
ABSTRACT

Big information worlds cause big problems for interfaces.
There is too much to see. They are hard to navigate. An
armada of techniques has been proposed to present the
many scales of information needed. Space-scale diagrams
provide a framework for much of this work. By represent-
ing both a spatial world and its different magnifications
explicitly, the diagrams allow the direct visualization and
analysis of important scale related issues for interfaces.

KEYWORDS: Zoom views, multiscale interfaces, fisheye
views, information visualization, GIS; visualization, user
interface components; formal methods, design rationale.

INTRODUCTION

For more than a decade there have been efforts to devise sat-
isfactory techniques for viewing very large information
worlds. (See, for example, [6] and [9] for recent reviews and
analyses). The list of techniques for viewing 2D layouts alone
is quite long: the Spatial Data Management System [3], Bifo-
cal Display[1], Fisheye Views [4][12], Perspective Wall [8],
the Document Lens [11], Pad [10], and Pad++ [2], the Macro-
Scope[7], and many others.

Central to most of these 2D techniques is a notion of what
might be called multiscale viewing. Information objects and
the structure embedding them can be displayed at many dif-
ferent magnifications, or scale. An interface technique is
devised that allows users to manipulate which objects, or
which part of the structure will be shown at what scale. The
scale may be constant and manipulated over time as with a
zoom metaphor, or varying over a single view as in the distor-
tion techniques (e.g., fisheye or bifocal metaphor). In either
case, the basic assumption is that by moving through space
and changing scale the users can get an integrated notion of a
very large structure and its contents, and navigate through it
in ways effective for their tasks.

This paper introducesspace-scale diagrams as a technique
for understanding such multiscale interfaces. These diagrams
make scale an explicit dimension of the representation, so
that its place in the interface and interactions can be visual-
ized, and better analyzed. We are finding the diagrams useful
for trying to understand such interfaces geometrically, for
guiding the design of code, and perhaps even as interfaces to
authoring systems for multiscale information.

This paper will first present the necessary material for under-
standing the basic diagram and its properties. Subsequent
sections will then use that material to show several examples
of their uses.

THE SPACE-SCALE DIAGRAM

The basic diagram concepts

The basic idea of a space-scale diagram is quite simple. Con-
sider, for example, a square 2D picture (Figure 1a). The
space-scale diagram for this picture would be obtained by
creating many copies of the original 2-D picture, one at each
possible magnification, and stacking them up to form an
inverted pyramid (Figure 1b). While the horizontal axes rep-

Figure 1. The basic construction of a Space-Scale dia-
gram from a 2D picture.

x

y

u1

u2

v

(a) (b)

SPACE-SCALE DIAGRAMS:
UNDERSTANDING MULTISCALE INTERFACES

In Proceedings of CHI’95 Human Factors in Computing Sys-
tems (Denver, CO, May 1995), ACM press (In Press).

*Current address: bederson@cs.unm.edu, Computer Science
Department, University of New Mexico, Albuquerque, NM 87131
This work was paid for in part by ARPA grant N66001-94-C-6039.

George W. Furnas
Bellcore, 445 South Street

Morristown, NJ 07962-1910
(201) 829-4289

gwf@bellcore.com

Benjamin B. Bederson*
Bellcore, 445 South Street

Morristown, NJ 07962-1910
(201) 829-4871

bederson@bellcore.com

resent the original spatial dimensions, the vertical axis repre-
sents scale, i.e. the magnification of the picture at that level.
In theory, this representation is continuous and infinite: all
magnifications appear from 0 to infinity, and the “picture”
may be a whole 2D plane if needed.

Before we can discuss the various uses of these diagrams,
three basic properties must be described. Note first that a
user’s viewing window can be represented as a fixed-size
horizontal rectangle which, when moved through the 3D
space-scale diagram, yields exactly all the possible pan and
zoom views of the original 2D surface (Figure 2). This prop-
erty is useful for studying pan and zoom interactions in
highly zoomable interfaces like Pad and Pad++ [2][10].

Secondly, note that a point in the original picture becomes a
ray in this space-scale diagram. The ray starts at the origin
and goes through the corresponding point in the continuous
set of all possible magnifications of the picture (Figure 3). We
call these thegreat rays of the diagram. As a result, regions of
the 2D picture becomes generalized cones in the diagram. For
example, circles become circular cones and squares become
square cones.

A third property follows from the fact that typically the prop-
erties of the original 2D picture (e.g., its geometry) are con-
sidered invariant under moving the origin of the 2D
coordinate system. In the space-scale diagrams, such a
change of origin corresponds to a “shear” (Figure 4), i.e.,
sliding all the horizontal layers linearly so as to make a differ-
ent line become vertical. Thus the only meaningful contents
of the space-scale diagram are properties invariant under such
a shear. So, in using the diagrams to understand and analyze
multiscale interface paradigms, one must not read too much
into them, always remembering this third property, that if the
origin is not special in the purely spatial representation, only
conclusions invariant under shear are valid in the space-scale
diagram.

u1

u2

v

Viewing Window

Figure 2. The viewing window (a) is shifted rigidly
around the 3D diagram to obtain all possible pan/
zoom views of the original 2D surface, e.g., (b) a
zoomed in view of the circle overlap, (c) a zoomed out
view including the entire original picture, and (d) a
shifted view of a part of the picture.

(b)

(d)

(c)

(a)

Now that the basic concepts and properties of space-scale
diagrams have been introduced by the detailed Figures 1-4
we can make a simplification. Those figures have been three
dimensional, comprising two dimensions of space and one of
scale (“2+1D”). Substantial understanding may be gained,
however, from the much simpler two-dimensional versions,
comprising one dimension of space and one dimension of
scale (“1+1D”). In the 1+1D diagram, the spatial world is 1D
and so a viewing window is a line segment that can be moved
around the diagram to represent different pan and zoom posi-

x

y

u1

u2

v

p

q

q

p

Figure 3. Points like p and q in the original 2D surface
become corresponding “great rays” p and q in the
space-scale diagram. (The circles in the picture there-
fore become cones in the diagram, etc.)

u1

u2

v

u1

u2

v

Figure 4. Shear invariance. Shifting the origin in the 2D
picture from p to q corresponds to shearing the layers
of the diagram so the q line becomes vertical. Each
layer is unchanged, and great rays remain straight.
Only those conclusions which remain true under all
such shears are valid.

q q
p

p

x

y

p

q

p

q
x

y

tions. It is convenient to show the window as a narrow slit, so
that looking through it shows the corresponding 1D view.
Figure 5 shows one such diagram illustrating a sequence of
three zoomed views.

The basic math.

It is helpful to characterize these diagrams mathematically.
This will allow us to use analytic geometry along with the
diagrams to analyze multiscale interfaces, and also will allow
us to map conclusions back into the computer programs that
implement them.

The mathematical characterization is simple. Let the pair
(x, z) denote the pointx in the original picture considered
magnified by the multiplicative scale factorz. We define any
such(x, z) to correspond to the point(u, v) in the space-scale
diagram whereu=xz andv=z. (This second trivial equation is
needed to make the space-scale coordinates distinct, and
because there are other versions of space-scale diagrams, e.g.,
wherev=log(z)). Conversely, of course, a point(u, v) in the
space-scale diagram corresponds to(x, z), i.e., a point x in the
original diagram magnified by a factor z, wherex=u/v, and
z=v. (The notation is a bit informal, in thatx andu are single
coordinates in the 1+1D version of the diagrams, but a
sequence of two coordinates in the 2+1D version.)

u

Figure 5. A “1+1D” space-scale diagram has one spatial
dimension, u, and one scale dimension, v. The six
great rays here correspond to six points in a 1D spa-
tial world, put together at all magnifications. The
viewing window, like the space itself, is one dimen-
sional, and is shown as a narrow slit with the corre-
sponding 1-D window view being visible through the
slit. Thus the sequence of views (a), (b), (c) begins
with a view of all six points, and then zooms in on the
point q. The views, (a), (b), (c) are redrawn at bottom
to show the image at those points.

v

1-D Viewing Window

(c)

(b)

(a)

q

(c)

(b)

(a)

q

“zoomed out”

“zoomed in”

A few words are in order about the XZ vs. UV characteriza-
tions. The(x,z) notation can be considered a world-based
coordinate system. It is important in interface implementation
because typically a world being rendered in a multiscale
viewer is stored internally in some fixed canonical coordinate
system (denoted withx’s). The magnification parameter,z, is
used in the rendering process. Technically one could define a
type of space-scale diagram that plots the set of all(x,z) pairs
directly. This “XZ” diagram would stack up many copies of
the original diagram, all of the same size, i.e.,without rescal-
ing them. In this representation, while the picture is always
constant size, the viewing window must grow and shrink as it
moves up and down inz, indicating its changing scope as it
zooms. Thus while the world representation is simple, the
viewer behavior is complex. In contrast, the “UV” represen-
tation of the space-scale diagrams focussed on in this paper
can be considered view-based. Conceptually, the world is
statically prescaled, and the window is rigidly moved about.
The UV representation is thus very useful in discussing how
the views should behave. The coordinate transform formulas
allow problems stated and solved in terms of view behavior,
i.e., in the UV domain, to have their solutions transformed
back into XZ for implementation.

EXAMPLE USES OF SPACE-SCALE DIAGRAMS

With these preliminaries, we are prepared to consider various
uses of space-scale diagrams. We begin with a few examples
involving navigation in zoomable interfaces, then consider
how the diagrams can help visualize multiscale objects, and
finish by showing how other, non-zoom multiscale views can
be characterized.

Pan-zoom trajectories

One of the dominant interface modes for looking at large 2D
worlds is to provide an undistorted window onto the world,
and allow the user to pan and zoom. This is used in
[2][3][7][10], as well as essentially all map viewers in GISs
(geographic information systems). Space-scale diagrams are
a very useful way for researchers studying interfaces to visu-
alize such interactions, since moving a viewing window
around via pans and zooms corresponds to taking it on a tra-
jectory through scale-space. If we represent the window by
its midpoint, the trajectories become curves and are easily
visualized in the space-scale diagram. In this section, we first
show how easily space-scale diagrams represent pan/zoom
sequences. Then we show how they can be used to solve a
very concrete interface problem. Finally we analyze a more
sophisticated pan/zoom problem, with a rather surprising
information theoretic twist.

Basic trajectories. Figure 6 shows how the basic pan-zoom
trajectories can be visualized. In a simple pan (a) the win-
dow’s center traces out a horizontal line as it slides through
space at a fixed scale. A pure zoom around the center of the
window follows a great ray (b), as the window’s viewing
scale changes but its position is constant. In a “zoom-around”
the zoom is centered around some fixed point other than the
center of the window, e.g.,q at the right hand edge of the win-
dow. Then the trajectory is a straight line parallel to the great
ray of that fixed point. This moves the window so that the

fixed point stays put in the view. In the figure, for example,
the point,q, always intersects the windows on trajectory (c) at
the far right edge, meaning that the point,q, is always at that
position in the view. If as in this case the fixed point is itself
within the window, we call it a zoom-around-within-window
or zaww. Other sorts of pan-zoom trajectories have their char-
acteristic shapes as well and are hence easily visualized with
space-scale diagrams.

The joint pan-zoom problem. There are times when the sys-
tem must automatically pan and zoom from one place to
another, e.g. moving the view to show the result of a search.
Making a reasonable joint pan and zoom is not entirely triv-
ial. The problem arises because in typical implementations,
pan is linear at any given scale, but zoom is logarithmic,
changing magnification by a constant factor in a constant
time. These two effects interact. For example, suppose the
system needs to move the view from some first point(x1 , z1)
to a second point (x2 , z2). For example, a GIS might want to
shift a view of a map from showing the state of Kansas, to
showing a zoomed in view of the city of Chicago, some thou-
sand miles away. A naive implementation might compute the
linear pans and log-linear zooms separately and execute them
in parallel. The problem is that when zooming in, the world
view expands exponentially fast, and the target pointx2 runs
away faster than the pan can keep up with it. The net result is
that the target is approached non-monotonically: it first
moves away as the zoom dominates, and only later comes
back to the center of the view. Various seat-of-the pants
guesses (taking logs of things here and there) do not work
either.

What is needed is a way to express the desired monotonicity
of the view’s movement in both space and scale. This view-
based constraint is quite naturally expressed in the UV space-
scale diagram as a bounding parallelogram (Figure 7). Three
sides of the parallelogram are simple to understand. Since
moving up in the diagram corresponds to increasing magnifi-
cation, any trajectory which exits the top of the parallelogram
would have overshot the zoom-in. A trajectory exiting the
bottom would have zoomed out when it should have been

Figure 6. Basic Pan-Zoom trajectories are shown in the
heavy dashed lines:. (a) Is a pure Pan,. (b) is a pure
Zoom (out), (c) is a “Zoom-around” the point q.

(c)
(b)

(a)

q

zooming in. One exiting the right side would have overshot
the target in space. The fourth side, on the left, is the most
interesting. Any point to the left of that line corresponds to a
view in which the targetx2 is further away from the center of
the window than where it started, i.e., violating the non-
monotonic approach. Thus any admissible trajectory must
stay within this parallelogram, and in general must never
move back closer to this left side once it has moved right. The
simplest such trajectory in UV space is the diagonal of the
parallelogram. Calculating it is simple analytic geometry. The
coordinates of points 1 and 2 would typically come from the
implementation in terms of XZ. These would first be trans-
formed to UV. The linear interpolation is done trivially there,
and the resulting equation transformed back to XZ for use in
the implementation. If one composes all these algebraic steps
into one formula, the trajectory in XZ for this 1-D case is:

Thus to get a monotonic approach, the scale factor,z, must
change hyperbolically with the panning ofx. This mathemati-
cal relationship is not easily guessed but falls directly out of
the analysis of the space-scale diagram. We implemented the
2D analog in Pad++ and found the net effect is visually much
more pleasing than our naive attempts, and count this as a
success of space-scale diagrams.

Optimal pan-zooms and shortest paths in scale-space.
Since panning and zooming are the dominant navigational
motion of these undistorted multiscale interfaces, finding
“good” versions of such motions is important.The previous
example concerned finding a trajectory where “good” was
defined by monotonicity properties. Here we explore another
notion of a “good” trajectory, where “good” means “short”.

Paradoxically, in scale-space the shortest path between two
points is usually not a straight line. This is in fact one of the
great advantages of zoomable interfaces for navigation, and
results from the fact that zoom provides a kind of exponential
accelerator for moving around a very large space. A vast dis-
tance may be traversed by first zooming out to a scale where

Figure 7. Solution to the simple joint pan-zoom problem.
The trajectorys monotonically approaches point 2 in
both pan and zoom.

s

(x1,z1)

(x2,z2)

x1 x2

z
z1 m z1x1–

1 m x–
---------------------------= where m

z2 z1–

z2x2 z1x1–
---------------------------=

the old position and new target destination are close together,
then making a small pan from one to the other, and finally
zooming back in (see Figure 8). Since zoom is naturally loga-
rithmic, the vast separation can be shrunk much faster than it
can be directly traversed, with exponential savings in the
limit. Such insights raise the question of what is really the
optimal shortest path in scale-space between two points.

When we began pondering this question, we noted a few
important but seemingly unrelated pieces of the puzzle. First,
one naive intuition about how to pan and zoom to cross large
distances says to zoom out until both the old and new loca-
tion are in the view, then zoom back into the new one. Is this
related at all to any notion of a shortest path? Second, win-
dow size matters in this intuitive strategy: if the window is
bigger, then you do not have to zoom out as far to include
both the old and new points. A third piece of the puzzle arises
when we note that the “cost” of various pan and zoom opera-
tions must be specified formally before we can try to solve
the shortest path question. While it seems intuitive that the
cost of a pure pan should be linear in the distance panned, and
the cost of a pure zoom should be logarithmic with change of
scale, there would seem to be a puzzling free parameter relat-
ing these two, i.e. telling how much pan is worth how much
zoom.

Surprisingly, there turns out to be a very natural information
metric on pan/zoom costs which fits these pieces together. It
not only yields the linear pan and log zoom costs, but also
defines the constant relating them and is sensitive to window
size. The metric is motivated by a notion of visual informa-
tional simplicity: the number of bits it would take to effi-
ciently transmit a movie of a window following the
trajectory.

Consider a movie made of a pan/zoom sequence over some
2D world. Successive frames differ from one another only
slightly, so that a much more efficient encoding is possible.
For example if successive frames are related by a small pan
operation, it is necessary only to transmit the bits correspond-
ing to the new pixels appearing at the leading edge of the pan-
ning window. The bits at the trailing edge are thrown away.

Figure 8. The shortest path between two points is often
not a straight line. Here each arrow represents one
unit of cost. Because zoom is logarithmic, it is often
“shorter” to zoom out (a), make a small pan (b), and
zoom back in (c), than to make a large pan directly (d).

u

v

(b)

(a)

(d)

(c)

p q

The 1-D version is shown in Figure 9a. If the bit density isβ
(i.e., bits per centimeter of window real estate), then the num-
ber of bits to transmit a pan of sized is dβ.

Similarly, consider when successive frames are related by a
small pure zoom-in operation (Figure 9b), say where a win-
dow is going to magnify a portion covering only(w-d)/w of
what it used to cover (wherew is the window size). Then too,
dβ bits are involved. These are the bits thrown away at the
edges of the window as the zoom-in narrows its scope. Since
this new smaller area is to be shown magnified, i.e., with
higher resolution, it is exactly this number of bits,dβ, of high
resolution information that must be transmitted to augment
the lower resolution information that was already available.

The actual calculation of information cost for zooms requires
a little more effort, since the amount of information required
to make a total zoom by a factorr depends on the number and
size of the intermediate steps. For example, two discrete step
zooms by a factor of 2 magnification require more bits than a
single step zoom by a factor of 4. (Intuitively, this is because
showing the intermediate step requires temporarily having
some new high resolution information at the edges of the
window that is then thrown away in the final scope of the
zoomed-in window.) Thus the natural case to consider is the
continuous limit, where the step-size goes to zero. The result-
ing formula says that transmitting a zoom-in (or out) opera-
tion for a total magnification change of a factorr requires
βwlog(r) bits.

Thus the information metric, based on a notion of bits
required to encode a movie efficiently, yields exactly what
was promised: linear cost of pans (dβ), log costs of zooms
(βwlog(r)), and a constant (w) relating them that is exactly
the window size. Similar analyses give the costs for other ele-

Figure 9. Information metric on pan and zoom operations
on a 1-D world. (a) Shifting a window by d requires dβ
new bits. (b) Zooming in by a factor of (w-d)/w, throws
away dβ bits, which must be replaced with just that
amount of diffuse, higher resolution information when
the window is magnified and brought back to full reso-
lution.

old window position

new window position

d

(a) PAN:

new window,w-d

(b) ZOOM:

x

x

old window,w

d/2d/2

mentary motions. For example, a zoom around other any
other point within the window (a zaww) always turns out to
have the same cost as a pure (centered) zoom. Other arbitrary
zoom-arounds are a bit more complicated.

From these components it is possible to compute the costs of
arbitrary trajectories, and therefore in principle to find mini-
mal ones. Unfortunately, the truly optimal ones will have a
complicated curved shape, and finding it is a complicated cal-
culus-of-variations problem. We have limited our work so far
to finding the shortest paths within certain parameterized
families of trajectories, all of which are piecewise pure pans,
pure zooms or pure zaww’s. We sketch typical members of
the families on a space-scale diagram, pick parameterizations
of them and apply simple calculus to get the minimal cases.
There is not room here to go through these in detail, but we
give an overview of the results.

Before doing so, however, it should be mentioned that,
despite all this formal work, the real interface issue of what
constitutes a “good” pan/zoom trajectory is an empirical/cog-
nitive one. The goal here is to develop a candidate theory for
suggesting trajectories, and possibly for modelling and
understanding future empirical work. The suitability of the
information based approached followed here hinges on an
implicit cognitive theory that humans watching a pan/zoom
sequence have somehow to take in, i.e., encode or under-
stand, the sequence of views that is going by. They need to do
this to interpret the meaning of specific things they are seeing,
understand where they are moving to, how to get back, etc. It
is assumed that, other things being equal, “short” movies are
somehow easier, taking fewer cognitive resources (process-
ing, memory, etc.) than longer ones. It is also assumed that
human viewers do not encode successive frames of the movie
but that a small pan or small zoom can be encoded as such,
with only the deltas, i.e., the new information, encoded. Thus
to some approximation, movies with shorter encoded lengths
will be better. (We are also at this point ignoring the content
of the world, assuming that no special content-based encod-
ing is practical or at least that information density at all places
and scales is sufficiently uniform that its encoding would not
change the relative costs.)

To get some empirical idea of whether this information-theo-
retic approach to “goodness” of pan-zoom trajectories
matches human judgement, we implemented some simple
testing facilities. The testing interface allows us to animate
between two specified points (and zooms) with various tra-
jectories, trajectories that were analyzed and programmed
using space-scale diagrams. We did informal testing among a
few people in our lab to see if there was an obvious prefer-
ence between trajectories, and compared these to the theory.

For large separations, pure pan is very bad. There is strong
agreement between theory and subjects’ experience. Theory
says the information description of a pure pan movie should
be exponentially longer one substantially using a zoom.
Empirically, users universally disliked these big pans. They
found it difficult to maintain context as the animation flew
across a large scene. Further, when the distance to be trav-
elled was quite large and the animation was fast, it was hard

to see what was happening; if the animation was too slow, it
took too long to get there.

At the other extreme, for small separations viewers preferred
a short pure pan to strategies that zoomed out and in. It turns
out that this is also predicted by the theory for the family
piecewise pan/zoom/zaww trajectories we considered here.
Depending on exactly which types of motions are allowed,
the theory predicts that to traverse separations of less than 1
to 3 window widths, the corresponding movie is information-
ally shorter if it is just a pan.

Does the naive zoom-pan-zoom approach ever obtain? Well
at the level of zoom out till the two are close, then pan in, the
answer is definitely yes. The fine points are a bit more subtle.
If only zaww’s are allowed, the shortest path indeed involves
zooming out until both are visible then zooming in (Figure
10). For users this was quite a well-liked trajectory. If pans

are allowed, however, the information metric disagrees
slightly with the naive intuition, and says to stop the zoom
before both are in view, and make a pan of 1-3 screen separa-
tions (just as described for short pans), then zoom in. The
information difference between this optimal strategy and the
naive one is small, and our users similarly found small differ-
ences in the acceptability. It will be interesting to examine
these variants more systematically.

Our overall conclusion is that the information metric, based
on analyses of space-scale diagrams, is quite a reasonable
way to determine “good” pan/zoom trajectories.

Showing semantic zooming

Another whole class of uses for space-scale diagrams is for
the representation ofsemantic zooming[10]. In contrast to
geometric zooming, where objects change only their size and
not their shape when magnified, semantic zooming allows
objects to change their appearance as the amount of real-

Figure 10. The shortest zaww path betweenp (a) andq
zooms out till both are within the window (b), then
zooms in (c). The corresponding views are shown
below the diagram.

u

v
(a)

p q

(a)

p p q q

(b)

(b) (c)

(c)

estate available to them changes. For example, an object
could just appear as a point when small. As it grows, it could
then in turn appear as a solid rectangle, then a labeled rectan-
gle, then a page of text, etc.

Figure 11 shows how geometric zooming and semantic
zooming appear in a space-scale diagram. The object on the
left, shown as an infinitely extending triangle, corresponds to
a 1-D gray line segment, which just appears larger as one
zooms in (upward: 1,2,3). On the right is an object that
changes its appearance as one zooms in. If one zooms out too
far (a), it is not visible. At some transition point in scale, it
suddenly appears as a three segment dashed line (b), then as a
solid line (c), and then when it would be bigger than the win-
dow (d), it disappears again.

The importance of such a diagram is that it allow one to see
several critical aspects of semantic objects that are not other-
wise easily seen. The transition points, i.e., when the object
changes representation as a function of scale, is readily appar-
ent. Also the nature of the changing representations, what it
looks like before and after the change, can be made clear. The
diagram also allows one to compare the transition points and
representations of the different objects inhabiting a multi-
scale world.

We are exploring direct manipulation in space-scale diagrams
as an interface for multi-scale authoring of semantically
zoomable objects. For example, by grabbing and manipulat-
ing transition boundaries, one can change when an object will
zoom semantically. Similarly, suites of objects can have their
transitions coordinated by operations analogous to the snap,
alignment, and distribute operators familiar to drawing pro-
grams, but applied in the space-scale representation.

As another example of semantic zooming, we have also used
space-scale diagrams to implement a “fractal grid.” Since

Figure 11. Semantic Zooming. Bottom slices show views
at different points.

u

v

(a)

(b)

(c)

(d)(3)

(2)

(1)

(1,a)

(2)

(3) (d)

(c)

(b)

grids are useful for aiding authoring and navigation, we
wanted to design one that worked at all scales -- a kind of vir-
tual graph paper over the world, where an ever finer mesh of
squares appears as you zoom in. We devised the implementa-
tion by first designing the 1D version using the space-scale
diagram of Figure 12. This is the analog of a ruler where ever
finer subdivisions appear, but by design here they appear only
when you zoom in (move upward in the figure). There are
nicely spaced gridpoints in the window at all five zooms of
the figure. Without this fractal property, at some magnifica-
tion, the grid points would disappear from most views.

Warps and fisheye views

Space-scale diagrams can also be used to produce many
kinds of image warpings. We have characterized the space-
scale diagram as a stack of image snapshots at different
zooms. So far in this paper, we have always taken each image
as a horizontal slice through scale space. Now, instead imag-
ine taking a cut of arbitrary shape through scale space and
projecting down to theu axis. Figure 13 shows a step-up-
step-down cut that produces a mapping with two levels of
magnification and a sharp transition between them. Here,(a)
shows the trajectory through scale space,(b) shows the result
that would obtain if the cut was purely flat at the initial level,
and (c) shows the warped result following.

Different curves can produce many different kinds of map-
pings. For example, Figure 14 shows how we can create a
fisheye view.* By taking a curved trajectory through scale-
space, we get a smooth distortion that is magnified in the cen-
ter and compressed in the periphery. Other cuts can create
bifocal [1] and perspective wall [8].

* In fact exactly this strategy for creating 2D fisheye views
was proposed years ago in [5], p 9,10.

Figure 12. Fractal grid in 1D. As the window moves up
by a factor of 2 magnification, new gridpoints appear
to subdivide the world appropriately at that scale. The
view of the grid is the same in all five windows.

v

For cuts as in Figure 13, which are piece-wise horizontal, the
magnification of the mapping comes directly from the height
of the slice. When the cuts are curved and slanted, the geome-
try is more complicated but the magnification can always be
determined by looking at the projection as in Figure 14.*

CONCLUSION

This paper introduces space-scale diagrams as a new tech-
nique for understanding multiscale interfaces. Their defining

* Simple projection is only one way for such cuts to create
views. For example if one takes the XZ transformed version of
these diagrams with cuts, one can use them directly as the mag-
nification functions of [6].

1 2 3 4 5 6 7 8 9

1

2

3 4 5 6 7

8

9

1 2 4 5 6 8 9

Figure 13. Warp with two levels of magnification and
an abrupt transition between them. (a) shows the
trajectory through scale-space, (b) shows the
unwarped view, and (c) shows the warped view
(notice rays 3 and 7 don’t appear).

(b)

(c)

(a)

v

u

1

2

3

4
5

6

7

8

9

12 4 5 6 89

Figure 14. Fisheye view.

A:

v

u

3 7

characteristic and principal virtue is that they represent scale
explicitly. We showed how they can aid the analysis of pans
and zooms because they take a temporal structure and turn it
into a static one: a sequence of views becomes a curve in
scale-space. This has already helped in the design of good
pan/zoom trajectories for Pad++. We showed how the dia-
grams can help visualization of semantic zooming by show-
ing an object in a l l i ts scale-dependent vers ions
simultaneously. We expect to use this as an interface for
designing semantically zoomable objects. We also suggested
that diagrams may be useful for examining other non-flat
multiscale representation, such as fisheye views.

Space-scale diagrams, therefore, are important for visualizing
various problems of scale, for aiding formal analyses of those
problems, and finally, for implementing various solutions to
them.

REFERENCES
1. Apperley, M.D., Tzavaras, I. and Spence, R, A Bifocal

Display Technique for Data Presentation, Proceedings of
Eurographics ‘82, pp. 27-43.

2. Bederson, B. B. and Hollan, J.D., Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface Phys-
ics, Proceedings of ACM UIST’94, (1994, Marina Del Ray,
CA), ACM Press.

3. Donelson, W., Spatial Management of Information, Sig-
Graph’78 (Atlanta, GA), pp. 203-209.

4. Furnas, G.W., Generalized Fisheye Views. In Proceedings
of CHI’86 Human Factors in Computing Systems (Boston,
MA, April 1986), ACM press, pp. 16-23

5. Furnas, G. W., The FISHEYE view: A new look at struc-
tured files.Bell Laboratories Technical Memorandum, #82-
11221-22, Oct 18, 1982. 22pps.

6. Leung, Y.K. and Apperley, M.D., A Unified Theory of Dis-
tortion-Oriented Presentation Techniques. In press, TOCHI.

7. Lieberman, H., Powers of Ten Thousand: Navigating in
Large Information Spaces. Short paper, upcoming UIST’94.

8. Mackinlay, J.D., Robertson, G.G. and Card, S.K., The Per-
spective Wall: Detail and Context Smoothly Integrated,
ACM, Proc. CHI’91, pp. 173-179.

9. Noik, E.G., A Space of Presentation Emphasis Techniques
for Visualizing Graphs, GI ‘94: Graphics Interface 1994,
(Banff, Alberta, Canada, May 16-20, 1994), pp. 225-234.

10. Perlin, K. and Fox, D., Pad: An Alternative Approach to the
Computer Interface, SigGraph `93 (Anaheim, CA) pp. 57-
64

11. Robertson, George. G. and Mackinlay, Jock, The Document
Lens, in Proc. UIST’93 (Atlanta, GA) ACM, pp. 101-108.

12. Sarkar, M. and Brown, M.H. Graphical fisheye views of
graphs. In Proc. ACM CHI’92, pages 83-91, Monterey, CA,
May, 1992. ACM.

13. Sarkar, M., Snibbe, S.S. and Reiss, S.P. Stretching the
Rubber Sheet: A Metaphor For Visualizing Large Structures
on Small Screens. In ACM UIST ‘93 (November 1993),
ACM Press.

