Terracotta: Mining
' Temporal APl Rules
~ from Imperfect Traces

Jinlin Yang

University of Virginia
jinlin@cs.virginia.edu
NJPLS 11/18/2005

Collaborated with David Evans, Deepali
Bhardwaj, Thirumalesh Bhat, and Manuvir Das

Overview

* Problem: unavailability of specification is a big issue In
defect detection

Solution: automatically inferring specification from
execution traces

Results: better understanding of legacy code and finding
more defects
Experiments on Windows kernel APls and JBoss
Interesting Windows kernel API rules that should be checked
Many previously unknown bugs in Windows
Inferred behaviors of JBoss that are consistent with J2EE spec

11/18/2005 Jinlin Yang, NJPLS at UMD

Outline

Introduction

My approach

Preliminary experiment on Windows kernel APIs
Refinement of inference with new experimental results
Contributions, future work, and conclusion

11/18/2005 Jinlin Yang, NJPLS at UMD

Problem

Defect detection techniques require specifications

Generic properties

— E.g. absence of null-pointer dereference

— PREfix [Bush+, SP&EOO], PREfast, etc.

— Very effective

Application specific properties

— E.g. lock/unlock, resource creation/deletion

— LCLint [Evans, PLDI96], SLAM [Ball+, SPINO1], Vault [DeLine+,
PLDIO1], Type Qualifiers [Foster+, PLDIO2], ESP [Das+, PLDIOZ2],
ESC/JAVA [Flanagan+, PLDIO2], FindBugs [Hovemeyer+,
OOPSLAO04], Spec# [Barnett+, CASSIS04]

Such properties are rarely available

11/18/2005 Jinlin Yang, NJPLS at UMD

Temporal Properties

Example: Lock::Acq - > Lock::Rel

Why are they important?
— Essential for correctness

Applications

— Developers do care
« what sequence of functions should I call to access this resource?
 After calling function A, what other functions must (not) | call?

— Can be used to verify programs
Rarely available, hard to get right [Holzmann, FSEQ2]
How do we get such temporal properties?

11/18/2005 Jinlin Yang, NJPLS at UMD

Contributions

* A novel statistical approach for inferring temporal
properties from execution traces

 Combining automatic inference and verification together
by feeding inferred properties to ESP

e Demonstration of the usefulness and effectiveness of
this approach in realistic systems

11/18/2005 Jinlin Yang, NJPLS at UMD

Outline

« My approach

11/18/2005 Jinlin Yang, NJPLS at UMD

My Approach

Inferred
Properties

Instrumented Execution
Program W= Traces

CRIVETEIN
Buissasoid-1sod

=]
T
—
=S
c
=
@
-
—
Q
=,
o
=

Test Suite Property
Templates

Jinlin Yang and David Evans. Dynamically inferring temporal properties. PASTE ‘04.

11/18/2005 Jinlin Yang, NJPLS at UMD

An Example

e Alternating template
(PS)*, P!=S. P and S are parameters

P=Lock::acq

and m Lock::acq Lock::rel
S=Lock::rel

Lock::acq
Lock::rel

Lock::acq
Lock::rel P=Lock::rel

and m; Lock::rel Lock::acq (3
S=Lock::acq

11/18/2005 Jinlin Yang, NJPLS at UMD

Property Templates

Alternating
(PS)" For each pair of

two events

Decide if they
EffectFirst satisfy CauseFirst,

OneCause, or

OnekEffect

Derive the

OneCause CauseFirst OneEffect strictest pattern
S*(PS+)* (P+S+)* S*(P+S)~k

Response
S*(P+S+)*

Jinlin Yang and David Evans. Dynamically inferring temporal properties. PASTE ‘04.

| -
QO
-+
Q
| -
)
V)]

11/18/2005 Jinlin Yang, NJPLS at UMD

Implementation

e Terracotta
— Scalable statistical inference
— Context-aware analysis
— Heuristics for prioritizing and presenting
properties
 Complexity
— Time: O(nl), Space: O(n?)
— n: the number of distinct events
— |: the length of the trace

e Avallable at:
http://www.cs.virginia.edu/terracotta

11/18/2005 Jinlin Yang, NJPLS at UMD

Use in Program Evolution

Program
Version 1 \
Program /
Version 2

Inferred
Properties 1
Inferred
Properties 2

e EXperiments on six versions of OpenSSL
— Inferred an FSM conformant to the SSL specification
— Revealed previously known bugs
— ldentified intended improvements

9JuaJ9ju| alweuAq
lazAjeuy asualaiq

Different
Properties

Jinlin Yang and David Evans. Automatically inferring temporal properties for program evolution. ISSRE ‘04.

11/18/2005 Jinlin Yang, NJPLS at UMD 12

Use Iin Program Verification

Satisfaction
or Counter-
examples

‘ Inferred
Program - > : >
Properties

JBYLIBA

O
<
-
Q
3.
)
=1
—
D
=S
@
-
O
g

R

 Inferred properties for the Daisy file system, then
checked with Java PathFinder
— Found one race condition
— Revealed undocumented interesting differences of locking
discipline across layers of the system

Jinlin Yang and David Evans. Automatically Discovering Temporal Properties for Program Verification.
Technical Report, Department of Computer Science, University of Virginia, 2005.

11/18/2005 Jinlin Yang, NJPLS at UMD 13

Related Work

 Dynamic inference
— Daikon [Ernst, TSEO1]
Mining specification [Ammons, POPLO02]
FindLocks [Rose, SCPO0O5]
Encoding program executions [Reiss, ICSEQO1]
Recovering thread models [Cook, JSS04]

e Static inference
— Bugs as deviant behavior [Engler, SOSPO01]
Extracting component interfaces [Whaley, ISSTAO02Z]
Mining by examining exceptional path [Weimer, TACASO05]
Houdini [Flanagan, FMEO1]
Synthesizing API interfaces [Alur, POPLO5]
SALlInfer [Hackett, MSR-TR-05]

11/18/2005 Jinlin Yang, NJPLS at UMD

Limitations of Previous Work

Fail to find many important properties
— When the traces are produced from buggy programs
— Engler’s approach might miss properties of infrequent events

Find too many uninteresting properties
— Most inferred properties are useless

Too slow
— Trying to infer a complex FSM directly does not scale

This talk i1s about a tool that overcomes these problems

11/18/2005 Jinlin Yang, NJPLS at UMD

Outline

* Preliminary experiment on Windows kernel APls

11/18/2005 Jinlin Yang, NJPLS at UMD

Experimental Setup

17 traces from developers

— We had no control on producing the traces which were used for
performance tuning or debugging

— Converted into Terracotta’'s format

Events
— On average 500 distinct events (range from 40 to 1.3K)
— Include non-kernel APIs (e.g. ntdll.dll, hal.dll)

Trace length
— Varies from 300K to 750K events
— 5.85M events in total

Terracotta finished analyzing in less than 14min

11/18/2005 Jinlin Yang, NJPLS at UMD

Results: Windows Kernel

e Some obviously interesting properties

ObpAllocateObjectNameBuffer- >ObpFreeObjectNameBuffer
SelLockSubjectContext- >SeUnlockSubjectContext

MmSecureVirtualMemory- >MmuUnsecureVirtualMemory

KefAcquireSpinLockAtDpcLevel- >
KefReleaseSpinLockFromDpcLevel

ExAcquireRundownProtectionCacheAwareEx- >
ExReleaseRundownProtectionCacheAwareEx
loAcquireVpbSpinLock- >loReleaseVpbSpinLock

KeAcquireQueuedSpinLock- >KeReleaseQueuedSpinLock

11/18/2005 Jinlin Yang, NJPLS at UMD

Lessons

e Missing interesting properties
— KeAcquirelnStackQueuedSpinLock- >
KeReleaselnStackQueuedSpinLock
— Original algorithm requires perfect traces
 Real world is never perfect :(

— Imperfect programs
— Trace collected by sampling
— Object information unavailable

e Can we develop better inference to handle this?

11/18/2005 Jinlin Yang, NJPLS at UMD

Lessons (2)

Too many noises in results
— Interesting properties are buried in a group of uninteresting ones

Can we develop heuristics to select interesting ones?

The templates are small FSMs
— FSMs in real world are usually bigger and more complex

Can we develop technigues to construct bigger FSMs
out of small ones?

11/18/2005 Jinlin Yang, NJPLS at UMD

Limitations of Previous Work Recap

Fail to find many important properties
— When the traces are produced from buggy programs
— Engler’s approach might miss properties of infrequent events

Find too many uninteresting properties
— Most inferred properties are useless

Too slow
— Trying to infer a complex FSM directly does not scale

Terracotta scales very well to realistic traces

11/18/2005 Jinlin Yang, NJPLS at UMD

Outline

 Refinement of inference with new experimental
results

11/18/2005 Jinlin Yang, NJPLS at UMD

Dealing with Reality

 How to infer interesting properties from imperfect traces?

« Example
— PSPSPSPSPSPSPSPSPSPPP
— The dominant behavior is P and S alternate

e How to define dominant?
— PS PS PS PS PS PS PS PS PS PPP
— 10 subtraces, 90% satisfy Alternating

11/18/2005 Jinlin Yang, NJPLS at UMD

Dealing with Reality (cont.)

Definition of a subtrace
— Intuitive: start with P, end with S
— Formal: P*S*

Decide if each subtrace satisfies Alternating
Compute the Alternating percentage, P,
Rank pairs of events based on P,

Does not increase the complexity
— Time: O(nl), Space: O(n?)

— n: the number of distinct events

— |: the length of the trace

11/18/2005 Jinlin Yang, NJPLS at UMD

Windows Kernel: Statistical Inference

I:)AL

Property (boldface ones are not in MSDN)

0.9930

ObpCreateHandle- >ObpCloseHandle

0.9880

GreLockDisplay- >GreUnlockDisplay

0.9854

RtlIActivateActivationContextUnsafeFast- >
RtIDeactivateActivationContextUnsafeFast

0.9821

KeAcquirelnStackQueuedSpinLock- >
KeReleaselnStackQueuedSpinLock

0.9774

SeCreateAccessState- >SeDeleteAccessState

0.9722

loAllocatelrp- >loFreelrp

0.9613

CmpLockRegistry- >CmpUnlockRegistry

0.9589

ObAssignSecurity- >ObDeassignSecurity

0.9565

VirtualAllocEx- >VirtualFreeEx

0.9539

ExCreateHandle- >ExDestroyHandle

0.9539

ExpAllocateHandleTableEntry- >ExpFreeHandleTableEntry

0.9448

ExInitializeResourcelLite- >ExDeleteResourceLite

11/18/2005

Jinlin Yang, NJPLS at UMD

Selecting Properties: Using Call Graphs

 How to pick out interesting properties?

void A(){ void x(){
() ;

}'D'(j;
Case 1 Case 2

B()

e Which one is more likely to be interesting?

11/18/2005 Jinlin Yang, NJPLS at UMD

Selecting Properties: Using Call Graphs

 How to pick out interesting properties?

voi d KeSet Ti nmer () { void x(){
KeSet Ti ner Ex() ; ExAcqui r eFast Mut exUnsaf e(&) ;

} .
ExRel easeFast Mut exUnsaf e(&m ;

}

e Which one is more likely to be interesting?

11/18/2005 Jinlin Yang, NJPLS at UMD

Selecting Properties: Using Call Graphs

 How to pick out interesting properties?

void A(){ void x(){
() ;

}'D'(j;
Case 1 Case 2

B()

e Which one is more likely to be interesting?
— Heuristics: C- >D is often more interesting

— Compute the static call graph for target programs
— Keep A- >B if B is not reachable from A

11/18/2005 Jinlin Yang, NJPLS at UMD

Selecting Properties: Edit Distance

Heuristics: the more similar two events are, the more
likely that the properties Is interesting

Relative edit distance between A and B
— Partition A and B into words
— A has w, words, B has wg, w common words

= dist,, =— W

Wa ™ Ws

For example:
— Ke Acquire In Stack Queued Spin Lock - >

Ke Release In Stack Queued Spin Lock
— Similarity = 85.7%

11/18/2005 Jinlin Yang, NJPLS at UMD

Windows Kernel: Applying Heuristics

e Approximation
— P, threshold = 0.90
— 7611 properties
o Call-graph and edit distance based reduction
— Use the call-graph of ntoskrnl.exe, edit dist > 0.5
— 142 properties. 53 times reduction!
— Small enough for manual inspection
o 56 apparently interesting properties (40%)
— Locking discipline
— Resource allocation and deletion

11/18/2005 Jinlin Yang, NJPLS at UMD

Windows Kernel: Usage of Properties

» Inferred useful properties that could be checked
— Several types of kernel SpinLock
— SLAM [Ball+ SPINO1] does not check two of them

« ESP [Das+ PLDIO2] found many previously unknown
bugs in Windows
— E.g. Double-acquire of FastMutex in ntfs.sys

— Found this one during my internship, confirmed and fixed by
responsible developers

— The group adopted the properties and found more bugs since |
left

11/18/2005 Jinlin Yang, NJPLS at UMD

Constructing Larger FSMs

 How to construct big FSMs out of small ones?

e Chaining method
— Explore the relationships among Alternating properties

3=

— Potential reduction of the number of properties from O(n?) to O(n)
— Efficiently producing more appealing results
— The Alternating relation is not transitive

For example: AB~ACBC - > ABAB, BCBC,

11/18/2005 Jinlin Yang, NJPLS at UMD

Results of Chaining from JBoss

e Setup
— A Java application server implementing J2EE
Instrumented the transaction manager module
Executed the JBoss regression test suite
2.5 million events with 91 distinct events
Terracotta finished in 80 seconds

 Results
— 490 properties when p,, =0.90
61 properties after chaining (17 chains)
41 properties after call-graph reduction (16 chains)
Edit distance not very useful
The longest chain is consistent with the object interaction
diagram in the Java Transaction API specification

11/18/2005 Jinlin Yang, NJPLS at UMD

JBoss: Chaining Properties

TxManagier.begin Transactionimpl.endResources
.
X|dFactor31.getNextId Transactionimpl.getCommitStrategy
|
delmpl.get'lirulyGloballd Transactionlmpl.commitResources
.
TransactionLoc:il.getTransaction Transactionimpl.completeTransaction
.
Transaction.enlistResource Transactionimpl.cancelTimeout
. .
Transactionimpl.findResource Transactionimpl.doAfterCompletion
| .
Transactionimpl.findResourceManager Transactionlmpl.instanceDone
. |
Transactionlmpl.createXidBranch TxManager.getinstance
. .
XidFactory.newBranch TxManager.incCommitCount
. .
Transactionimpl.addResource TxManager.releaseTransactionimpl
. .
TxManager.commit Transactionlmpl.checkHeuristics

v '

Transactionimpl.doBeforeCompletion TxManager.disassociateThread

11/18/2005 Jinlin Yang, NJPLS at UMD

JBoss: Chaining Properties (2)

TxManager.begin

0.95

Transactionlmpl.enlistResource

TxManager.commit
Transactionimpl.commitResources

11/18/2005 Jinlin Yang, NJPLS at UMD

Summary of Experiments

Approximation is essential in dealing with imperfect traces
— 56 interesting rules of Windows kernel APIs

— An 24-state FSM for JBoss
— Rules undocumented by SLAM, SelLockSubjectContext - >

SeUnlockSubjectContext

http://download.microsoft.com/download/5/b/5/5b5becl7-ea71-4653-9539-204a672f11cf/SDV-intro.doc

Inference scales well to realistic traces
— 5.85 million events, 500 distinct ones, 14 minutes

Call-graph, edit distance, and chaining are very effective
— Reduction: 53 times for Windows, 12 times for JBoss
— An FSM for JBoss

Check with defect detection tool is very promising
— Many bugs found and fixed in Windows

11/18/2005 Jinlin Yang, NJPLS at UMD

Other Experiments

Vulcan APlIs

Daisy file system [TR]

Six versions of OpenSSL [ISSREO4]

Submissions of programming assignments [ISSREQ04]

A simple producer-consumer implementation [PASTEO4]

11/18/2005 Jinlin Yang, NJPLS at UMD

Outline

e Contributions, future work, and conclusion

11/18/2005 Jinlin Yang, NJPLS at UMD

Limitations of Previous Work Recap

Fail to find many important properties
— When the traces are produced from buggy programs
— Engler’s approach might miss properties of infrequent events

Our approach can deal with imperfect traces and infer
properties has low static frequency

Find too many uninteresting properties
— Most inferred properties are useless

Our heuristics are very effective
— A high percentage of the final properties are interesting

Too slow
— Trying to infer a complex FSM directly does not scale

e Our approach scales very well to realistic traces

11/18/2005 Jinlin Yang, NJPLS at UMD

Contributions Recap

A statistical algorithm for inferring interesting temporal
properties from imperfect traces

— Windows kernel: 56 interesting properties
— JBoss: an FSM consistent with the J2EE specification

Two heuristics for eliminating uninteresting properties
— Windows kernel: 53 times reduction, 40% are interesting

Chaining method for constructing large FSMs
— JBoss: an FSM with 24 states

Combine automatic inference and verification together
— ESP found many bugs in Windows using inferred properties

Demonstration of effectiveness in realistic systems

11/18/2005 Jinlin Yang, NJPLS at UMD

Future Work

 More interesting and expressive property templates

— Temporal property templates involving variables

— E.g. between the start and end of the dispatch routine,
deviceExtension.stopped should always be false

e Other ways to build large FSMs
— Chains of mixed templates

 New ways to combine dynamic and static analysis
— E.g. use static call graph to select interesting properties
— Use dynamic analysis to make static analysis more scalable
— Use static analysis to help testing, inference etc.

11/18/2005 Jinlin Yang, NJPLS at UMD

Conclusion

e Constructing interesting properties by hand is difficult

e Automatic inference from execution traces is effective
— A statistical approach is essential for dealing with imperfect traces
— Heuristics for identifying properties are important for practical use

e This approach has two practical uses
— Understanding legacy code by inferring large FSMs from traces
— Finding many application specific defects

11/18/2005 Jinlin Yang, NJPLS at UMD

Q&A

For more information
jinlin@cs.virginia.edu
http://www.cs.virginia.edu/terracotta

Great collaborators

— UVa

David Evans, Ed Mitchell

— Microsoft

Stephen Adams,

Deepali Bhardwaj,
Thirumalesh Bhat,

Manuvir Das,

Damian Hasse, i
Marne Staples, Rick Vicik, g
Jason Yang, Zhe Yang

11/18/2005 Jinlin Yang, NJPLS at UMD

