
notion of lenses or filters that can be manipulated on the
data surface to change the appearance of objects seen
within the lens. In addition, Lucas et. al. [6] uses a kind of
local tool in their Visage system by allowing the user to
place a dynamic query slider directly on the data surface.
Finally, Meyer [5] demonstrated some examples of local
tools that were generated on the fly by sketching in his
Etcha-Pad system.

PAD++ LOCAL TOOLS
The current implementation of local tools in Pad++ is a
preliminary investigation designed for the KidPad appli-
cation previously mentioned (Figure 1). We have imple-
mented local tools for drawing, erasing, selecting,
creating hyperlinks, and for copying clip-art out of a
scrapbook. In addition, there is a special toolbox for orga-
nizing tools.

The current user interactions with local tools are as fol-
lows. When KidPad starts up, the tools are lined up on the
bottom of the screen. The toolbox is fixed at the bottom
right. When the user pans or zooms, the tools stay on the
surface, and thus pan or zoom with everything else. The
toolbox, however, stays in the bottom right-hand corner
of the screen. Clicking on the toolbox brings back the
tools from wherever they were left on the Pad++ surface
and lines them up on the bottom of the screen. Clicking
on a tool picks it up so it can be used. Double-clicking
drops the tool so another tool can be picked up.

The scrapbook has special interactions. It is a slider that
shows the items in the scrapbook one at a time as the
slider is moved. Clicking on an item in the scrapbook
with the selection tool automatically makes a copy of the
item that can then be positioned anywhere on the work
surface.

USER TESTING
We tested the local tools in KidPad at Lowell Elementary
School in Albuquerque, New Mexico with two fourth
grade classes on an ongoing basis. We tested KidPad one
hour a week for eight weeks (for each class). We rotated
through the students, asking all 40 students to use KidPad
in repeated tasks. We also tested KidPad at CHI’96 in the
new CHIKids program, where 12 children aged 4-13 used
KidPad for two hours.

Through this experience, we learned that local tools work.
Even very young children learned to use them very
quickly with minimal instruction, and many of them
reported preferring local tools over the tool palette.

We also received valuable feedback from the kids about
the tools usability. The biggest problem is that children
(and many adults for that matter) have a difficult time
double-clicking to drop the tool. We plan to make it possi-
ble to drop a tool with a single click on the toolbox. Also,
a single click on any other tool will drop the first one, and
pick up the second one.

The lack of local tools for panning and zooming was also
a problem. Children (and again, many adults) have trou-
ble using the three-button mouse we currently use for
zooming. Small hands can’t access all three buttons eas-
ily, and few people can remember which button zooms in
which direction. To this end, we are developing local
tools with animated icons to control panning and zoom-
ing which will allow Pad++ to be controlled with a one
button mouse.

CONCLUSION
Our preliminary results show that local tools are a prom-
ising new way to interact with computer applications.
While we are improving the details of our implementa-
tion, a wide range of users, including very young children
were able to use local tools effectively and reported
enjoying them.

In addition to improving the existing local tools, we are
working on expanding the tool set and organization. We
are planning on providing multiple groups of tools that
can easily be accessed, modified, and shared with other
users.

ACKNOWLEDGEMENTS
We wish to thank all the children in Albuquerque, NM
and at CHIKids who supported our efforts in testing local
tools. In addition, we wish to thank Jon Meyer, one of our
collaborators at the New York University Media Research
Laboratory for discussions about local tools, while he
independently did related work on Etcha-Pad.

This work is supported in part by ARPA contract
#N66001-94-C-6039.

REFERENCES
[1] Benjamin B. Bederson, James D. Hollan, Ken Perlin,

Jonathan Meyer, David Bacon, George Furnas.A Zoom-
able Graphical Sketchpad For Exploring Alternate Inter-
face Physics, Journal of Visual Languages and
Computing, 1996, Vol. 7, 3-31.

[2] Benjamin B. Bederson and James D. Hollan,Pad++: A
Zooming Graphical Interface for Exploring Alternate
Interface Physics,Proceedings of ACM Symposium on
User Interface Software and Technology (UIST’94), 17-
26.

[3] Benjamin B. Bederson, Larry Stead, and James D. Hollan,
Pad++: Advances in Multiscale Interfaces, Proceedings
of ACM SIGCHI Conference (CHI’94), 315-316.

[4] Eric A. Bier, Maureen C. Stone, Ken Pier, William Bux-
ton, and Tony D. DeRose.Toolglass and Magic Lenses:
The See-Through Interface, Proceedings of 1993 ACM
SIGGRAPH Conference, 73-80.

[5] Jonathan Meyer.Etcha-Pad, Proceedings of ACM SIG-
CHI Conference Companion (CHI’96), 195-196.

[6] Peter Lucas, Steven F. Roth, Cristina C. Gomberg.Visage:
Dynamic Information Exploration, Proceedings of ACM
SIGCHI Conference Companion (CHI’96), 19-20.



KEYWORDS
Interactive user interfaces, multiscale zoomable inter-
faces, information visualization, information physics,
local tools.

ABSTRACT
We describe local tools, a general interaction technique
that replaces traditional tool palettes. A collection of tools
sit on the worksurface along with the data. Each tool can
be picked up (where it replaces the cursor), used, and then
put down anywhere on the worksurface. There is a tool-
box for organizing the tools. These local tools were
implemented in Pad++ as part of KidPad, an application
for children.

INTRODUCTION
Sitting at a desk, many people find that they work with
several tools simultaneously. Perhaps they have a pencil,
a red pen, a stapler, or some paper clips - all on their
worksurface together. This is a very natural way to work,
yet most computer interfaces don’t support this style of
interaction. Rather, traditional computer tool palettes
allow only a single tool to be active at a time. In the real
world, this would be equivalent to being forced to put
away every tool before another could be used.

In the Pad++ research group at the University of New
Mexico, we have been experimenting with an alternative
style of interaction we calllocal tools. Motivated by the
above scenario, we allow the user to place several tools
directly on the work surface, and then pick them up and
use them. When a tool is held, it becomes the cursor and
can be used just like a regular tool. But these tools can
easily be put down anywhere on the work surface, and
other tools can be picked up in their place.

One of the driving reasons behind this development of
local tools has been our work in developing a zooming
application for children using Pad++. We tested the stan-
dard tool palette interface in Pad++ with computer-novice
fourth graders. What we found was that children had a

difficult time with the interface. Despite the fact that the
interface useddirect manipulation, it wasn’t direct
enough. Tool palettes are hard to use. The user must first
find the tool palette (sometimes having to access it from a
menu). Then she must press the correct button resulting in
the cursor changing - which is quite confusing to the
uninitiated computer user. Finally, she must select various
attributes of the tool, such as color and width. A local tool
can embody all of these characteristics at once. Local
tools remain on the surface and can be picked up and used
with all of their attributes, potentially reducing cognitive
load.

We are building these local tools within Pad++, a zoom-
able environment [1][2][3]. Pad++ provides a huge work-
surface where graphical objects can be put on the surface
at any position and at any size. The user can navigate
through this planar space by panning and zooming. While
local tools could be implemented in a non-zooming envi-
ronment, there are some drawbacks because the local
tools sit on the worksurface taking up valuable screen real
estate. In a zoomable environment, however, the tools can
easily be made as large or small as desired. In addition,
they can be pushed off the screen and then easily brought
back with a specialtoolbox (see below).

Developments similar to local tools have recently been
described by several research groups. Bier et. al. [4] and
our own research group [1] have recently discussed the

Figure 1: Screen snapshot from KidPad showing
use of local tools.

Local Tools: An Alternative to Tool Palettes

Benjamin B. Bederson, James D. Hollan, Allison Druin, Jason Stewart, David Rogers, David Proft
Computer Science Department

University of New Mexico
Albuquerque, NM 87131

([bederson, hollan, allisond, jasons, drogers, proft]@cs.unm.edu)
http://www.cs.unm.edu/pad++

Published in ACM UIST’96, pp 169-170.


