
KEYWORDS
Interactive user interfaces, multiscale interfaces, multime-
dia authoring, information navigation, hypertext, informa-
tion visualization.

ABSTRACT
We have implemented an infinite resolution multimedia
sketchpad as a base for exploring astream-of-consciousness
model of computation where information creating, sharing
and retrieval becomes so intuitive that the interface
becomes invisible. Motivation to pursue this came from
work on Pad [4], which can be thought of as a kind of tradi-
tional sketchpad or windows environment in the sense that
it is a general-purpose substrate for visualizing two dimen-
sional graphics and text. But Pad also supports the radical
notion of being infinite in extent and resolution.

We implemented Pad++ to explore smooth zooming for
navigation and to serve as a platform for multimedia author-
ing and information visualization. The ability to work with
very large datasets has been a primary design consideration
in the development of Pad++.

INTRODUCTION
The motivation for our work on multiscale interfaces is to
move beyond windows, icons, menus, and pointers to
explore interfaces that more effectively support navigation
through complex sets of multimedia information [1, 2, 5].
One premise of our work is the belief that navigation in
information spaces is best supported by tapping into our
natural spatial and geographic ways of thinking [3].

Information can be entered interactively by the user or
dynamically by a program on Pad++. It can be placed at any
location and at arbitrary scale. Navigation is performed by
zooming in and out and moving around the surface. Our
metaphor for searching for information is that all the infor-
mation is there and to see more detail, you just have totake
a closer look. Using Pad is meant to feel like you have a
gigantic piece of paper that you can look at with a micro-
scope with arbitrary resolving power and smooth zooming.

RECENT ADVANCES

Our focus in this implementation has been to provide
smooth zooming in a system that works with very large
datasets. The nature of the Pad++ interface requires consis-
tent high frame-rate interactions, even as the dataspace
becomes large and the scene gets complicated. In many
applications, speed is important, but not critical to function-
ality. In Pad++, however, the interface paradigm is inher-
ently based on interaction. The searching strategy is to
visually explore the dataspace, so it is essential that interac-
tive frame rates be maintained.

We implemented Pad++ in C++ on Silicon Graphics com-
puters using SGI’s graphics language facilities (the GL) to
provide smooth zooming. We wrote a standard set of draw-
ing widgets to enter text, lines, squiggles, etc., to load files
and images, and a standard set of operators such as group-
ing, copying, deleting, etc. These give a multimedia author
the basic tools for creating a dataspace.

In order to keep the animation frame-rate up as the
dataspace size and complexity increases, we implemented
several standard efficiency methods, which taken together
create a powerful system. We are able to load in over
600,000 objects and maintain interactive rates. Briefly, these
methods are:

 • Spatial Indexing: Create a hierarchy of objects based
on bounding boxes to quickly index to visible objects.

 • Spatial Level-Of-Detail: Render only the detail
needed, do not spend time rendering what can not be
seen.

 • Clipping: Only render the portions of objects that are
actually visible.

 • Refinement: Render fast with low resolution while nav-
igating and refine the image when still.

 • Adaptive Render Scheduling: Keep the zooming rate
constant even as the frame rate changes.

One challenge in navigating through any large dataspace is
maintaining a sense of relationship between what you are
looking at and where it is with respect to the rest of the data.
The rough animation or jumpy zooming as implemented in
the original Pad [4] can be disorienting and thus not provide
the most effective support for the cognitive and perceptual
processing required for interactive information visualization
and navigation. We implemented smooth zooming where

Pad++: A Zoomable Graphical Interface

Benjamin B. Bederson
Bell Communications Research

445 South Street
Morristown, NJ 07960
(bederson@bellcore.com)

James D. Hollan
Computer Science Department

University of New Mexico
Albuquerque, NM 87131

(hollan@cs.unm.edu)

Published in CHI ‘94: short paper category

pressing the middle button zooms in and pressing the right
button zooms out (the left button is a context-dependent
button). Pressing either of the zoom buttons once and hold-
ing it initiates the zooming which starts slowly and acceler-
ates according to a profile specified by the maximum
zooming speed and how long it takes to reach that speed.
Holding the middle and right buttons permit panning.

An important interactive interface issue when accessing
external information sources is how to give the user access
to them without incurring substantial start-up costs while
the database is parsed and loaded. In Pad++ this is accom-
plished withparallel lazy loading: only load the portion of
the database that is visible in the current view. As the user
navigates through the database and looks at new areas,
those portions of the database are loaded. This lazy loading
is done in the background so the user can continue to inter-
act with Pad++, and when the loading is complete, items
appear in the appropriate place.

SAMPLE APPLICATION
We built a Pad++ directory browser to explore how smooth
zooming and the various efficiency mechanisms help in
viewing a large hierarchical database. The Pad++ directory
browser provides a graphical interface for accessing the
directory structure of a filesystem [Figure 1]. Each directory
is represented by a square pink frame, and files are repre-
sented by solid squares colored by file type (Figure 1 is
B&W). Both directories and files show their filenames as
labels when the user is sufficiently close to be able to read
them. Each directory has all of its subdirectories and files
organized alphabetically inside of it. Searching through the
directory structure involves only zooming in and out of the
directory tree. Zooming into a file automatically loads the
text inside the colored square and it can then be edited and
annotated.

We are able to load in a directory tree with over 600,000
objects, and maintain interactive animation rates of about 10
frames per second. Spatial indexing allows us to maintain a

Figure 1: Directory browser snapshot

very large database while keeping the search time fast, since
we render only the visible portion. While navigating with
Pad++, very small objects are not drawn and larger ones are
drawn with reduced resolution. The reduced resolution
objects are refined when the user stops changing the view.

CONCLUSION
We implemented Pad++, a multimedia multiscale hierarchi-
cal sketchpad, focusing on efficiency and expandability. By
implementing several efficiency mechanisms which act in
concert, we are able to maintain high frame-rate interaction
with very large databases.

We are currently, in collaboration with NYU, beginning to
design an end user language for application authoring. In
addition, we also are exploring several application domains,
such as history-enriched digital objects, as part of the con-
tinued development of Pad++.

ACKNOWLEDGEMENTS
We would like to acknowledge other members of the Com-
puter Graphics and Interactive Media Research Group at
Bellcore for many discussions shared during our search for
the best cheeseburger. We also would like to thank Ken Per-
lin and his students, David Fox and Matthew Fuchs, at NYU
for enjoyable discussions and for seeding out interest in
multiscale interfaces.

REFERENCES
[1] Benjamin B. Bederson, Larry Stead, and James D. Hollan,

Pad++: Advances in MultiScale Interfaces,Proceedings of
ACM Human Factors in Computing Systems Conference
(CHI ‘94).

[2] Stuart K. Card, George G. Robertson, and Jock D. Mackin-
lay. The Information Visualizer, an Information Workspace,
Proceedings of ACM Human Factors in Computing Systems
Conference (CHI ‘91), 181-188.

[3] William C. Donelson. Spatial Management of Information,
Proceedings of 1978 ACM SIGGRAPH Conference, 203-
209.

[4] Kim M. Fairchild, Steven E. Poltrock, and George W. Furnas.
SemNet: Three-Dimensional Graphic Representations of
Large Knowledge Bases, inCognitive Science and its Appli-
cations for Human-Computer Interaction, Lawrence
Erlbaum Associates, 1988.

[5] George W. Furnas. The FISHEYE View: a New Look at
Structured Files, Bell Laboratories Technical Report, 11221-
22, 1982.

[6] George Lakoff and Mark Johnson. Metaphors We Live By.
University of Chicago Press, 1980.

[7] Ken Perlin and David Fox. Pad: An Alternative Approach to
the Computer Interface,Proceedings of 1993 ACM SIG-
GRAPH Conference, 57-64.

[8] Ivan E. Sutherland. Sketchpad: A man-machine graphical
communications systems,Proceedings of the Spring Joint
Computer Conference, 1963, 329-346, Baltimore, MD: Spar-
tan Books.

