
Terracotta: Mining
Temporal API Rules
from Imperfect Traces

Jinlin Yang

University of Virginia
jinlin@cs.virginia.edu

NJPLS 11/18/2005

Collaborated with David Evans, Deepali
Bhardwaj, Thirumalesh Bhat, and Manuvir Das

11/18/2005 Jinlin Yang, NJPLS at UMD 2

Overview

• Problem: unavailability of specification is a big issue in
defect detection

• Solution: automatically inferring specification from
execution traces

• Results: better understanding of legacy code and finding
more defects
– Experiments on Windows kernel APIs and JBoss
– Interesting Windows kernel API rules that should be checked
– Many previously unknown bugs in Windows
– Inferred behaviors of JBoss that are consistent with J2EE spec

11/18/2005 Jinlin Yang, NJPLS at UMD 3

Outline

• Introduction
• My approach
• Preliminary experiment on Windows kernel APIs
• Refinement of inference with new experimental results
• Contributions, future work, and conclusion

11/18/2005 Jinlin Yang, NJPLS at UMD 4

Problem

• Defect detection techniques require specifications
• Generic properties

– E.g. absence of null-pointer dereference
– PREfix [Bush+, SP&E00], PREfast, etc.
– Very effective

• Application specific properties
– E.g. lock/unlock, resource creation/deletion
– LCLint [Evans, PLDI96], SLAM [Ball+, SPIN01], Vault [DeLine+,

PLDI01], Type Qualifiers [Foster+, PLDI02], ESP [Das+, PLDI02],
ESC/JAVA [Flanagan+, PLDI02], FindBugs [Hovemeyer+,
OOPSLA04], Spec# [Barnett+, CASSIS04]

• Such properties are rarely available

11/18/2005 Jinlin Yang, NJPLS at UMD 5

Temporal Properties

• Example: Lock::Acq -> Lock::Rel

• Why are they important?
– Essential for correctness

• Applications
– Developers do care

• what sequence of functions should I call to access this resource?
• After calling function A, what other functions must (not) I call?

– Can be used to verify programs

• Rarely available, hard to get right [Holzmann, FSE02]
• How do we get such temporal properties?

11/18/2005 Jinlin Yang, NJPLS at UMD 6

Contributions

• A novel statistical approach for inferring temporal
properties from execution traces

• Combining automatic inference and verification together
by feeding inferred properties to ESP

• Demonstration of the usefulness and effectiveness of
this approach in realistic systems

11/18/2005 Jinlin Yang, NJPLS at UMD 7

Outline

• Introduction
• My approach
• Preliminary experiment on Windows kernel APIs
• Refinement of inference with new experimental results
• Contributions, future work, and conclusion

11/18/2005 Jinlin Yang, NJPLS at UMD 8

My Approach

Program
Instrumented

Program

Instrum
entation

Test Suite

Execution
Traces

R
unning

Inferred
Properties

Property
Templates

Inference

P
ost-processing

Report

Jinlin Yang and David Evans. Dynamically inferring temporal properties. PASTE ‘04.

11/18/2005 Jinlin Yang, NJPLS at UMD 9

An Example

• Alternating template
(PS)*, P!=S. P and S are parameters

Lock::acq
Lock::rel
Lock::acq
Lock::rel

P=Lock::acq
and
S=Lock::rel

P=Lock::rel
and
S=Lock::acq

PSPS

SPSP

Lock::acqà Lock::rel ü

Lock::relà Lock::acq ß

11/18/2005 Jinlin Yang, NJPLS at UMD 10

Property Templates

• For each pair of
two events

• Decide if they
satisfy CauseFirst,
OneCause, or
OneEffect

• Derive the
strictest pattern

S
tr

ic
te

r MultiEffect
(PS+)*

MultiCause
(P+S)*

EffectFirst
S*(PS)*

Alternating
(PS)*

OneCause
S*(PS+)*

OneEffect
S*(P+S)*

CauseFirst
(P+S+)*

Response
S*(P+S+)*

And And And

And

Jinlin Yang and David Evans. Dynamically inferring temporal properties. PASTE ‘04.

11/18/2005 Jinlin Yang, NJPLS at UMD 11

Implementation

• Terracotta
– Scalable statistical inference
– Context-aware analysis
– Heuristics for prioritizing and presenting

properties

• Complexity
– Time: O(nl), Space: O(n2)
– n: the number of distinct events
– l: the length of the trace

• Available at:
http://www.cs.virginia.edu/terracotta

11/18/2005 Jinlin Yang, NJPLS at UMD 12

Use in Program Evolution

Inferred
Properties 1

Different
Properties

D
ifference A

nalyzer
Inferred

Properties 2

Shared
PropertiesProgram

Version 1

Program
Version 2

D
ynam

ic Inference

Jinlin Yang and David Evans. Automatically inferring temporal properties for program evolution. ISSRE ‘04.

• Experiments on six versions of OpenSSL
– Inferred an FSM conformant to the SSL specification
– Revealed previously known bugs
– Identified intended improvements

11/18/2005 Jinlin Yang, NJPLS at UMD 13

Use in Program Verification

Inferred
Properties

Satisfaction
or Counter-
examples

V
erifier

Program

D
ynam

ic Inference

Jinlin Yang and David Evans. Automatically Discovering Temporal Properties for Program Verification.
Technical Report, Department of Computer Science, University of Virginia, 2005.

• Inferred properties for the Daisy file system, then
checked with Java PathFinder
– Found one race condition
– Revealed undocumented interesting differences of locking

discipline across layers of the system

11/18/2005 Jinlin Yang, NJPLS at UMD 14

Related Work
• Dynamic inference

– Daikon [Ernst, TSE01]
– Mining specification [Ammons, POPL02]
– FindLocks [Rose, SCP05]
– Encoding program executions [Reiss, ICSE01]
– Recovering thread models [Cook, JSS04]

• Static inference
– Bugs as deviant behavior [Engler, SOSP01]
– Extracting component interfaces [Whaley, ISSTA02]
– Mining by examining exceptional path [Weimer, TACAS05]
– Houdini [Flanagan, FME01]
– Synthesizing API interfaces [Alur, POPL05]
– SALInfer [Hackett, MSR-TR-05]

11/18/2005 Jinlin Yang, NJPLS at UMD 15

Limitations of Previous Work

• Fail to find many important properties
– When the traces are produced from buggy programs
– Engler’s approach might miss properties of infrequent events

• Find too many uninteresting properties
– Most inferred properties are useless

• Too slow
– Trying to infer a complex FSM directly does not scale

• This talk is about a tool that overcomes these problems

11/18/2005 Jinlin Yang, NJPLS at UMD 16

Outline

• Introduction
• My approach
• Preliminary experiment on Windows kernel APIs
• Refinement of inference with new experimental results
• Contributions, future work, and conclusion

11/18/2005 Jinlin Yang, NJPLS at UMD 17

Experimental Setup

• 17 traces from developers
– We had no control on producing the traces which were used for

performance tuning or debugging
– Converted into Terracotta’s format

• Events
– On average 500 distinct events (range from 40 to 1.3K)
– Include non-kernel APIs (e.g. ntdll.dll, hal.dll)

• Trace length
– Varies from 300K to 750K events
– 5.85M events in total

• Terracotta finished analyzing in less than 14min

11/18/2005 Jinlin Yang, NJPLS at UMD 18

Results: Windows Kernel

• Some obviously interesting properties

KeAcquireQueuedSpinLock->KeReleaseQueuedSpinLock

IoAcquireVpbSpinLock->IoReleaseVpbSpinLock

ExAcquireRundownProtectionCacheAwareEx->

ExReleaseRundownProtectionCacheAwareEx

KefAcquireSpinLockAtDpcLevel->

KefReleaseSpinLockFromDpcLevel

MmSecureVirtualMemory->MmUnsecureVirtualMemory

SeLockSubjectContext->SeUnlockSubjectContext

ObpAllocateObjectNameBuffer->ObpFreeObjectNameBuffer

11/18/2005 Jinlin Yang, NJPLS at UMD 19

Lessons

• Missing interesting properties
– KeAcquireInStackQueuedSpinLock->

KeReleaseInStackQueuedSpinLock
– Original algorithm requires perfect traces

• Real world is never perfect :(
– Imperfect programs
– Trace collected by sampling
– Object information unavailable

• Can we develop better inference to handle this?

11/18/2005 Jinlin Yang, NJPLS at UMD 20

Lessons (2)

• Too many noises in results
– Interesting properties are buried in a group of uninteresting ones

• Can we develop heuristics to select interesting ones?

• The templates are small FSMs
– FSMs in real world are usually bigger and more complex

• Can we develop techniques to construct bigger FSMs
out of small ones?

11/18/2005 Jinlin Yang, NJPLS at UMD 21

Limitations of Previous Work Recap

• Fail to find many important properties
– When the traces are produced from buggy programs
– Engler’s approach might miss properties of infrequent events

• Find too many uninteresting properties
– Most inferred properties are useless

• Too slow
– Trying to infer a complex FSM directly does not scale

• Terracotta scales very well to realistic traces

11/18/2005 Jinlin Yang, NJPLS at UMD 22

Outline

• Introduction
• My approach
• Preliminary experiment on Windows kernel APIs
• Refinement of inference with new experimental

results
• Contributions, future work, and conclusion

11/18/2005 Jinlin Yang, NJPLS at UMD 23

Dealing with Reality

• How to infer interesting properties from imperfect traces?
• Example

– PSPSPSPSPSPSPSPSPSPPP
– The dominant behavior is P and S alternate

• How to define dominant?
– PS PS PS PS PS PS PS PS PS PPP
– 10 subtraces, 90% satisfy Alternating

11/18/2005 Jinlin Yang, NJPLS at UMD 24

Dealing with Reality (cont.)

• Definition of a subtrace
– Intuitive: start with P, end with S
– Formal: P+S+

• Decide if each subtrace satisfies Alternating
• Compute the Alternating percentage, PAL

• Rank pairs of events based on PAL

• Does not increase the complexity
– Time: O(nl), Space: O(n2)
– n: the number of distinct events
– l: the length of the trace

11/18/2005 Jinlin Yang, NJPLS at UMD 25

Windows Kernel: Statistical Inference

ExInitializeResourceLite->ExDeleteResourceLite0.9448

ExpAllocateHandleTableEntry->ExpFreeHandleTableEntry0.9539

ExCreateHandle->ExDestroyHandle0.9539

VirtualAllocEx->VirtualFreeEx0.9565

ObAssignSecurity->ObDeassignSecurity0.9589

CmpLockRegistry->CmpUnlockRegistry0.9613

IoAllocateIrp->IoFreeIrp0.9722

SeCreateAccessState->SeDeleteAccessState0.9774

KeAcquireInStackQueuedSpinLock->
KeReleaseInStackQueuedSpinLock0.9821

RtlActivateActivationContextUnsafeFast->
RtlDeactivateActivationContextUnsafeFast0.9854

GreLockDisplay->GreUnlockDisplay0.9880

ObpCreateHandle->ObpCloseHandle0.9930

Property (boldface ones are not in MSDN)PAL

11/18/2005 Jinlin Yang, NJPLS at UMD 26

Selecting Properties: Using Call Graphs

• How to pick out interesting properties?

• Which one is more likely to be interesting?

void A(){
...
B();
...

}
Case 1

void x(){
C();
...
D();

}
Case 2

11/18/2005 Jinlin Yang, NJPLS at UMD 27

Selecting Properties: Using Call Graphs

• How to pick out interesting properties?

• Which one is more likely to be interesting?

void KeSetTimer(){
KeSetTimerEx();

}

void x(){
ExAcquireFastMutexUnsafe(&m);
...
ExReleaseFastMutexUnsafe(&m);

}

11/18/2005 Jinlin Yang, NJPLS at UMD 28

Selecting Properties: Using Call Graphs

• How to pick out interesting properties?

• Which one is more likely to be interesting?
– Heuristics: C->D is often more interesting

– Compute the static call graph for target programs
– Keep A->B if B is not reachable from A

void A(){
...
B();
...

}
Case 1

void x(){
C();
...
D();

}
Case 2

11/18/2005 Jinlin Yang, NJPLS at UMD 29

Selecting Properties: Edit Distance

• Heuristics: the more similar two events are, the more
likely that the properties is interesting

• Relative edit distance between A and B
– Partition A and B into words
– A has wA words, B has wB, w common words
–

• For example:
– Ke Acquire In Stack Queued Spin Lock ->

Ke Release In Stack Queued Spin Lock
– Similarity = 85.7%

ww ��

AB

2w
dist

+
=

11/18/2005 Jinlin Yang, NJPLS at UMD 30

Windows Kernel: Applying Heuristics

• Approximation
– PAL threshold = 0.90
– 7611 properties

• Call-graph and edit distance based reduction
– Use the call-graph of ntoskrnl.exe, edit dist > 0.5
– 142 properties. 53 times reduction!
– Small enough for manual inspection

• 56 apparently interesting properties (40%)
– Locking discipline
– Resource allocation and deletion

11/18/2005 Jinlin Yang, NJPLS at UMD 31

Windows Kernel: Usage of Properties

• Inferred useful properties that could be checked
– Several types of kernel SpinLock
– SLAM [Ball+ SPIN01] does not check two of them

• ESP [Das+ PLDI02] found many previously unknown
bugs in Windows
– E.g. Double-acquire of FastMutex in ntfs.sys
– Found this one during my internship, confirmed and fixed by

responsible developers
– The group adopted the properties and found more bugs since I

left

11/18/2005 Jinlin Yang, NJPLS at UMD 32

Constructing Larger FSMs

• How to construct big FSMs out of small ones?
• Chaining method

– Explore the relationships among Alternating properties

– Potential reduction of the number of properties from O(n2) to O(n)
– Efficiently producing more appealing results
– The Alternating relation is not transitive

For example: ABACBC -> ABAB, BCBC, AACC

A B

C

A B

C

11/18/2005 Jinlin Yang, NJPLS at UMD 33

Results of Chaining from JBoss

• Setup
– A Java application server implementing J2EE
– Instrumented the transaction manager module
– Executed the JBoss regression test suite
– 2.5 million events with 91 distinct events
– Terracotta finished in 80 seconds

• Results
– 490 properties when pAL=0.90
– 61 properties after chaining (17 chains)
– 41 properties after call-graph reduction (16 chains)
– Edit distance not very useful
– The longest chain is consistent with the object interaction

diagram in the Java Transaction API specification

11/18/2005 Jinlin Yang, NJPLS at UMD 34

JBoss: Chaining Properties
TxManager.begin

XidFactory.getNextId

XidImpl.getTrulyGlobalId

TransactionLocal.getTransaction

Transaction.enlistResource

TransactionImpl.findResource

TransactionImpl.findResourceManager

TransactionImpl.createXidBranch

XidFactory.newBranch

TransactionImpl.addResource

TxManager.commit

TransactionImpl.doBeforeCompletion

TransactionImpl.endResources

TransactionImpl.getCommitStrategy

TransactionImpl.commitResources

TransactionImpl.cancelTimeout

TransactionImpl.doAfterCompletion

TransactionImpl.instanceDone

TxManager.getInstance

TxManager.incCommitCount

TxManager.releaseTransactionImpl

TransactionImpl.checkHeuristics

TxManager.disassociateThread

TransactionImpl.completeTransaction

11/18/2005 Jinlin Yang, NJPLS at UMD 35

JBoss: Chaining Properties (2)

TxManager.begin

TransactionImpl.enlistResource

TransactionImpl.delistResource

TxManager.commit

TransactionImpl.commitResources

0.95

0.94

0.96

11/18/2005 Jinlin Yang, NJPLS at UMD 36

Summary of Experiments

• Approximation is essential in dealing with imperfect traces
– 56 interesting rules of Windows kernel APIs
– An 24-state FSM for JBoss
– Rules undocumented by SLAM, SeLockSubjectContext ->

SeUnlockSubjectContext
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/SDV-intro.doc

• Inference scales well to realistic traces
– 5.85 million events, 500 distinct ones, 14 minutes

• Call-graph, edit distance, and chaining are very effective
– Reduction: 53 times for Windows, 12 times for JBoss
– An FSM for JBoss

• Check with defect detection tool is very promising
– Many bugs found and fixed in Windows

11/18/2005 Jinlin Yang, NJPLS at UMD 37

Other Experiments

• Vulcan APIs
• Daisy file system [TR]
• Six versions of OpenSSL [ISSRE04]
• Submissions of programming assignments [ISSRE04]
• A simple producer-consumer implementation [PASTE04]

11/18/2005 Jinlin Yang, NJPLS at UMD 38

Outline

• Introduction
• My approach
• Preliminary experiment on Windows kernel APIs
• Refinement of inference with new experimental results
• Contributions, future work, and conclusion

11/18/2005 Jinlin Yang, NJPLS at UMD 39

Limitations of Previous Work Recap

• Fail to find many important properties
– When the traces are produced from buggy programs
– Engler’s approach might miss properties of infrequent events

• Our approach can deal with imperfect traces and infer
properties has low static frequency

• Find too many uninteresting properties
– Most inferred properties are useless

• Our heuristics are very effective
– A high percentage of the final properties are interesting

• Too slow
– Trying to infer a complex FSM directly does not scale

• Our approach scales very well to realistic traces

11/18/2005 Jinlin Yang, NJPLS at UMD 40

Contributions Recap

• A statistical algorithm for inferring interesting temporal
properties from imperfect traces
– Windows kernel: 56 interesting properties
– JBoss: an FSM consistent with the J2EE specification

• Two heuristics for eliminating uninteresting properties
– Windows kernel: 53 times reduction, 40% are interesting

• Chaining method for constructing large FSMs
– JBoss: an FSM with 24 states

• Combine automatic inference and verification together
– ESP found many bugs in Windows using inferred properties

• Demonstration of effectiveness in realistic systems

11/18/2005 Jinlin Yang, NJPLS at UMD 41

Future Work

• More interesting and expressive property templates
– Temporal property templates involving variables
– E.g. between the start and end of the dispatch routine,

deviceExtension.stopped should always be false

• Other ways to build large FSMs
– Chains of mixed templates

• New ways to combine dynamic and static analysis
– E.g. use static call graph to select interesting properties
– Use dynamic analysis to make static analysis more scalable
– Use static analysis to help testing, inference etc.

11/18/2005 Jinlin Yang, NJPLS at UMD 42

Conclusion

• Constructing interesting properties by hand is difficult

• Automatic inference from execution traces is effective
– A statistical approach is essential for dealing with imperfect traces
– Heuristics for identifying properties are important for practical use

• This approach has two practical uses
– Understanding legacy code by inferring large FSMs from traces
– Finding many application specific defects

11/18/2005 Jinlin Yang, NJPLS at UMD 43

Q & A

• For more information

jinlin@cs.virginia.edu

http://www.cs.virginia.edu/terracotta

• Great collaborators
– UVa

David Evans, Ed Mitchell
– Microsoft

Stephen Adams,

Deepali Bhardwaj,
Thirumalesh Bhat,
Manuvir Das,
Damian Hasse,
Marne Staples, Rick Vicik,

Jason Yang, Zhe Yang

