
Fair File Swarming with FOX

Dave Levin Rob Sherwood Bobby Bhattacharjee
Department of Computer Science, University of Maryland, College Park, MD 20742

Emails: {dml, capveg, bobby}@cs.umd.edu

ABSTRACT
File swarming is a popular method of coordinated download by
which peers obtain a file from an under-provisioned server. Criti-
cal problems arise within this domain when users act selfishly, yet
most systems are built with altruism assumed. Working under the
assumption that all peers are greedy, we introduce the Fair, Opti-
mal eXchange (FOX) protocol. FOX, in addition to effective and
robust application of the tit-for-tat incentive mechanism, provides
theoretically optimal download times when everyone cooperates.
Under our assumption of server and peer capabilities, we develop
a strong threat model that provides peers with the incentives to not
deviate from the protocol. From a theoretical perspective, we prove
FOX’s optimality and incentive properties, even when the network
consists only of purely self-interested peers. We also discuss issues
in implementing and deploying such a system, and address the cost
of ensuring fairness in a domain where efficiency is so important.

1. INTRODUCTION
File swarming applications, such as BitTorrent [7], Bullet′ [9],

and Slurpie [14], allow peers downloading the same file to
trade parts of the file with one another instead of simply
all going to the server. However, it is relatively trivial to
construct free-riding strategies that can vastly degrade these
systems’ performance. For instance, peers could obtain a
block from every other peer in the system without providing
any in return.

Peers cannot be expected to “play fair” and share blocks
on their own accord unless they have incentive to do so, and,
as pointed out by Papadimitriou [12], such incentives should
be built into the protocol itself. In this paper, we consider the
specific problem of some large number (N) of peers attempt-
ing to download the same file from a server. Our solution,
called FOX (Fair Optimal eXchange), incorporates an in-
centives framework built on a novel combination of overlay
structure and threats, simultaneously providing both theoret-
ically optimal download times and incentives to follow the
protocol. The protocol we present for FOX requires no ad-
ditional work at the server and, unlike previous systems, is
distributed, difficult to exploit, and provably fair.

Rather than assume that some subset of users are altruistic,
we expect each peer to act in a purely greedy way. Specif-
ically, we assume that any peer p will help or hurt other peers
only if it improves p’s download time. Within this domain of
self-interested peers, the overarching goal of our work is to
investigate what primitives are necessary to obtain provable
fairness. In many cases, such guarantees may be overkill;
it has been observed that some BitTorrent “communities”
consist of a group of altruistic users who share a niche in-
terest [1]. Our work focuses on the more general problem
of ensuring users of system-wide fairness without any prior
knowledge of the other participants.

There are of course many definitions of fairness. Exact

fairness, in which each peer uploads exactly as much as it
downloads, requires a degree of bookkeeping that is unlikely
to be implemented reliably and scalably in a large system
without adversely affecting peers’ download times. Instead,
the fairness we would like to provide can be described in-
formally as follows: gross violations will be detected and, more
importantly, no rational peer will grossly deviate from our proto-
col. This is a property of FOX; in fact, in an idealized setting,
FOX peers have no incentive to deviate at all. We present a
formal, rigorous set of fairness properties in Section 5.

We consider the case where all peers are interested in
downloading the file, and do not consider maliciousness. In
most situations, this is a strong assumption, but we remind
the reader that file swarming inherently has a single point of
failure; a malicious node may simply attack the server. We
provide incentives to non-malicious peers to cooperate by
employing game theoretic incentive mechanisms.

1.1 What Is Wrong with Tit-for-Tat?
Tit-for-tat (TFT) is a simple, intuitive incentive mecha-

nism. In its simplest application to file swarming, peer p
sends peer q a block but does not send more until q sends a
block in return. If q wants more blocks from p, it has the
incentive to act fairly and return p’s favor. There are many
obvious variations on this theme; p could simply reduce the
quality of service it offers q until q sends blocks to p, or p
could continue sending until q develops too large of a deficit.
The former (reduced service) is similar to what BitTorrent1

currently uses in its choking algorithm. TFT has found its
way to such widely used systems, so why propose a change
now?

Current file swarming systems do not provide the proper
basis for applying TFT. For two-player repeated games, TFT
can prove to be an effective mechanism. In particular, TFT
forms a subgame perfect equilibrium (SPE) for many repeated
games, the repeated prisoners’ dilemma perhaps being the
most well known.2 However, current file swarming systems
allow peers to interact with any other peer in the system;
greedy users may not be required to repeatedly interact with
any other peer and therefore not give anything back to the
system. It is therefore not clear what, if any, global properties
can arise from applying TFT to systems such as BitTorrent,
Bullet′, and Slurpie. Even less clear is whether a proof of
the fairness properties TFT provides to these systems can be
derived. Further, with unrestricted interaction, the amount
of state peers must keep to maintain the history of their
interactions can grow linearly with the number of peers.

1http://www.bittorrent.com
2For a thorough treatment of these and other game theoretic con-
cepts, we refer the reader to [11].

The goal of our work is to investigate how incentive mech-
anisms such as TFT can be effectively applied in a distributed
manner. When successful, TFT can ensure fairness, but at
what cost? In this preliminary work, we introduce our frame-
work – the FOX overlay structure – in which a clearly defined
structure is used to impose behavioral standards. We show
that, in an idealized environment (Section 3), the FOX over-
lay structure (Section 4) is the first system of its kind to offer
provable fairness (Section 5).

Unfortunately, the cost of this degree of fairness is high; in
particular, when even one peer violates the protocol,all peers’
downloads can be negatively affected. However, since it is
not always possible to determine who is cheating, this is the
only way to ensure that the defecting peer will be punished.
As the need increases to provide incentives for cooperation,
we believe the primitives made available in FOX will be
broadly useful as a viable alternative to the many systems
that require centralization or undue assumptions about the
underlying platform.

2. PREVIOUS WORK
File swarming has received significant attention from re-

searchers and users alike. Application-level multicast sys-
tems [2, 5, 6] can be considered some of the earliest such
work, but they provide no incentives to their users to coop-
erate. Recent systems create a mesh in which, in the ideal
case, all nodes send and receive portions of the file (hence-
forth blocks), thereby “filling the pipe” with data to provide
much better download times [4, 7, 9, 14].

In mesh-based systems, since each node trades blocks for
new blocks, designers have attempted to apply TFT as an
incentive mechanism. This is most evident in BitTorrent [7],
which uses a variant of TFT in which the number of blocks
a peer p sends to peer q determines the quality of service q
provides to p. As described above, however, TFT does not
provide strong global properties when trivially applied to an
unstructured system. Note also that, with TFT, blocks can
be viewed as tradable currency. In general, without a means
of verifying currency, forgery will occur; peers could simply
forge garbage blocks and trade them for real ones. A means
of verifying the currency in these systems is likely to involve
additional work at the server (e.g., the server could sign each
block). We show in Section 5 that FOX peers do not have
incentive to forge garbage blocks.

Other mechanisms use currency that is more closely anal-
ogous to money [3,8,15]. In these systems, peers can obtain
digital currency by paying for it with real money or by pro-
viding service to other peers. Currency exchange between
peers is a difficult problem to implement; existing systems
require tamper-proof hardware [3] or a trusted, centralized
authority [15]. Designing a distributed, easily deployable,
altruism-free system that does not require a central trusted
node (such as the issuer of currency) is the focus of our work.

FOX provides incentives while only requiring nodes to
monitor their immediate overlay neighbors. Scrivener [10]
employs a similar approach, but assumes the different model
of distributing potentially many different files. Conversely,
with FOX, we are interested in optimizing download times for
a given popular file in addition to maintaining strict fairness
properties.

3. K-MELTDOWN MODEL
Consider many peers competing for throughput at a server.

It is generally known that servers have some threshold for
the amount of contention they can withstand, after which
throughput tends toward zero for each connecting peer. We
approximate this behavior in a simplistic way with the k-
meltdown model, as follows:

As the number of connections to the server increases
to some number, k, the throughput to each node stays
constant. Once more than k clients connect, the server
“melts down,” that is, its total outgoing throughput
drops immediately to zero.3

We assume the clients also have a meltdown point and that it
is the same k. This is the strongest assumption we make, as
it implies homogeneous resources at the clients. However,
we believe this assumption can be relaxed in practice.

Within the k-meltdown model, peers have the ability to
halt the server and thus terminate every peer’s outstanding
download. The process of halting the system is an example
of a grim trigger strategy [11]; once a player determines that it
has effectively been denied sufficient service, it may invoke
the trigger to cease all cooperation. This perpetual threat
provides rational peers with the incentive to maintain a degree
of system-wide fairness. Of course, it also provides a very
easy means by which a malicious adversary can perform
a denial of service (DoS) attack. However, as discussed
above, a file swarming system is inherently “easy prey” for
an attacker, as the server is a single point of failure.

With grim triggers, we are able to provide a greater degree
of fairness than existing systems, but it is clear that it is
not the ideal way of doing so. This can be seen from a
game theoretic perspective; a protocol for a repeated game
should ideally consist of subgame perfect equilibria, but this
is not possible with grim triggers since they are non-credible
threats. Extending FOX to a subgame perfect equilibrium is
a focus of ongoing work. One potential approach to this is
for peers to melt down for only some period of time, thereby
punishing, not canceling, others’ downloads.

4. THE FOX OVERLAY STRUCTURE
Here, we introduce the FOX overlay structure. This struc-

ture forms the basis of our protocol that provides near-optimal
download times and, with localized threats, provides incen-
tive to peers to cooperate.

4.1 Notation and Assumptions

i
... ...

R

i

1 k

Server

T T T

L

i

Figure 1: Notation pertaining to the tree structure.
3Even if a server had no such inherent meltdown point, it could
willingly shut down upon the (k + 1)st connection. Even with this
seemingly self-destructive approach we ensure system-wide fair-
ness.

(a) Multicast (b) Leaf Exchange (c) Ancestor Return (d) All transfers

Figure 2: Example of the algorithm with k = 2, N = 6. Solid arrows denote the transfer of blocks bkt+1 and dashed arrows blocks
bkt+2, 0 ≤ t ≤

�
B
k
− k �

There are N clients attempting to download a file of B
blocks from one server. Per the k-meltdown model, each
client is assumed to have a maximum outgoing bandwidth of
k blocks per time step. For ease of exposition, assume that
there are enough nodes to fill a k-ary tree of height H rooted
at the server, that is

N =
kH+1 − 1

k − 1
− 1 = � kH − 1 � k

k − 1
.

Consider the tree in Figure 1. Let Ri, 1 ≤ i ≤ k, be the k
peers connected to the server and let Ti be the subtree rooted
at Ri. Lastly, let Li denote the set of leaves of Ti. To arrive at
our final structure, we will add loops to the tree in Figure 1,
but will continue to refer to the members of the Li’s as leaves
and Ti\Li as internal nodes.

4.2 Filling the Pipe
To provide quick download times, our goal is to first fill the

system’s pipe, that is, to use each available outgoing link. We
demonstrate how we do this in an iterative manner, beginning
with the multicast tree in Figure 1. In a full, balanced, k-
ary tree of height H, there are kH leaves, thus with just the
multicast tree, the fraction of nodes not sending data is

kH

N
=

kH

kH − 1
·
k − 1

k
>

k − 1

k
.

Clearly, the multicast tree alone is not an adequate use of the
available resources. We therefore make use of the leaf sets’
links as follows.

Instead of obtaining the same block, each Ri requests a
different block from the server. At time step t ≥ 0, Ri

retrieves the (kt + i)th block of the file, bkt+i. Note that,
unlike most other file swarming systems, this requires no
server involvement; the Ri’s can choose their respective i’s
amongst one another. Let Bt be {bkt+1, . . . , bkt+k}, the set
of blocks uploaded by the server at time t. Once it receives
bkt+i, Ri multicasts it throughout Ti, as in Figure 2(a). When
v ∈ Li receives block bkt+i, it trades with some set of (k− 1)
leaves, each from a different Tj . There are enough leaves
to create pairings in which each leaf, in a single round, gets
the (k − 1) blocks it lacks from the set Bt. As shown in
Figure 2(b), each leaf p only sends blocks to leaves which
send blocks to p, the reasons for which are made clear in
Section 4.3.

Note that, at this point, each leaf has each block in Bt

and each internal node vi ∈ Ti\Li has block bkt+i. Further,
observe that there are more than (k−1) times as many leaves
as internal nodes. We therefore have the resources to deliver

to each such vi the (k − 1) blocks it is missing, Bt\ {bkt+i},
in one additional step; the leaves simply connect directly to
their appropriate ancestor. We show this in Figure 2(c) and
the resulting structure in Figure 2(d). In a full k-ary tree, all
but k leaves have a total of k peers to send to: the (k − 1)
other leaf nodes and the 1 internal node. The k other leaves
will have (k − 1) connections to other leaves but no ancestor
pointer, as exemplified by the leftmost and rightmost leaves
in Figure 2(d). This accounts for the fact that one node in the
system does not require any in-degree — the server itself —
while all other nodes have in-degree k.

The connections between members of Li and the internal
nodes of Ti follow the same paradigm as the inter-leaf con-
nections: send data to those who send data to you. Precisely,
a node ui ∈ Li sends one of the (k−1) blocks it received from
leaves in the other Tj’s to one of the nodes on that path from
ui to Ri. This methodology forms the basis of an incentive
mechanism similar to tit-for-tat, which we show below.

4.3 Threats
In addition to filling the pipe, the connections between

peers described above have two important properties. One,
they exhibit a give-and-take symmetry; each of peer p’s out-
going edges has a corresponding incoming edge which “re-
turns the favor.” Two, the connections are stable; as opposed
to systems such as BitTorrent or Slurpie, a node maintains
its set of neighbors for the entire download.

Due to these two properties, when a peer misbehaves,
there are immediate repercussions. Unlike systems where
peers arbitrarily match up, peers in FOX expect a constant
level of service from each other. When this service is not
detected (i.e., some peer is not holding up its end of the pipe),
punishment is swift. Specifically, each peer understands that,
when another peer p detects a defection (i.e., it does not
receive a block it should have), p will stop sending and go
to the server. Since there are already k connections at the
server, this would cause a meltdown for the whole system.

Obviously, in a practical system, a grim trigger as sensitive
as this is neither viable nor desirable; node failures or trem-
bles4 would unnecessarily take down the system. Though
clearly not a subgame perfect equilibrium, this threat does
provide proper incentive to not defect. Designing more ro-
bust punishment mechanisms is a focus of our ongoing work.

4A player is said to tremble if the action it takes differs from its cho-
sen strategy. Trembles are designed to capture involuntary faults or
mistakes; e.g., in our setting, delay caused by network congestion.

4.4 Avoiding Last-Block Collapse
If self-interested peers can complete downloads at differ-

ent times, a file swarming system runs the risk of last-block
collapse, in which nodes begin dropping out of the system
when they finish, leaving the remaining nodes with no help
to finish their downloads. As presented thus far, FOX is
vulnerable to last-block collapse; when each Ri gets its final
block, it can disregard its respective Ti and instead trade the
final block with the other Rj’s. In doing so, each Ri saves
the time it would take to propagate their final blocks down
the tree, resulting in a download that finishes O(logk N) steps
faster. Note that they could not do this sooner than on the
last block, else their successors could detect their defection
in one time step and invoke the threat mechanism.

Last-block collapse arises in FOX because internal nodes
do not have vested interest in their descendants near the end
of the download. We enforce participation by augmenting
our block exchange with a novel encryption algorithm. At
the end of the algorithm, both internal nodes and leaves have
information that the other needs to complete its download.
The problem of vested interest is therefore reduced to the
exchange of these final pieces of information.

4.4.1 Block Encryption Algorithm
The specific algorithm of encryption and dissemination

is presented in Algorithm 1, where [b]K denotes block b
encrypted with key K and bounds on t0 are given in Sec-
tion 4.4.2.

Algorithm 1 Block encryption and dissemination.
1: The Ri’s agree on a public-private key pair,

(Kpub, Kpriv).
2: Simultaneously, ∀i, ∀v ∈ Li, v chooses its own (i.e., not

shared with any other nodes) public-private key pair,
(K′

pub, K
′

priv).
3: The Ri’s multicast Kpriv to their respective Ti’s, but

only to the internal nodes and leaves with no assigned
ancestor.

4: for steps t = t0 to (B
k
− k), in pipeline, do

5: Ri computes [bkt+i]Kpub
.

6: The internal nodes of Ti multicast [bkt+i]Kpub
to all

nodes in their tree.
7: The leaves perform their exchange with the encrypted

blocks, that is, they trade their [bkt+i]Kpub
for other

leaves’ [bkt+j]Kpub
.

8: In parallel, ∀v ∈ ∪iLi, v uses its K ′

pub to calculate
[[bkt+j]Kpub

]K′

pub
where bkt+j is the block v is assigned

to send to its ancestor.
9: The leaf v sends this doubly-encrypted block up to its

assigned ancestor.
10: end for

To summarize, the internal nodes (i.e., ∪i(Ti\Li)) use a
shared key to encrypt the final blocks of the file. The leaves,
unable to decrypt them, trade these encrypted blocks during
their leaf exchanges. When sending blocks to their ancestors,
each leaf uses its own key to encrypt the already-encrypted
blocks. Thus, upon completion, internal nodes need some
leaves’ K′

priv and each leaf needs Kpriv. These are the final
pieces of information mentioned above. Observe that the
algorithm does not require a PKI; the public-private key pairs
can be generated on a per-file basis by the peers themselves.

4.4.2 Key Exchange
After running the algorithm in Algorithm 1, each leaf has

its own K′

priv but needs Kpriv and that each internal node
has Kpriv but needs its appropriate set of (k − 1) different
K′

priv’s. All that remains is the key exchanges. Each leaf
is involved in one key exchange with its assigned ancestor,
and each internal node is involved in (k − 1) exchanges.
The simplest method for two peers to exchange keys is to
alternate sending one bit of the key without letting the other
get ahead by more than one bit. To ensure that no leaves
get ahead of others, the internal nodes do not reveal a new
bit until all (k − 1) of the leaves reveal their corresponding
bit, resulting in O(kM) total steps where M is the size of
the keys in bits. In the worst case, one of the nodes in the
exchange could get the final bit and leave the system (as they
are, by that time, finished downloading). Thus, some nodes
may finish their download at most one bit ahead of others, but
the remaining node need only try both values. In essence, all
participants finish their downloads simultaneously. A more
advanced simultaneous key exchange protocol is presented
in [13] which requires more communication than just the M
bits of the keys but, during the exchange, verifies that the
keys are correct.

The question remains: for how many time steps should
the encryption process take place, i.e., what is the desired
value of t0 in Algorithm 1? If it were just for the final block
(t0 = B/k), for example, then the Ri’s could simply exchange
their final blocks instead of sending down the tree. If it were
for less than logk N steps (t0 > B/k− logk N), the root nodes
could exchange their final set of blocks with one another
in less time than it would take for their blocks to reach the
leaves. More generally, t0 must be large enough so that, after
receiving the last block from the server, the root nodes cannot
trade with one another faster than it would take to complete
the protocol. Thus, we require that blocks be encrypted for
at least logk N + kM steps (t0 ≤ B/k − logk N − kM), the
number of steps from the time the Ri’s get the block to the
time the download is complete. Observe that, regardless
of the value of t0, only a single agreement at the Ri’s and a
single round of key exchanges are necessary. In the event that
a node could fail, it may be helpful to use a weak encryption
method, in which the time to crack the private key is less than
the time to re-download the blocks but greater than the time
to perform the key exchange itself.

5. ANALYSIS
In this section, we prove that FOX requires little state,

provides near-optimal performance, and gives incentive for
participants to behave in accordance with the protocol.

5.1 Per-Peer State
Recall that each node stores k incoming connections, at

most k outgoing connections, and one public-private key
pair: (Kpub, Kpriv) for all v ∈ Ti\Li and (K′

pub, K
′

priv) for
all v ∈ Li. Thus, the amount of state per peer is O(k).

5.2 Download Time
There are two main properties of FOX to note: that each

node receives the file in the same amount of time and that
this time is nearly optimal. In our analysis, we will as-
sume that each node has the same incoming and outgoing
bandwidth resources. Without further loss of generality, we
assume that each node can send out 1 block to each of its

k links per time step. Thus, the server can send out only k
different blocks each round, giving us the trivial lower bound
of Ω(B/k) rounds until all nodes finish downloading. This
lower bound does not take into account the time to propagate
data throughout the system.

THEOREM 1. The number of steps until all FOX peers have
completed the download is O(logk N + B

k
).

PROOF. Initially filling the pipe takes O(logk N) steps:
logk N to get down the multicast tree, 1 to swap blocks
amongst leaves, and 1 to send back up to ancestors. Since
no links are used more than once in these, we can pipeline
the operation, requiring precisely

�
B
k
− 1 � additional rounds.

The key exchange at the end of the download consists of
O(kM) steps, each requiring 1 bit to be sent. If β is the block
size sent each round during the file transfer then key exchange
takes O(kM

kβ
) = O(M

β
) time. It is reasonable to assume that

the key size, M , is significantly smaller than the file’s block
size, β, hence O(M

β
) = O(1). Thus, the time for all FOX

peers to complete downloading is O(logk N + B
k
).

5.3 Incentives
Here, we discuss some of the incentives that FOX provides

to its participants. Combined, these incentives indicate that
the protocol in Section 4 is a stable equilibrium.

5.3.1 Sending Correct Data
As discussed in Section 2, if there is no means of verifying

an individual block’s integrity, then using tit-for-tat in a file
swarming system may give peers the incentive to generate
garbage blocks, effectively forging the system’s currency.
In short, peers have the incentive to send data as soon as
possible, garbage or not. For the remainder of this discussion,
we assume that each peer perceives the task of sending data
independent of the data itself; if it has a correct block to send,
it will not go through the trouble of generating a garbage
block to send in its stead.

Contrary to other tit-for-tat file swarming systems, we
structure the flow of data in such a way that peers do not
benefit from sending blocks before they have the correct data
to send.

CLAIM 1. Even without a means of verifying a block’s integrity,
no peer has the incentive to send forged blocks.

PROOF. Once peer p has begun receiving blocks, it has no
shortage of correct data to send, so consider the case when p
has yet to receive data. Suppose p ∈ Li for some i. Sending
a garbage block to some q ∈ Lj , j 6= i, yields no reward, as
q will not have a real block to trade until the same time p
does. Similarly, sending forged data to an ancestor has no
positive effect; receiving blocks from leaves does not make
internal nodes change their behavior; it simply keeps them
from invoking the grim trigger. Now consider p ∈ Ti\Li for
some i. Sending a garbage block to its children will give the
leaves of the subtree rooted at p a block they can trade with
leaves from other Tj’s. However, the leaves in Lj will not
have data to send in return until the first round of multicast
is complete. Thus, peer p will not receive data in response
to its garbage block any sooner than if it had followed the
protocol exactly, and hence yields no benefit from such a
deviation.

5.3.2 Maintaining the Structure
Unlike current file swarming systems, we provide a spe-

cific topology instead of allowing peers to arbitrarily match
up. Here, we consider the desirability of our structure, in
particular the underlying multicast tree. One could envision
that a peer, attempting to minimize the amount of data it has
to send, would maintain a single child. With the following,
we show that internal nodes have the incentive to give as
much to the system as possible.

CLAIM 2. Every peer has the incentive to ensure that the un-
derlying multicast tree is a balanced, full, k-ary tree.

PROOF. Observe that, for a tree of height H, the runtime
in Theorem 1 is O(H + B

k
), thus it is within every peer’s best

interest to minimize H. H is minimized when the tree is
balanced and, in the k-meltdown model, when each internal
node maintains as close to k children as possible.

Next, consider the leaves’ outgoing edges. If not main-
tained precisely as described in Section 4, then there will be
a peer that does not have k incoming edges and will therefore
invoke the grim trigger. Thus, every peer has the incentive
to maintain the structure.

5.3.3 Maintaining Position
The structure itself is desired by the participants, but that

does not immediately imply that they will be willing to do
their part. Instead, we must ask: are there certain positions
within the structure that are preferable? If this were the case,
the stability of the system would be in question as nodes
would be vying for these better positions.

Observe, however, that since all nodes finish downloading
the file at the same time, they have no incentive to change
their position. This follows from our assumption that utility
equals the time to download the entire file. If, however, a
node perceived benefit in minimizing the time to download
intermediate blocks, it may have the incentive to become
a leaf (since they receive (k − 1) of the k blocks per time
step earlier than the internal nodes). In this case, we could
extend the encryption procedure to cover every step of the
download, removing whatever use the nodes could have had
for receiving the intermediate blocks sooner. This would
not increase the number of messages; in Algorithm 1, only
t0 would change. It would, however, increase the amount
of work performed at each Ri and each leaf, which is why
we minimize the number of encryptions to (logk N + kM) in
Section 4.

5.3.4 Additional Threats
A final concern is whether participants in FOX can use the

k-meltdown model as a means of threatening other nodes into
providing more resources than is strictly required by FOX.
Note that, in any such threat, the threatening node must offer
the nodes a means of completing the download. If instead
they were offered nothing, then the meltdown would be an
equivalent outcome and the threat would be baseless. A sim-
ple solution to this is for the threatened nodes to counter with
another threat; any selfish activity will result in a meltdown.

6. DISCUSSION AND OPEN QUESTIONS
In this paper, we have addressed the problem of file swarm-

ing with greedy participants in a way that is distributed and
does not require explicit server involvement. We have pre-
sented the k-meltdown model of node throughput capabili-
ties. Working within this model, we developed a novel data
transfer topology that, with threats of grim trigger, provides
near-optimal file download times with incentives for the peers
to cooperate. These incentives indicate that our system is a
stable equilibrium. Each participant in our system requires
only O(k) state where k is the peer’s out-degree. Also, by
using a novel cryptographic method, we ensure that all nodes
finish their download at the same time, thereby avoiding sys-
tem collapse on the final block.

FOX answers the question that provable fairness can be
obtained, but introduces a large cost: the potential for sys-
tem collapse. This is a byproduct of our k-meltdown model
and of our assumption that nodes are purely self-interested.
We raise the question: can one obtain provable fairness in
a completely decentralized system without having such un-
desirable, potential outcomes? Put another way, what new
operating points are possible with provable fairness? For
example, can one address heterogeneity and exploit network
locality in a file swarming system consisting of purely greedy
nodes?

We are currently addressing such questions and we intend
FOX to be a complete, practical protocol. Though these ini-
tial results appear promising, it remains to be seen whether
such nice properties can be maintained in a real environment.
Given the considerations of node failure, heterogeneous net-
work conditions, and the difficulty of node synchronization,
it is a seemingly difficult problem to solve in a fully decen-
tralized manner. Yet, we believe that, since the FOX structure
mainly specifies a data path, it can used as a component of a
more robust system.

REFERENCES
[1] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and

M. Ripeanu. Influences on Cooperation in BitTorrent
Communities. In P2PECON ’05, 2005.

[2] S. Banerjee, S. Lee, B. Bhattacharjee, and
A. Srinivasan. Resilient Multicast Using Overlays. In
ACM SIGMETRICS, 2003.

[3] L. Buttyan and J.-P. Hubaux. Stimulating Cooperation
in Self-Organizing Mobile Ad Hoc Networks.
ACM/Kluwer Mobile Networks and Applications (MONET),
8(5), 2003.

[4] J. W. Byers, J. Considine, M. Mitzenmacher, and
S. Rost. Informed Content Delivery Across Adaptive
Overlay Networks. In ACM SIGCOMM, 2002.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream:
High-Bandwidth Content Distribution in a
Cooperative Environment. In ACM SOSP, 2003.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron. Scribe: A Large-Scale and
Decentralized Application-Level Multicast
Infrastructure. IEEE Journal on Selected Areas in
Communication (JSAC), 20(8), 2002.

[7] B. Cohen. Incentives Build Robustness in BitTorrent.
In Workshop on Economics of Peer-to-Peer Systems, 2003.

[8] P. Golle, K. Leyton-Brown, and I. Mironov. Incentives

for Sharing in Peer-to-Peer Networks. In Proceedings of
the 3rd ACM conference on Electronic Commerce, 2001.

[9] D. Kostić, R. Braud, C. Killian, E. Vandekieft, J. W.
Anderson, A. C. Snoeren, and A. Vahdat. Maintaining
High Bandwidth Under Dynamic Network Conditions.
In Proceedings of USENIX, 2005.

[10] A. Nandi, T.-W. Ngan, A. Singh, P. Druschel, and
D. S. Wallach. Scrivener: Providing Incentives in
Cooperative Content Distribution Systems. In
Middleware, 2005.

[11] M. J. Osborne and A. Rubinstein. A Course in Game
Theory. The MIT Press, 1994.

[12] C. Papadimitriou. Algorithms, Games, and the
Internet. In STOC, 2001.

[13] B. Schneier. Applied Cryptography. John Wiley & Sons,
2nd edition, 1996.

[14] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie:
A Cooperative Bulk Data Transfer Protocol. In IEEE
INFOCOM, 2004.

[15] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A Simple,
Cheat-Proof, Credit-Based System for Mobile Ad-Hoc
Networks. In IEEE INFOCOM, 2003.

