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Introduction

Concurrent programming is “notoriously difficult”

More parallelism is good, too much is wrong

Less parallelism is easier, but it slows down the program

Synchronization is done using locks

Locks are difficult to program

Alternative, higher level synchronization abstraction: atomic
sections
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Atomic Sections

int x, y;

thread1() {

atomic {

x = 42;

y = 43;

}

}

thread2() {

atomic {

x = 44;

}

}

Atomic sections usually use optimistic concurrency

This work: atomic sections with pessimistic concurrency
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LOCKPICK at a glance

Find all memory locations ρ that are shared between threads

Create a mutex `ρ for each memory location ρ
Create a total ordering on all `ρ to avoid deadlock

For every atomic block, if ρ is referenced, then acuire `ρ at the
beginning

Find and remove unnecessary locks

Maintain maximum parallelism (for the given points-to
analysis)

, with small number of locks
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Create a total ordering on all `ρ to avoid deadlock

For every atomic block, if ρ is referenced, then acuire `ρ at the
beginning

Find and remove unnecessary locks

Maintain maximum parallelism (for the given points-to
analysis)

, with small number of locks

Inefficient: large number of locations ⇒ large number of locks
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LOCKPICK at a glance

Find all memory locations ρ that are shared between threads

Create a mutex `ρ for each memory location ρ
Create a total ordering on all `ρ to avoid deadlock

For every atomic block, if ρ is referenced, then acuire `ρ at the
beginning

Find and remove unnecessary locks

Maintain maximum parallelism (for the given points-to
analysis)

, with small number of locks

Inefficient: many locations are always referenced together
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LOCKPICK at a glance

Find all memory locations ρ that are shared between threads

Create a mutex `ρ for each memory location ρ
Create a total ordering on all `ρ to avoid deadlock

For every atomic block, if ρ is referenced, then acuire `ρ at the
beginning

Find and remove unnecessary locks

Maintain maximum parallelism (for the given points-to
analysis)

, with small number of locks
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Example

int x, y;

thread1() { atomic {

x = 42;

y = 43;

} }

thread2() { atomic {

x = 44;

} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.
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int x, y;

mutex t Lx, Ly;
thread1() { atomic {

x = 42;

y = 43;

} }
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Example

int x, y;

mutex t Lx, Ly;
thread1() { atomic {

lock(Lx); lock(Ly);

x = 42;

y = 43;

} }

thread2() { atomic {

x = 44;

} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.
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Example

int x, y;

mutex t Lx, Ly;
thread1() { atomic {

lock(Lx); lock(Ly);

x = 42;

y = 43;

unlock(Lx); unlock(Ly);

} }

thread2() { atomic {

x = 44;

} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.
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Example

int x, y;

mutex t Lx, Ly;
thread1() { atomic {

lock(Lx); lock(Ly);

x = 42;

y = 43;

unlock(Lx); unlock(Ly);

} }

thread2() { atomic {

lock(Lx);

x = 44;

unlock(Lx);
} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.
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Example

int x, y;

mutex t Lx, Ly;
thread1() { atomic {

lock(Lx); lock(Ly);

x = 42;

y = 43;

unlock(Lx); unlock(Ly);

} }

thread2() { atomic {

lock(Lx);

x = 44;

unlock(Lx);
} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.
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Example: The Dominates Algorithm

int x, y;

thread1() {

atomic {

x = 42;

y = 43;

}

}

thread2() {

atomic {

x = 44;

}

}
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Example: The Dominates Algorithm

int x, y;

thread1() {

atomic {

x = 42;

y = 43;

}

}

thread2() {

atomic {

x = 44;

}

}

Each atomic section dereferences a set of locations
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Example: The Dominates Algorithm

int x, y;

thread1() {

atomic α1{

x = 42;

y = 43;

}

}

thread2() {

atomic {

x = 44;

}

}

Each atomic section dereferences a set of locations
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atomic α2{
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}

}

Each atomic section dereferences a set of locations
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Example: The Dominates Algorithm

int x, y;

thread1() {

atomic α1{

x = 42;

y = 43;

}

}

thread2() {

atomic α2{

x = 44;

}

}

Each atomic section dereferences a set of locations Atomic section
α is a set of the locations it dereferences
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Example: The Dominates Algorithm

int x, y;

thread1() {

atomic α1{

x = 42;

y = 43;

}

}

thread2() {

atomic α2{

x = 44;

}

}

Each atomic section dereferences a set of locations Atomic section
α is a set of the locations it dereferences α1 = {x,y}, α2 = {x}
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Example: The Dominates Algorithm

int x, y;

thread1() {

atomic α1{

x = 42;

y = 43;

}

}

thread2() {

atomic α2{

x = 44;

}

}

Each atomic section dereferences a set of locations Atomic section
α is a set of the locations it dereferences α1 = {x,y}, α2 = {x}
x > y
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Remarks

Domination algorithm reduces the number of used locks

Always retains maximum parallelism

Sound: it never introduces races

May not find minimum number of locks

Minimizing the number of locks is NP-hard

Proof: reduction from Edge Clique Cover
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Example: Limitation of the algorithm

atomic {

x = 1;

y = 2;
}

atomic {

y = 3;

z = 4;

}

atomic {

z = 5;

x = 6;
}

α1 = {x,y} α2 = {y,z} α3 = {x,z}

No “dominates” relation holds

No parallelism possible

The program can be synchronized with one lock
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What is shared?

Inefficiency:

Atomic blocks might dereference many locations

Only a few are shared between threads

Optimization: Only protect shared locations

Find continuation effects

Intersect effects of threads to find shared locations
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Continuation Effects: Example

ε1

ε2

ε3

ε4

ε5

ε6

ε7

munge

int x, y;

main() {

x = 1;

pthread create(&thread1);

y = 2;

}

thread1() {

x = 42;

y = 43;

}
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Continuation Effects: Example

ε1

ε2

ε3

ε4

ε5

ε6

ε7

munge

int x, y;

main() {

x = 1;

pthread create(&thread1);

y = 2;

}

thread1() {

x = 42;

y = 43;

}

shared = ε4 ∩ ε6 = {y}
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Conclusions

Contributions:

Atomic sections can be implemented with pessimistic
concurrency

Heuristic algorithm to reduce number of locks without losing
parallelism

Finding the minimum number of locks is NP-hard

Precise sharing analysis to further reduce needed locks

Implementation under construction: LOCKPICK

Fine grain locking for shared data-structures
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