
In addition, languages that support a top-level interpreter
also need to provide:

• Command completeness: Since some commands
can span multiple lines, the system must be able to
determine when a command is complete so it can be
evaluated (e.g., for Tcl, braces, parenthesis, brackets
and quotes must match).

• Prompt generation: Each language must generate a
prompt for the interpreter so that the user can iden-
tify which language is active and that input is
needed.

• String Evaluation: Strings must be able to be eval-
uated as they are typed in to the interpreter.

To access our Pad++ library, each language must also
specify two special functions.

• Pad++ widget creation: Whenever a new Pad++
widget is created, a function is called so that the
scripting language knows about the new widget and
can create a procedure for accessing the widget.

• Pad++ command: A special function is created in
Tcl for each language. This allows each language to
access the other languages. For instance, from Tcl, it
is possible to get or set variables in Scheme.

Our implementation of access to multiple scripting lan-
guages in C++ is based on two classes,Pad_Language
andPad_Script . An instance ofPad_Language is
created for each new scripting language. It contains point-
ers to six C++ callbacks that implement the functions
described above. Then, every script, whether it is an event
binding, or a command typed in the interpreter is instanti-
ated as aPad_Script with a pointer to the language
the script is written in. ThePad_Script contains an
Eval() method which evaluates the script in the appro-
priate language.

The only other special code deals with the top-level inter-
preter. An interpreter typically prints a prompt, receives
input, and when the input forms a complete command,
the command is evaluated. Finally, this cycle is repeated.
Normally, these four steps are hard-coded for a specific
language. With our approach, we simply call the appro-
priate call-back function for the current language.

The following sequence shows a very short usage of
Pad++ moving back and forth between Tcl and Scheme:

unix> padwish
% puts “hello”
hello
% .pad settoplevel scheme
> (+ 2 2)
4
> (set! foo 42)
> (settoplevel ‘tcl)
% .pad scheme get foo

42
% exit
unix>

DISCUSSION
One design tradeoff we made with this approach was the
use of a string interface for parameter passing. As a result,
all communication between each language and Pad++
goes through strings. This causes a minor speed penalty,
but makes implementationmuch easier because internal
types from each language only have to be converted to
strings as a common intermediary. Therefore, each lan-
guage can call the Pad++ library with a request in a stan-
dard string format (argc, argv) without having to know
about each Pad++ library call and parameter type.

One difficulty we had is that not all scripting languages
provide a well-defined and bug-free mechanism for con-
verting internal types to strings. Since this is a very useful
facility for the now common practice of embedding
scripting languages in external programs, language
designers would be well-advised to provide, test, and doc-
ument string conversion facilities.

ACKNOWLEDGEMENTS
Thanks to the entire Pad++ development team for their
patience and support as we figured out how to handle
multiple languages reasonably.

This work is supported in part by ARPA contract
#N66001-94-C-6039.

REFERENCES
[1] Benjamin B. Bederson, James D. Hollan, Ken Perlin,

Jonathan Meyer, David Bacon, George Furnas.A Zoom-
able Graphical Sketchpad For Exploring Alternate Inter-
face Physics, Journal of Visual Languages and Computing
(in Press).

[2] Benjamin B. Bederson and James D. Hollan,Pad++: A
Zooming Graphical Interface for Exploring Alternate
Interface Physics,Proceedings of ACM Symposium on
User Interface Software and Technology (UIST’94), 17-
26.

[3] Benjamin B. Bederson, Larry Stead, and James D. Hollan,
Pad++: Advances in Multiscale Interfaces, Proceedings
of ACM SIGCHI Conference (CHI’94), 315-316.

[4] John Ousterhout,Tcl and the Tk Toolkit, Addison-Wesley,
1994.

[5] ELK Scheme: http://www-rn.informatik.uni-bremen.de/
software/elk/elk.html

[6] Perl: http://www.perl.com/perl

[7] STk: http://kaolin.unice.fr/html/STk.html

[8] Guile:http://www.cygnus.com/library/ctr/guile/guile.html

[9] Java: http://www.javasoft.com

KEYWORDS
Interactive user interfaces, multiscale zoomable inter-
faces, information visualization, information physics,
interpreted scripting languages.

ABSTRACT
We describe a generic approach to connect any number of
interpreted scripting languages to a library. We imple-
mented this technique with Pad++ so that complete
access to Pad++ is now available through Scheme and
Perl as well as Tcl/Tk.

INTRODUCTION
Ask any two programmers what their favorite computer
languages are and you will likely end up with a very
intense debate. Indeed, developers’ feelings about pro-
gramming languages are almost religious in nature. With
the current proliferation of scripting languages (Scheme,
Tcl/Tk, Python, Perl, etc.), this divisiveness can be diffi-
cult for development teams.

In addition to strong personal preferences, there are many
practical reasons to choose one language over another.
Speed of execution, speed of coding, legacy code, porta-
bility, programmer familiarity with languages, availability
of libraries, and appropriateness to application domain
are all important factors in deciding which language to
use.

For library developers such as ourselves, the huge number
of available scripting languages is a real concern. We are
developing Pad++ [1][2][3], a general-purpose substrate
for supporting zoomable graphical interfaces. While our
library is written in C++, we want to provide a scripting
language interface so applications can be written at a
higher level, and prototyped more easily. Until recently,
we supported only Tcl/Tk [4] which was adequate, but
limited the number of potential users of our system.

We now continue to support Tcl/Tk, but in addition, we
provide a generic mechanism to add support for any other

scripting language. We have used this mechanism to add
support for Scheme (the ELK distribution [5]) and Perl
[6]. Our approach provides these features:

• An arbitrary number of languages can be active in
the same environment simultaneously.

• Source files can be loaded.

• A top-level interpreter is available for appropriate
languages (see below) with the ability to switch
between top-level languages at run-time.

• Callbacks, such as event bindings or timer scripts,
can be written in any language.

• A single Makefile flag for each language determines
at compile-time which languages will be supported
at run-time.

There have been other approaches to the multiple lan-
guage problem. STk provides a Scheme interface to Tk,
but eliminates access to Tcl [7]. Guile provides a base lan-
guage which is intended to provide the ability to write
interpreters for any other scripting language [8]. This
approach is promising, but is still under development and
has the potential problem that each scripting language
will be slower than the original since it will be interpreted
in Guile rather than in its original implementation.
Despite the quest for a universal language, it is unlikely
that a single language will ever satisy everyones needs,
and the issue of giving access to a library through as many
languages as possible remains.

IMPLEMENTATION
Our approach to supporting multiple interpreted scripting
languages rests on the fact that an entire language can be
accessed through just a few simple functions. We distin-
guish between languages that only support loading of
entire files (such as Java or Perl) with languages that sup-
port a top-level interpreter (such as Tcl or Scheme). For
our purposes, all languages must supply functions that
provide:

• Initialization: Most interpreters must be initialized
before they can be used.

• File Evaluation: Every language must be able to
evaluate code contained in a source file.

An Agnostic Approach to Scripting Languages

Benjamin B. Bederson, James D. Hollan, Jason Stewart
Computer Science Department

University of New Mexico
Albuquerque, NM 87131

([bederson, hollan, jasons]@cs.unm.edu)
http://www.cs.unm.edu/pad++

Unpublished

