereχ1 and χ2 are effects ofe1 and e2.
Notice that subsumption on continuation effects is contravariant:
whatever output effectε′′ we give toe, it must be included in its
original effectε′. [Sub] also introduces subtyping via the judgment
C ` τ ≤ τ ′, as shown in Figure 3. The subtyping rules are standard
except for the addition of effects in [Sub-Fun]. Continuation effects
are contravariant to the direction of flow of regular types, similarly
to the output effects in [Sub].

[Fork] models thread creation. The regular effectχ′ of the
fork is unconstrained, since in the parent thread there is no effect.
The continuation effectεi

e captures the effect of the child thread
evaluatinge, and the effectεi captures the effect of the rest of
the parent thread’s evaluation. To infer sharing, we will compute
εi

e∩εi; this is the set of locations that could be accessed by both the
parent and child thread after the fork. Notice that the input effect
εi

e of the child thread is included in the input effect of thefork
itself. This effectively causes a parent to “inherit” its child’s effects,
which is important for capturing sharing between two child threads.
Consider, for example, the following program:

let x = ref 0 in

fork1 (! x);
/ ∗ (1) ∗ /
fork2 (x := 2)

Notice that whilex is created in the parent thread, it is only ac-
cessed in the two child threads. Letρ be the location ofx. Thenρ
is included in the continuation effect at point (1), because the effect
of the child threadfork2 x := 2 is included in the effect of the
call at (1). Thus when we compute the intersection of the input ef-
fect offork1 ! x with the output effect of the parent (which starts
at (1)), the result will containρ, which we will hence determine to
be shared.

Finally, [Atomic] models atomic sections, which have no effect
on sharing. During mutex inference, we will use the solution to the
effectχi of each atomic section to infer the needed locks. Notice
that the effect ofatomici e is the same as the effect ofe; this will
ensure that atomic sections compose properly and not introduce
deadlock.

Soundness Standard label flow and effect inference has been
shown to be sound [8, 11], including polymorphic label flow in-

3 2006/4/14

ference. We believe it is straightforward to show that continuation
effects are a sound approximation of the locations accessed by an
expression.

2.2 Computing Sharing

After applying the type inference rules in Figures 2 and 3, we are
left with a set of label flow constraintsC. We can think of these
constraints as forming a directed graph, where each label forms a
node and constraintsl ≤ l′ is represented as a directed edge froml
to l′. Then for each labell, we can compute the setS(l) of location
labelsρ that “flow” to l by transitively closing the graph. This can
be done by performing one depth-first search for each node in the
graph. The total time isO(n2), wheren is the number of nodes
in the graph. (Given a polymorphic inference system, we could
compute label flow using context-free language reachability in time
cubic in the size of the type-annotated program.)

Once we have computedS(l) for all labels l, we visit each
forki in the program. Then the set of shared locations for the
programsharedis given by

shared=
⋃
i

(S(εi) ∩ S(εe
i))

In other words, any locations accessed in the continuation of a
parent and its child threads at afork are shared.

3. Mutex Inference
Given the set of shared locations, the next step of our algorithm is
to compute a set of locks to use to guard all of the shared locations.
A simple and correct solution is to associate a lock`ρ with each
shared locationρ ∈ shared. Then at the beginning to a section
atomici e, we acquire all locks associated with locations inχi. To
prevent deadlock, we also impose a total ordering on all the locks,
acquiring the locks in that order.

This approach is sound and in general allows more parallelism
than the naive approach of using a single lock for all atomic sec-
tions.1 However, a program of sizen may haveO(n) locations,
and acquiring that many locks would introduce unwanted over-
head, particularly on a multi-processor machine. To improve this
basic approach while retaining the same level of parallelism, we
can exploit the following observation: if two locations are always
accessed together, then they can be protected by the same mutex
without any loss of parallelism.

DEFINITION 1 (Dominates).We say that accesses to locationρ
dominateaccesses to locationρ′, written ρ ≥ ρ′, if every atomic
section containing an access toρ′ also contains an access toρ.

We write ρ > ρ′ for strict domination, i.e.,ρ ≥ ρ′ andρ 6= ρ′.
Thus, wheneverρ > ρ′ we can simply acquireρ’s mutex in
an atomic section, since doing so will implicitly protectρ′ as
well. Notice that the dominates relationship is not symmetric. For
example, we might have a program containing two atomic sections,
atomic (! x; ! y) andatomic ! x. In this program, the location of
x dominates the location ofy but not vice-versa. Domination is
transitive, however.

Computing the dominates relationship is straightforward. For
each locationρ, we initially assumeρ > ρ′ for all locationsρ′.
Then for eachatomici e in the program, ifρ′ ∈ S(χi) but
ρ 6∈ S(χi), then we remove our assumptionρ > ρ′. This takes
time O(m|shared|), wherem is the number of atomic sections.
Thus in total this takes timeO(m|shared|2) for all locations.

1 If we had a more discerning alias analysis, or if we acquired the locks
piecemeal within the atomic section, rather than all at the start [9], we would
do better. We consider this issue at the end of the next section.

Given the dominates relationship, we can then compute a set of
locks to guard shared locations using the following algorithm:

ALGORITHM 2 (Mutex Selection).Computes a mappingL : ρ →
` from locationsρ to lock names̀.

1. For eachρ ∈ shared, setL(ρ) = `ρ

2. For eachρ ∈ shared
3. If there existsρ′ > ρ, then
4. For eachρ′′ such thatL(ρ′′) = `ρ

5. L(ρ′′) := `ρ′

In each step of the algorithm, we pick a locationρ and replace all
occurrences of its lock by a lock of any of its dominators. Notice
that the order in which we visit the set of locks is unspecified, as is
the particular dominator to pick. We prove below that this algorithm
gives us an optimal result, no matter the ordering. Mutex selection
takes timeO(|shared|2), since for each locationρ we must examine
L for every other shared location.

The combination of computing the dominates relationship and
mutex selection yields mutex inference. We pick a total ordering on
all the locks inrange(L). Then we replace eachatomici e in the
program with code that first acquires all the locks inL(S(χi)) in
order, performs the actions ine, and then releases all the locks. Put
together, computing the dominates relationship and mutex selection
takesO(m|shared|2) time.

Examples To illustrate the algorithm, consider the set of accesses
of the atomic sections in the program. For clarity we simply list
the accesses, using English letters to stand for locations. For illus-
tration purposes we also assume all locations are shared. For a first
example, suppose there are three atomic sections with the following
pattern of accesses

{a} {a, b} {a, b, c}
Then we havea > b, a > c, andb > c. Initially L(a) = `a,
L(b) = `b, and L(c) = `c. Suppose in the first iteration of
the algorithm locationc is chosen, and we pickb > c as the
dominates relationship to use. Then after one iteration, we will have
L(c) = `b. Then eventually we will pick locationb with a > b,
and setL(b) = L(c) = L(a) = `a. It is easy to see that this
same solution will be computed no matter the choices made by the
algorithm. And this solution is what we want: Sinceb and c are
always accessed along witha, we can eliminateb’s lock andc’s
lock.

As another example, suppose we have the following access
pattern:

{a} {a, b, c} {b}
Then we havea > c andb > c. The only interesting step of the
algorithm is when it visits nodec. In this case, the algorithm can
either setL(c) = `a or L(c) = `b. However,̀ a and`b are still kept
disjoint. Hence upon entering the left-most section`a is acquired,
and upon entering the right-most section`b is acquired. Thus the
left- and right-most sections can run concurrently with each other.
Upon entering the middle section we must acquire both`a and`b—
and hence no matter what choice the algorithm made forL(c), the
lock guarding it will be held.

This second example shows why we do not use a naive approach
such as unifying the locks of all locations accessed within an atomic
section. If we did so here and we would chooseL(a) = L(b) =
L(c). This answer would be safe but we could not concurrently
execute the left-most and right-most sections.

3.1 Correctness and Optimality

It should be clear that the algorithm for computing the dominates
relationship is correct. Recall that the goal of mutex selection is to

4 2006/4/14

ensure that no shared location can be accessed without at least one
lock consistently held. We can define this formally as follows, with
respect to the alias analysis. LetSi = S(χi), whereχi is the effect
of atomic sectionatomici e.

DEFINITION 3 (Parallelism).The parallelism of a program is a set

P = {(i, j) | Si ∩ Sj = ∅}

In other words, the parallelism of a program is all possible pairs of
atomic sections that could execute completely in parallel because
they access no common locations. We defineL(Si) = {L(ρ) | ρ ∈
Si}.

DEFINITION 4 (Parallelism ofL). Theparallelismof a mutex se-
lection functionL : ρ → `, writtenP (L), is defined as

P (L) = {(i, j) | L(Si) ∩ L(Sj) = ∅}

In words,P (L) is all possible pairs of atomic sections that could
execute in parallel because they have no common associated locks.

Let L be the mutex selection function calculated by our algo-
rithm.

LEMMA 1. If L(ρ) = `ρ′ , thenρ′ ≥ ρ.

PROOF. We prove this by induction on the number of iterations
of step 2 of the algorithm. Clearly this holds for the initial mutex
selection functionL0(ρ) = `ρ. Then suppose it holds forLk,
the selection function afterk iterations of step 2. For an arbitrary
ρ1 ∈ shared, there are two cases:

1. If Lk(ρ1) = `ρ then Lk+1(ρ1) = `ρ′ . By induction ρ ≥
ρ1, and sinceρ′ > ρ by assumption, we haveρ′ ≥ ρ1 by
transitivity.

2. Otherwise, there exists someρ2 such thatLk(ρ1) = Lk+1(ρ1) =
`ρ2 , and hence by inductionρ2 ≥ ρ1.

LEMMA 2 (Correctness and Optimality).We claimP (L) = P . In
other words, the algorithm will not let more sections execute in
parallel than allowed, and it allows as much parallelism as the
uncoalesced, one-lock-per-location approach.

PROOF. We prove this by induction on the number of iterations of
step 2 of the algorithm. For the base case, the initial mutex selection
functionL0(ρ) = `ρ clearly satisfies this property, because there is
a one-to-one mapping between each location and each lock. For the
induction step, assumeP = P (Lk) and for step 2 we haveρ′ > ρ.
Let Lk+1 be the mutex selection function after this step. Pick anyi
andj. Then there are two directions to show.

(Correctness) SupposeSi ∩ Sj 6= ∅. Then clearly there is a
ρ′′ ∈ Si ∩ Sj , and so triviallyLk+1(Si) ∩ Lk+1(Sj) 6= ∅.

(Optimality) Otherwise supposeSi ∩ Sj = ∅. ThenLk(Si) ∩
Lk(Sj) = ∅, and we haveLk+1(Si) = Lk(Si)[`ρ 7→ `ρ′], and
similarly for Lk+1(Sj). Suppose that̀ρ 6∈ Lk(Si) and `ρ 6∈
Lk(Sj). Then clearlyLk+1(Si) ∩ Lk+1(Sj) = ∅. Otherwise
suppose without loss of generality that`ρ ∈ Lk(Si). Then by
assumptioǹ ρ 6∈ Lk(Sj). So clearly the renaming[`ρ 7→ `ρ′]
cannot add̀ ρ′ to Lk+1(Sj). Thus in order to showLk+1(Si) ∩
Lk+1(Sj) = ∅, we need to shoẁρ′ 6∈ Lk(Sj).

Since`ρ ∈ Lk(Si), we know there exists aρ′′ ∈ Si such that
Lk(ρ′′) = `ρ, which by Lemma 1 impliesρ ≥ ρ′′. But then since
ρ′ > ρ, we haveρ′ ∈ Si. But sinceSi ∩ Sj = ∅, we haveρ′ 6∈ Sj .
So suppose for a contradiction that`ρ′ ∈ Lk(Sj). Then there must
be aρ′′ ∈ Sj such thatLk(ρ′′) = `ρ′ . But then by Lemma 1, we
haveρ′ ≥ ρ′′. But thenρ′ ∈ Sj , a contradiction. Hence we must
have`ρ′ 6∈ Lk(Sj), and thereforeLk+1(Si) ∩ Lk+1(Sj) = ∅.

4. Discussion
One restriction of our analysis is that it always produces a finite
set of locks, even though programs may use an unbounded amount
of memory. Consider the case of a linked list in which atomic
sections only access the data in one node of the list at a time. In
this case, we could potentially add per-node locks plus one lock
for the list backbone. In our current algorithm, however, since
all the lock nodes are aliased we would instead infer only the
list backbone lock and use it to guard all accesses to the nodes.
Locksmith [10] provides special support for the per-node lock case
by using existential types, and we have found it improves precision
in a number of cases. It would be useful to adapt our approach
to infer these kinds of locks within data structures. One challenge
in this case is maintaining lock ordering, since locks would be
dynamically generated. One choice would be to use the run-time
address of the lock as part of the order.

Our algorithm is correct only if all accesses to shared locations
occur within atomic sections [4]. Otherwise, some location could
be accessed simultaneously by concurrent threads, creating a data
race and violating atomicity. We could address this problem in two
ways. The simplest thing to do would be to run Locksmith on the
generated code to detect whether any races exist. Alternatively,
we could modify the sharing analysis to distinguish two kinds of
effects: those within an atomic section, and those outside of one. If
some locationρ is in the latter category, andρ ∈ shared, then we
have a potential data race we can signal to the programmer.

We are currently building an implementation of our algorithm
as part of Locksmith. Our approach is good fit for handling con-
currency in Flux [1], a component language for building server ap-
plications. Flux defines concurrency at the granularity of individual
components, which essentially a kind of function. The programmer
can then specify which components (or compositions of compo-
nents) must execute atomically, and our tool will do the rest. Right
now, programmers have to specify locking manually.

Our work is closely related to McCloskey et al’s Autolocker
[9], which also seeks to use locks to enforce atomic sections. There
are two main differences between our work and theirs. First, Au-
tolocker requires programmers to annotate potentially shared data
with the lock that guards that location. In our approach, such a lock
is inferred automatically. However, in Autolocker, programmers
may specify per-node locks, as in the above list example. Second,
Autolocker may not acquire all locks at the beginning of an atomic
section, as we do, but rather delay until the protected data is actu-
ally dereferenced for the first time. This admits better parallelism,
but makes it harder to ensure the lack of deadlock. Our approaches
are complementary: our algorithm could generate the needed locks
and annotations, and then use Autolocker for code generation.

Flanagan et al [3] have studied how to infer sections of Java
programs that behave atomically, assuming that all synchroniza-
tion has been inserted manually. Conversely, we assume the pro-
grammer designates the atomic section, and we infer the synchro-
nization. Later work by Flanagan and Freund [2] looks at adding
missing synchronization operations to eliminate data races or atom-
icity violations. However, this approach only works when a small
number of synchronization operations are missing.

5. Conclusion
We have presented a system for inferring locks to support atomic
sections in concurrent programs. Our approach uses points-to and
effects analysis to infer those locations that are shared between
threads. We then use mutex inference to determine an appropriate
set of locks for protecting accesses to shared data within an atomic
section. We have proven that mutex inference provides the same
amount of parallelism as if we had one lock per location.

5 2006/4/14

In addition to the aforementioned ideas for making our approach
more efficient, it would be interesting to understand how optimistic
and pessimistic concurrency controls could be combined. In partic-
ular, the former is much better and handling deadlock, while the lat-
ter seems to perform better in many cases [9]. Using our algorithm
could help reduce the overhead and limitations (e.g., handling I/O)
of an optimistic scheme while retaining its liveness benefits.

References
[1] B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and M. D. Corner.

Flux: A Language for Programming High-Performance Servers. In
In Proceedings of the Usenix Annual Technical Conference, 2006. To
appear.

[2] C. Flanagan and S. N. Freund. Automatic synchronization correction.
In Synchronization and Concurrency in Object- Oriented Languages
(SCOOL), Oct. 2005.

[3] C. Flanagan, S. N. Freund, and M. Lifshin. Type Inference for
Atomicity. In TLDI, 2005.

[4] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity.
In PLDI, 2003.

[5] T. Harris and K. Fraser. Language support for lightweight transac-
tions. InOOPSLA ‘O3, pages 388–402, Oct. 2003.

[6] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. InPPoPP ‘05, June 2005.

[7] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III. Software
transactional memory for dynamic-sized data structures. InPODC
‘03, pages 92–101, July 2003.

[8] J. M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In
POPL, 1988.

[9] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
synchronization inference for atomic sections. InPOPL ’06:
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 346–358, New York,
NY, USA, 2006. ACM Press.

[10] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-Sensitive
Correlation Analysis for Race Detection. InProceedings of the 2006
PLDI, Ottawa, Canada, June 2006. To appear.

[11] J. Rehof and M. F̈ahndrich. Type-Based Flow Analysis: From
Polymorphic Subtyping to CFL-Reachability. InPOPL, 2001.

[12] M. F. Ringenburg and D. Grossman. Atomcaml: First-class atomicity
via rollback. InICFP ‘05, pages 92–104, Sept. 2005.

[13] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors
for concurrent objects. InECOOP ‘O4, Oslo, Norway, 2004.

6 2006/4/14

