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Abstract— We present a distributed scheme for trust in-
ference in peer-to-peer networks. Our work isin context of
the NICE system, which isa platform for implementing co-
operativeapplicationsover thelnternet. Wedescribe atech-
nique for efficiently storing user reputation information in
a completely decentralized manner, and show how thisin-
formation can beused to efficiently identify non-cooper ative
usersin NICE. We present a simulation-based study of our
algorithms, in which we show our scheme scales to thou-
sands of users using modest amounts of storage, processing,
and bandwidth at any individual node. L astly, we show that
our scheme isrobust and can form cooperative groups in
systems where the vast majority of users are malicious.

I. INTRODUCTION

NICE! is a platform for implementing cooperative ap-
plications over the Internet. We define a cooperative ap-
plication as one that allocates a subset of its resources,
typically processing, bandwidth, and storage, for use by
other peersin the application. We believe alarge class of
applications, including on-line media streaming applica-
tions, multi-party conferencing applications, and emerg-
ing peer-to-peer applications, can al significantly bene-
fit from a cooperative infrastructure. However, coopera-
tive systemsperform best if all usersdo, in fact, cooperate
and providetheir share of resources to the system. In this
paper, we present techniques for identifying cooperative
and non-cooperative users. Using our schemes, individ-
ual userscan assignand infer “trust” valuesfor other users.
Theinferred trust val ues represent how likely an user con-
siders other users to be cooperative, and are used to price
resources in the NICE system.

We focus on distributed solutionsfor the trust inference
problem. We decompose the distributed trust inference
problem into two parts: alocal trust inference component
that requires trust information between principals in the
system as input and a distributed search component that
efficiently gathers this individual trust information to be
used asinput for local inference agorithms. There already
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!NICE is arecursive acronymfor “NICE is the Internet Cooperative
Environment” (See http://ww. cs. und. edu/ proj ect s/
ni ce).

exist systems, e.g. e-bay, that have a centralized user-
evaluation system. Other resource bartering systems, e.g.
MojoNation, have aso implemented centralized trust in-
ference solutions. Our goal is to enable open applications
where users do not have to register with an authority to
be apart of the system. Centralized solutionsdo not scale
in open systems, since malicious users can overwhelm the
central “trust” server with spurioustransactions. The most
widely used decentralized trust inference scheme is prob-
ably the PGP web of trust [18], which alows one level of
inference. We present anew decentralized trust inference
scheme that can be used to infer across arbitrary levels of
trust. Thereisnotrust-third-party or centralized repository
of trust information in our scheme. Users in our system
only storeinformation they explicitly can usefor their own
benefit. We show that our algorithms scale well even with
limited amount of storage at each node, and can be used to
efficiently implement large distributed applications with-
out involving explicit authorities. Further, our solutions
alow individual users to compute local trust values for
other users using their own inference algorithm of choice,
and thus can be used to implement a variety of different
policies.

A. Cooperative Systems

The notion of acooperative systemisnot uniquein net-
working; infact, packet forwarding in the Internet is a co-
operative venture that utilizes shared resources at routers.
Our overdl goa inNICE isto extend thisnotionto include
end-applications and provide an incentive-based frame-
work for implementing large distributed applicationsin a
cooperative manner. Clearly, an immense amount of dis-
tributed resources can be harvested over the Internet in a
cooperative manner. This observation iskey in the recent
surge of peer-to-peer (p2p) applications, and we believe
the next generation of such p2p applicationswill be based
upon the notions of cooperative distributed resource shar-
ing.

A number of interesting distributed algorithms for p2p
systems, most notably in the area of distributed resource
location, have recently been introduced. All of these
schemes, however, assumethat al peersinthe systemim-
plicitly cooperate and i mplement the underlying protocols



perfectly, even though it may not be explicitly beneficial
to do so. Consider the following examples:

« InGnutella[1], peersforward queries flooded on be-
haf of other usersin the system. Each forwarded
message consumes bandwidth and processing at each
nodeit visits.

o In Chord [15], adocument is“mapped” to a particu-
lar node using a hash function. Thus, apeer servesa
document that is, in fact, owned by some other node
inthe system. Thus, peersinthe system expend their
own resources to serve documents for other nodesin
the system. This situation is not unique to Chord;
all hash-based | ocation systems, including CAN [11],
Bayeux [17], Pastry [13], havethisproperty. Itispos-
sible to build a system in which nodes only serve a
pointer to the document data and aso to implement
various|oad balancing schemes; however, eveninthe
best load-balanced system, there can be temporary
overloads when alarge amount of local resources are
expended due to external serving.

o A number of relay-based streaming media protocols
have been devel oped and demonstrated. I1nthese pro-
tocols, nodes devote resources such as access band-
width for serving their child nodes.

In each exampl e above, any individual user may choose
not to devotelocal resourcesto external requests, and still
get full benefit from the system. On the other hand, the
integrity and correct functioning of the system dependson
each user implementing theentire distributed protocol cor-
rectly and selflessly. However, experience with deployed
systems, such as Gnutella and previously Napster, show
that only a small subset of peers offer such selfless service
to the community, while the vast majority of users usethe
services offered by thisgenerousminority [4]. Thegoal of
thiswork isto efficiently locate the generous minority, and
form aclique of users al of whom offer local servicesto
the community.

B. Modd

In this paper, we assume that a (p2p) system can be de-
composed into a set of of two-party transactions. A sin-
gle transaction can be a relatively light-weight operation
such as forwarding a Gnutella query or a potentialy re-
source intensive operation such as hosting a Chord docu-
ment. Next, we assume that the system consists of a set of
“good” nodes that always implement the underlying pro-
tocols correctly and entirely, i.e. good users always ful-
fill their end of atransaction. The goa of our work is de-
velop agorithms that will allow “good” users to identify
other “good” users, and thus, enable robust cooperative

groups. These are peer groups in which, with high prob-
ability, each participant successfully completes their end
of each transaction. Specifically, we propose a family of
distributed algorithms which can be used by usersto cal-
culate a per-user “trust” value. The trust value for node
B at anode A is ameasure of how likely node A consid-
ers a transaction with node B will be successful. In our
system, users store alimited amount of information about
how much other users trust them, and we present ago-
rithms for choosing what information to store and how to
retreive thistrust information. Once relevant information
has been gathered, individual usersmay use different local
inference algorithms to compute trust val ues.

It isimportant to note that we assume that good nodes
are able to ascertain when a transaction is successful.
Clearly, in many cases, it is not possible to efficiently
determine whether a transaction fails (e.g. when a node
sometimes does not serve Chord documents that it hosts).
It is even more difficult to determine whether a transac-
tion fails because of a system failure or because of non-
cooperative users, e.g. consider thecasewhenal usersare
cooperative but a document can't be served due to a net-
work failure. However, we believe this problem is inher-
ent in any trust-inference system that is based on transac-
tion “quality”. We discuss different policiesfor assigning
valuesto transaction quality in Section IV.

The overdl goal of this work is to identify coopera-
tive users. Anidea trust inference system would, in one
pass, be able to classify all usersinto cooperative or non-
cooperative classes with no errors. However, thisis not
possible in practice because non-cooperative users may
start out as cooperative users. The specific goals of our
work are asfollows:

o Let the “good” nodes find each other quickly and
efficiently: Good node should be able to locate
other good nodes without losing a large amount of
resources interacting with malicious nodes. This
will allow NICE to rapidly form robust cooperative
groups.

o Malicious nodes and cliques should not be able
to break up cooperating groups by spreading mis-
information to good nodes. Specifically, we want
to develop protocols in which malicious nodes are
rapidly pruned out of cooperative groups. Further,
weassume malicious nodes can disseminatearbitrary
trust information, and the cliques formed of good
nodes should be robust against this form of attack.

In Section 1V, we describe agorithms that achieve our
goals with low run-time overhead, both in terms of pro-
cessing and network bandwidth usage. We believethisal-
gorithmisthefirst practical, robust, trust inference scheme



that can be used to implement large cooperative applica-
tions.

Therest of thispaper isstructured asfollows: inthenext
section, we discuss prior work in distributed trust com-
putations. In Section |11, we present an overview of the
NICE system, and describe how distributed trust computa-
tionsare used by NICE nodes. We describe our algorithms
and local node policiesin Section IV, present probabilistic
analysisand simulation resultsin Section V, and conclude
in Section VI.

Il. RELATED WORK

In this section, we discuss prior work in trust inference
and present a brief overview of systemsthat are based on
notions of trust and incentive.

The concept of “trust” in distributed systemsisformal-
ized in [9] using socia properties of trust. This work
considers an agent’s own experience to obtain [-1, 1]-
valued trust, but does not infer trust across agents. Abdul-
Rahman et al. [2] describe atrust model that dealswith di-
rect experience and reputational information. This model
can be used, asis, in NICE to infer trust. Yu et a. [16]
propose a way to compute a real-valued trust in [-1, 1]
range from direct interactions with other agents. Product
of trust valuesis used for reputation computation, and un-
desirable agents is avoided by having an observer of bad
transactions disseminate information about the bad agent
throughout the network. Thiswork is primarily about us-
ing socia mechanisms for regulating users in electronic
communities, and the techniques developed here can be
used in NICE. In this paper, we focus on algorithms for
efficiently storing and locating trust information.

Another scheme [3] focuses on management and re-
trieval of trust-related data, and uses a single p2p dis-
tributed database which stores complaints about individ-
uals if transactions with them are not satisfactory. When
an agent p wants to evaluate trust for another agent ¢, it
sendsaquery for complaint datawhichinvolvesq, and de-
cides ¢'s trustworthiness with returned data, using a pro-
posed formula. However, this system implicitly assumes
that al participants are equally willing to share the com-
munal dataload, which may not be true in many p2p sys-
tems[4]. Such asystemisaso vulnerableto DoS attacks,
asthereisno preventativemeasurefrominsertingarbitrary
amounts of complaintsinto the system.

PGP[18] isanother distributed trust model that focuses
on proving the identity of key holders. PGP uses user de-
fined thresholds to decide whether a given key is trusted
or not, and different introducers can be trusted at finite
set of different trust levels. Unlike NICE, trust in PGP is
only followed through one level of indirection; i.e. if A
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Fig. 1. NICE component architecture: the arrows show information
flow in the system; each NICE component also communicates with
peers on different nodes. In this paper, we describe the trust inference
component of NICE.

local policy

istrying to decide thetrust of B, there can be at most one
person, ¢, in the trust path between A and B. There are
also a number of popular web sites, eg. e-bay and Ad-
vogato (see ww. advogat 0. or g) that use trust mod-
els to serve their users. However, all data for these sites
is stored at a trusted centralized database, which may not
be ideal for open systems, and lead to the usual issues of
scalahility and single point of failure.

I1l. OvERVIEW OF NICE

In this section, we present abrief overview of the NICE
platform. Our god is to provide context for the dis-
tributed trust computation algorithms presented in Sec-
tion IV. NICE is a platform for implementing coopera-
tive distributed applications. Applicationsin NICE gain
access to remote resources by bartering local resources.
Transactions in NICE consist of secure exchanges of re-
source certificates. These certificates can be redeemed for
the named (remote) resources. Non-cooperativeusers may
gain “free” access to remote resources by issuing certifi-
cates that they eventually do not redeem.

NICE provides a service APl to end-applications, and
is layered between the transport and application proto-
cols. The NICE component architecture is presented in
Figure 1. Applicationsinteract with NICE using theNICE
API, and issue calls to find appropriate resources. All of
the bartering, trading, and redeeming protocols are im-
plemented within NICE and are not exposed to the ap-
plication. These sub-protocols share information within
themselves and are controlled by the user using per-node
policies. NICE peers are arranged into a signaling topol-
ogy using our application-layer multicast protocol [5]. All
NI CE protocol-specific messages are sent using direct uni-
cast or are multicast over this signaling topol ogy.

a) The NICE user identifier: Until now, we have
used theterm user and nodein ageneric manner. In NICE,
each user choosesaPGP styleidentifier (Seewww. pgpi .
org). The identifier includes a plaintext identification
string and a public key. The key associated with a NICE



identifier isused for signing resource certificates, for trad-
ing resources, and for assigning trust val ues.

It isimportant to notethat the NICE identifier or the as-
sociated key never needs to be registered at any central
authority; thus, even though NICE uses public keys, we
do not require any form of a global PKI. Thus, NICE can
be used to implement open p2p applications without any
centralized authority. Sincethere isno central registration
authority in NICE, a single user can generate an arbitrary
number of keys and personas. However, in NICE, pricing
iscoupled withidentity (See Section I11-A) and itisadvan-
tageousto maintain asinglekey per user and not to change
keys frequently. This property makes NICE applications
robust against a number of denial-of-service attacks that
are possible on other p2p systems.

In NICE, remote application actionsaretransatedto lo-
cal resource requests, and if feasible, the local resources
are bartered for some resources at the remote node. (It is
also possibleto trade third-party resources instead of just
bartering local resources). Obviously, not every remotere-
guest passes through NICE; instead, users barter and trade
configurableunitsof resources(e.g. 100MB storagefor 10
days, etc.). The resources are specified using asimplified
version of the W3 RDF. NICE providesthe following ser-
vices:

+ Resource advertisement and location
« Secure bartering and trading of resources
o Distributed “trust” valuation

Peers in NICE barter resources by exchanging “trans-
action” messages. A transaction message identifies sets of
resources aprincipal iswilling to barter. Theintegrity of a
transaction messageisensured using asigned hash carried
along with the message.

We use a Beaconing-based [14] scheme to scalably ad-
vertise and locate available resources. NICE uses a new
fair exchange a gorithm based on oblivioustransfer proto-
cols [10] to exchange resource certificates. This protocol
assures that no party can gain an usable certificate without
issuing a valid certificate; however, for the lack of space,
we do not discuss the protocol in this paper. These re-
sources certificates are eventually redeemed at the issuer
nodes. Good nodesawaysredeem any certificate that they
issue, whilemaliciousnode may choosenot to. Inthe con-
text of NICE, the specific goal of this paper is to develop
algorithms to identify the nodes that issue good (eventu-
aly redeemable) certificates. Before we describe the trust
inference component, we describe how the results of these
schemes are used to price resourcesin NICE.

A. Pricing and Trading Policies

The goal of the default policiesin NICE isto limit the
resources that can be consumed by cliques of malicious
users. These policies work in conjunction with the trust
computation which is used to identify the misbehaving
nodes. In practice, NICE users may useany particular pol-
icy, and may even try to maximizethe amount of resources
they gain by trading their own resources. Theprimary goal
of the default policiesisto alow good users to efficiently
form cooperating groups, and not | oselarge amountsof re-
sources to malicious users. The pricing and trading poli-
cies are used to guard against users who issue spuriousre-
source certificates using multiple NICE identities. We use
two mechanisms to protect the integrity of the group:

o Trust-based pricing

In trust-based pricing, resources are priced propor-
tional to mutually perceived trust. Assumetrust val-
ues range between 0 and 1, and consider the first
transaction between Aliceand Bobwheretheinferred
trust value from Aliceto Bob is T'4;;..(Bob) = 0.5,
and T'g.s( Alice) = 1.0. Under trust-based pricing,
Alicewill only barter with Bob if Bob offers signif-
icantly more resources than he gets back in return.
Note however that as Bob conducts more success-
ful transactionswith Alice, the cost disparity will de-
crease. This policy is motivated by the observation
that as Alice trades with a principal with lower trust
she incurs a greater risk of not receiving services in
return, which, in turn, is reflected in the pricing.

o Trust-based trading limits

In these palicies, instead of varying the price of the
resource, the policy variesthe amount of theresource
that Alice trades. For example, in the scenario with
Alice and Bob, Alice may allow Bab to store 1 MB
of dataat her host for one day, and gradually increase
the storage and duration as she successfully redeems
Bob’s resource certificates. This policy assures that
when trading with a principal with relatively low
trust, Alice bounds the amount of resources she can
lose.

IV. DISTRIBUTED TRUST COMPUTATION

We assume that for each transaction in the system,
each involved user produces a signed statement (called a
cookie) about the quality of the transaction. For example,
consider a successful transaction ¢ between users Alice
and Bob in which Alice consumes a set of resources from
Bob. After the transaction completes, Alicesignsacookie
¢ stating that she had successfully completed the trans-
action ¢t with Bob. Bob may choose to store this cookie



¢ signed by Alice, which he can later use to prove his
trustworthyness to other users, including Alice 2. Asthe
system progresses, each transaction creates new cookies
which are stored by different users. (Clearly, cookies have
to be expired or otherwise discarded; the agorithms we
present later inthis section require constant storage space.)

We will describe thetrust inference algorithmsin terms
of adirected graph 7" called thetrust graph. Theverticesin
T correspond exactly to the usersin the system. Thereis
an edgedirected from Aliceto Bobif and only if Bob holds
a cookie from Alice. The vaue of the Alice—Bob edge
denoteshow much AlicetrustsBob, and dependsonthe set
of Alice’scookiesBob holds. Notethat each transactionin
the system can either adds a new directed edge in the trust
graph, or relabel sthe value of an existingedgewithitsnew
trust value.

Assume that a current version of the trust graph 7' is
available to Alice, and suppose Alice wishes to compute
atrust value for Bob. If Alice and Bob have had prior
transactions, then Alice can just look up the value of
Alice—Bob edge in T. However, suppose Alice and Bob
have never had aprior transaction. Alicecould infer atrust
valuefor Bob by following directed paths (ending at Bob)
on the trust graph.

A. Inferring Trust on the Trust Graph

Consider a directed path Ag — Ay... — AponT.
Each successive pair of users have had direct transactions
with each other, and the edge values are a measure of how
much A; trusts 4;,,. Given asuch a path, Aq could in-
fer a number of plausible trust values for Ay, including
the minimum value of any edge on the path or the prod-
uct of thetrust valuesa ong the path; we call theseinferred
trust values the strength of the Ag — A path. Theinfer-
ence problem is somewhat more difficult than computing
strengths of trust paths since there can be multiple paths
between two nodes, and these paths may share vertices or
edges. Centralized trust inference is not the focus of this
paper (or of our work), but it isimportant to use a robust
inference algorithm. We have experimented with different
inference schemes, and we describe two simple but robust
schemes. In the following description, we assume A (Al-
ice) hasaccessto thetrust graph, and wantsto infer atrust
vauefor B (Bob):

« Strongest path: Given aset of paths between Alice

and Bob, Alice chooses the strongest path, and uses

2|t is also possible for Alice to keep a record of this transaction in-
stead of Bob. In this alternate model of trust information storage, users
themselves information about whom they trust, and can locally com-
pute the trust of the remote nodesthey know of. This model, however,
is susceptibleto a denial of service attack that we describe later in this
section.

Fig. 2. Exampletrust graph: the directed edges represent how much
the source of edge trusts the sink.

the minimum trust value on the path asthetrust value
for Bab. The strength of a path can be computed as
the minimum val ued edge along the path or the prod-
uct of all edges dong a path. Given the trust graph,
thistrust metric can easily be computed using depth-
first search. Intheexample showninFigure2, weuse
the min. function to compute the strength of a path.
Inthisexample, thestrongest pathis AF F'B, and Al-
iceinfersatrust level of 0.8 for Bob.

+ Weighted sum of strongest disjoint paths: Instead
of choosing only the strongest path, Alice could
choose to use contributions from all disjoint paths.
The set of digoint pathsis not unique, but the set of
strongest disjoint paths (modul o equi-strength paths)
is and can be computed using network flows with
flow restrictions on vertices. Given the set of dis-
joint paths, Alice can compute atrust value for Bob
by computing the weighted sum of the strength of all
of the strongest digjoint paths. The weight assigned
totheAlice—X— ... —Bob pathisthe vaue of the
Alice—X edge (whichrepresentshow much Alicedi-
recstly trusts X). Intheexamplein Figure2, ACD B
is the other digjoint path (with strength 0.6), and the
inferred trust value from Aliceto Bob is 0.72.

Both these agorithms are robust in the sense that no edge
value is used more than once, and trust values computed
are alwaysupper-bounded by the minimum trust on a path.
Before any of theselocal algorithms can be used, the trust
graph hasto be realized in a scalable manner, and (edge)
values have to be assigned to cookies. Note that in order
to infer trust for Bob, Alice does not need the entire trust
graph, but only needs the set of paths from her to Bab. In
therest of thissection, we describe schemes storethe trust
graph and to produce sets of paths between usersin acom-
pletely decentralized manner over an untrusted infrastruc-
ture. We begin with a discussion of different techniques
for assigning cookie values, and describe our distributed
path discovery protocol in Section 1V-C.



B. Assigning Valuesto Cookies

Idedlly, after each transaction, it would be possible to
assignarea number inthe[0,1] rea-vaued interval tothe
quality of atransaction and assign thisasthe cookie value.
In some cases, transactions can be structured such that this
indeed is possible: e.g. assume that Alice transcodes and
serves a400K bpsvideo stream to Bob at 128K bps, and ac-
cording to a prior agreement, Bob signs over a cookie of
value 0.75 to Alice. The same transaction may have re-
sulted in a cookie of value 0.9 if Alice had been able to
serve the stream at 256K bps. In many cases, however, it
is not clear how to assign real-valued quality metrics to
transactions. For example, in the previous example, Al-
ice could claim that she did serve the stream at 256K bps,
while network congestion on Bob’s access link caused the
eventual degradation of the quality to 128Kbps. It is, in
fact, easy to construct cases when it is not easily feasible
to check thequality of service. In most cases, however, we
believe it is somewhat essier to assign a{0,1} valueto a
transaction, i.e. either the transaction was successful, or it
was not. Inthe previousexample, Bob and Alice negotiate
athreshold rate (say 64Kbps) at which point he considers
the entire transaction successful, and assigns a 1-valued
cookie to Alice regardless of whether the data was deliv-
ered at 64.5Kbps or 400K bps. Further, for many transac-
tions, such as streaming media delivery, it is possible for
one party to abort the transactionif theinitial service qual-
ity is not beyond the O-value threshold.

In the rest of this paper, we assume that cookies are as-
signed values on the [0,1] interval. However, it is possi-
ble to assign arbitrary labels to cookies, and to conduct
arbitrary policy-based searches as long as the requisite
state is kept at each user. For example, it is possible to
construct a system where cookies take one of four values
(eg., “Excelent”, “Good”, “Fair”, and “Poor”), and users
search for “Excellent”-valued cookies that are less than
one week old. All of the NICE path enumeration and in-
ference schemes work correctly as long as cookies have
a comparable value, regardless of how users assign these
values, and what range these values take.

C. Distributed Trust Inference: Basic Algorithm

In thissection, we describe how userslocate trust infor-
mation about other usersin our system. This distributed
algorithm proceeds as follows. each user stores a set of
signed cookiesthat it receives asaresult of previoustrans-
actions. Suppose Alice wants to use some resources at
Bob’'s node. There are two possibilities. either Alice al-
ready has cookies from Bob, or Alice and Bob have not
had any transactionsyet. (There is yet a third possibility
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inwhich Alicehas discarded cookiesfrom Bob, but we as-
sume that this caseis equivaent to Alice having no cook-
iesfrom Bab). In the case Alice aready has cookiesfrom
Bab, she presents these to Bob. Bob can verify that these
indeed are hiscookies since he has signed them. Giventhe
cookies, Bob can now compute a trust value for Alice.

The more interesting case iswhen Alice has no cookies
from Bob. In thiscase, Aliceinitiates a search for Bob's
cookies at nodes from whom she holds cookies. Suppose
Alice has a cookie from Carol, and Carol has a cookie
from Bob. Carol gives Alice a copy of her cookie from
Bab, and Alice then presents two cookies to Bob: one
from Bob to Carol, and one from Carol to Alice. Thus,
in effect, Alice tells Bob, “You don’'t know me, but you
trust Carol and shetrustsme!”. In general, Alice can con-
struct multiple such “cookie paths’ by recursively search-
ing through her neighbors. In effect, Alice floods queries
for Bob's cookies along the cookie edges that terminate at
each node, starting with her own node. After thesearchis
over, shecan present Bob an union of directed pathswhich
all start at Bob and end at Alice. Note that these cookie
paths correspond exactly to union of directed edges onthe
trust graph which we used for centralized trust inference.
Thus, given this set of cookies, Bob can use any central-
ized scheme to infer atrust value for Alice.

Thisbasic scheme has severa desirable properties:

o If Alice wants to use resources at Bob, she has to
search for Bob's cookies. Thisisin contrast with the
analogous scheme in which nodes themselves keep
records of their previous transactions. Under such a
setting, if Bob did not know Alice, he would have to
initiate a search for Alice through nodes he trusted.
A malicious user Eve could mount an easy denia-of -
service attack by continuously asking other nodes to
search for Eve's credentials.

In our system, nodes forward queries on behalf of
other nodesonly if they have assigned them a cookie,
and thus, implicitly trust them to a certain extent.

« Alicestorescookieswhich are statements of theform
“X trustsAlice”. Thus, Alice only devotes storageto
itemsthat she can use explicitly for her own benefit,
and thus, thereisabuilt-inincentivein the systemto
store cookies. In fact, if Bob assigns a low-value to
cookiefor Alice, shecan discard thiscookiesincethis
is, in effect, a statement that says Bob does not trust
Alice. In general, user store the cookies most benefi-
cia to their own cause, and do not forward messages
on behalf of usersthey do not trust.

« Thetransaction record storage in the system is com-
pletely distributed, and if two nodes conduct a large
number of spurious transactions, only they may
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chooseto hold onto the resultant state. In contrast, in
acentralized transaction store, these nodes could eas-
ily mount a denial-of-service attack by overwhelm-
ing the transaction store with spurious transaction
records.

D. Refinements

While flooding-based scheme we have described is
guaranteed to find al paths between users and has other
desirable properties, it is not a complete solution. Flood-
ing queriesisrather an inefficient usage of distributed re-
sources, and as pointed out before, malicious nodes can
erase al information of their misdeeds simply by throw-
ing away any low valued cookies they receive. We next
describe three refinements to the basic scheme.

1) Efficient Searching: The recursive flooding proce-
dure described above does find all cookies that exist for a
given principal. However, itisextremely inefficient, since
it visitsan exponentially growing number of nodesat each
level. Further, unless the flooding is somehow curtailed,
e.g. by using duplicate suppression or by using a time-
to-livefield in queries, some searches may circulatein the
system forever.

It is obvious to consider using a peer-to-peer search
structure, such as Chord, to locate cookies. However, this
is not possible since in NICE we do nhot assume the ex-
istence of anything more sophisticated than plain unicast
forwarding. NICE is the base platform over which other
protocols, such as Chord, can be implemented. The NICE
protocols are much like routing protocols on the Internet:
they cannot assume the existence of routing tables etc.,
and must be robust against packet loss and in the case of
NICE, against malicious nodes. Thus, we must employ
other mechanisms to make the cookie searches more ef-
ficient.

Instead of following all pathscorrespondingto all cook-
ies, we only forward a query to a number of nodes (typi-

cally 5) from any onenode. However, if we chosethefor-
warding nodesat random, we would still have an exponen-
tial search, albeit with asmaller base! Instead, we add the
following extension to our base protocol: whenever node
receives a cookie from some other node, it a'so receives a
digest of all other cookiesat theremote node. Since, inour
implementations, the number of cookies at each node is
quite small (typically around 40 for a 2048 node system),
thisdigest can be encoded using around | essthan 1000 bits
in aBloomfilter [7]3. Thus, the storage space required for
the digests are trivial (around 128 bytes), but they alow
us to direct the search for specific cookies with very high
precision. Theidea of using digestsfor searches has been
used previously, e.g. in lookaround caching [6] and sum-
mary caches [8]. It is, infact, a base case of probabilistic
search using attenuated Bloom filters [12]; in our exper-
iments, we found that we did not need to use full atten-
uated Bloom filters — only one level of filters was suffi-
cient. Lastly, each node also keeps a digest of recently ex-
ecuted searches, and uses this digest to suppressduplicate
gueries.

In our implementation, when choosing nodesto forward
to, we aways choose nodes whose digests indicate they
have the cookie that we are searching for. However, it is
possiblethat thereareno hitsinany digest at anode; inthis
case, we once again choose nodesto forward to uniformly
at random. However, we only forward to randomly cho-
sen nodes if the query iswithin a pre-determined number
of hopsaway from the query source. Thus, inthefinal ver-
sion of the search, a query spreads from the source, possi-
bly choosing nodes at random, but the flooding is quickly
stopped unlessthereis a hit in anext-hop digest.

Example: Before we describe other extensionsto the
base protocol, we illustrate the digest-based search proce-
dure with an example (corresponding to Figure 3). Alice

?Such afilter, with only eight hashfunctions, would have afalse pos-
itive rate of 3.16 x 107>,



wants to use resources Bob has, but does not have cookie
from him. She initiates a search for a cookie path to Bob.
In Figure 3-0 we show the initia state of cookies and di-
gestsat each user, e.g. Alicehasacookieof value0.9from
C, and her digest from C shows that C has a cookie from
D. For thisexample, we assume the search outdegreeis 3,
and the random flooding hop limit is 1. Alicefirst sendsa
guery not only to nodeswith digest hit (e.g. F), butasoto
random nodes (e.g. €' and D) asillustrated in Figure 3-1.
After receiving thequery, F findsBob’'scookieand returns
the query to Alice. When C' receives the query, he finds
that noneof hisneighborshaveadigest hit for Bob, sodoes
not forward the query further. On the other hand, D does
forward the query to G (Figure 3-2) who has a digest hit
for Bob, and GG returnsthe query to Alice with the cookie
shereceived from Bob. Figure 3.3 figure showstwo paths
Alicefinds, with the the strongest path in bold.

2) Negative Cookies: A major flaw with the original
scheme isthat low-valued transactions are not potentially
not recorded in the system. Consider the following sce-
nario: Eveusesaset of Alice’ sresources, but does not pro-
vide the negotiated resources she promised. In our origi-
na scheme, Alice would sign over alow valued cookieto
Eve. Evewould have noincentiveto keep this cookie and
would promptly discard it, thus erasing any record of her
misdeed.

Instead, Alicecreatesthiscookieand storesit herself. It
isin Alice'sinterest to hold on to this cookie; at the very
least, she will not trust Eve again as long as she has this
cookie. However, these “negative cookies’ can aso be
used by users who trust Alice. Suppose Eve next wants
to interact with Bob. Before Bob accepts a transaction
with Eve, he can initiate a search for Eve's negative cook-
ies. This search proceeds as follows: it follows high trust
edgesout of Bob and terminateswhenit reachesanegative
cookie for Eve. In effect, the search returns alist of peo-
ple whom Bab trusts who have had negative transactions
with Eve in the past. |If Bob discovers a sufficient set of
negative cookiesfor Eve, he can chooseto disregard Eve's
credentials, and not go through with her proposed transac-
tion. It isimportant to notethat Bob only initiatesa nega-
tive cookie search when Eve produces a sufficient credible
set of credentials; otherwise, Bob is subject to the adenial
of service attack where he continuously searches for bad
cookies.

Inimplementation, we keep a set of digestsfor negative
cookiesaswell, but perform Bloom filter directed searches
for these negative cookies only on neighboring nodes.

3) Preference Lists: In order to discover potentially
“good” nodes efficiently, each user keeps apreference list.
For each user, the nodes in her preference list consists of
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a set of other users that she has not conducted a transac-
tion with yet. However, these nodes are preferred since
the owner of the preference list believes they may be po-
tentially high trust peers. Nodes are included in a prefer-
ence list as follows: Suppose Alice conducts a successful
cookie search for Bab, and let P bethe cookie paththat is
discovered between Aliceand Bob. Aliceaddsall usersin
P who have very high trust value (1.0 in our implemen-
tation) to her preference list. Obviously, only users for
whom Alice does not have transaction records are added
to her preference list.

In summary, the NICE distributed trust valuation ago-
rithm works as follows:

Nodes that request resources present their cre-
dentials to the resource owner. Each credential
is a signed set of certificates which originate at
the resource owner. Depending on the set of
credentials, the resource owner may choose to
conduct areference search. The trust ultimately
computed is a function of both the credentials,
and of the references.

Thereare anumber of other pragmatic issues pertaining
to cookiesthat we addressin NICE. These include cookie
revocations, cookie time limits, etc. Due to space con-
straints, we do not describe these further in this paper.

V. RESULTS

In this section, we present results from our simulations
of the trust inference algorithm proposed in Section IV.
In all our results, we use the minimum cookie value as
path strength, and use the strongest path strength as the
inferred trust between users. We have experimented with
other functions as well, and the results from this simple
inference function are representative. Each search carries
withit the minimum acceptabl e strength, and searches stop
if no cookiesof the minimum acceptabl e value are present
at the current node. Using the minimum cookie value as
the strength measure (instead of product of cookie values)
consumes up to an order of magnitude more resources in
the network and represent a worst-case scenario for our
schemes.

We divide our results into two parts. First, we analyze
the overhead of running the path search algorithmin terms
of storage and run time overhead. The storage cost is en-
tirely due to the caching of various positive and negative
cookies; the run-time overhead comes from the number of
nodes that are visited by each query, and the computation
cost for forwarding aquery. The computation cost of for-
warding each query is negligible: we have generate afew
random numbers, compute eight M D5 hash functions, and
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check eight bitsin a 1000-bit Bloom filter. In these exper-
iments, the digests were aways fresh. We did not simu-
late updating ofx the digest, but we believe a periodic soft-
state refreshing algorithm will work adequately. Themain
overhead of the search agorithm comes in terms of num-
ber of messages and number of nodes visited on the net-
work. The bandwidth consumed by the searches is pro-
portional to the number of nodes visited, and we report
this metric in the results that follow. In the second part of
our results(Section V-B), we show that our trust inference
schemes do indeed form robust cooperative groups, even
in large systems with a large malicious cliques and with
small fractions of good nodes. We begin with an analysis
of the scalability and overhead of our path searches.

A. Scalability

In thesefirst set of results, we simulate a stable system
consisting of only good users. Thus, we assume that all
users implement the entire search protocol correctly. Be-
fore the simulationsbegin, wefill the (good) cookie cache
of each user by adding cookies from other users chosen
uniformly at random. Each query starts at a node s cho-
sen uniformly at random and specifies a search for cook-
ies of another node ¢ chosen uniformly at random. In the
next section, we will show how long the system takes to
converge starting from no cookiesin the system, and how
robust groups are formed when there are malicious users
in the system.

In our first experiment, wefix the number of good cook-
iesat each user to 40. The cookiesvaluesare exponentially
distributed between[0,1], with mean of 0.7%. Next we con-
ducted 500 different searches for cookies of value at least

*Itisnot clear how cookievalues should be distributed. We havealso

experimented with uniformly distributed cookievalueswith similar re-
sults.

EFFECT OF CHANGING NUMBER OF COOKIES STORED (C)

0.85, wherethe search outdegreeat each nodeissetto 5. In
Figure4, we plot the average successratio and the average
fraction of nodesin thesystemvisited by thesearches. The
z-axis in the plot correspond to the number of hops after
which random forwards were not alowed, and the search
proceeded only if there was a hit in a Bloom filter. There
are four curves in the figure, each corresponding to a dif-
ferent system size, ranging from 512 users to 2048 users.
From the figure, it is clear that only one hop of random
searching is enough to satisfy the vast majority of queries,
even with large system sizes. It isinteresting to note that
even when the system size increases, the average num-
ber of nodesvisited remain relatively constant. For exam-
ple, the average number of nodes visited with 2 hop ran-
dom searches range from 42.4 (for a 512 node system) to
36.2 (for the 2048 node system). Thus, the search scheme
scales extremely well with increasing system size. Aswe
show next, the success ratio and the number of nodesvis-
ited depend almost entirely on the number of cookiesheld
at each node, and the outdegree of each search.

In Table I, we fix the number of nodes to 2048 and
show the effect of changing the search outdegree. Each
row shows searches corresponding to adifferent minimum
threshold ranging from 0.8 to 0.95. Each node holds 40
cookies, the average cookie value is still fixed at 0.7, and
the number of random hops is set to 2. #N is the aver-
age number of nodesvisited by a query and #P denotesthe
number of pathsfound on average. As expected, the num-
ber of nodes visited increases as the search threshold de-
creases, and al so astheoutdegreeincreases. Inall cases, as
the search thresholdincreases, the number of distinct paths



found decreases. InTablell, weshow theeffects of chang-
ing the number of cookies at each node. These experi-
ments are conducted using the same parameters, except the
outdegree is fixed at 5. With small numbers of cookies
and high thresholds, searches do result in no paths being
found. In Tablell, the 0.9 and 0.95 threshold searches had
10% and 42% unsuccesful queries respectively; all other
searches returned at |east one acceptable path. In our sim-
ulator, when a search returns no acceptable paths, we retry
the search once more with a different random seed. The
numbers for nodesvisited in the resultsaboveincludevis-
itsduring theretries, and account why the number of nodes
visited do not decrease when the search threshold is in-
creased..

In our system, there is a clear tradeoff between how
much stateindividual nodes store (number of cookies) and
the overhead of each search (fraction of nodes visited).
Note that unlike in systems such as [3], usersin our sys-
tem do not gain by storing less cookies since this effec-
tively decreases their own expected trust at other nodes.
There isa built-in incentivefor users to store more cook-
ies, which, in turn, increases search efficiency. Users may
choose to store a large number of cookies but not forward
searches on behalf of others: we comment on this issue
when we discuss different models of malicous behaviour
in the next section. Lastly, we note that it is possible to
further increase the efficiency of the searches by adjust-
ing the two search parameters —outdegree and number of
random hops— based on the threshold and results found.
Such a scheme will minimize the number of nodesvisited
for “easy” searches (low search threshold), and find bet-
ter results for searches with high thresholds. We have not
implemented this extension yet.

1
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Fig. 5. CDF of errors in results (40 cookies at each node, outdegree
set to 5) with varying thresholds.

The previoustwo resultshave shown that the number of
cookiesand search outdegree providesan effective mecha-
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nism to control the overhead of individual searches. How-
ever, in each case, we have only shown that each search
returns a set of results — it is possible that the searches
find paths that are above the search threshold, but are not
the best possiblepaths. For example, supposethat asearch
for threshold set to .85 returnsapath with minimum cookie
value.90. Thisisan acceptableresult; however, there may
be a better path that the search missed (e.g. with mini-
mum cookievalue .95). Inthiscase, the best path returned
had an absolute error of .05. To quantify the quality of
the found paths, we plot the absolute error in the paths re-
turned by our searches as compared to an optimal search
(full flooding). In Figure 5, we plot the CDF of the abso-
[ute error for the best path that we find versusthe best pos-
sible cookie path as the search threshold is changed. The
higher threshold searches have a lesser possible absolute
margin of error, and thus producethebest paths. However,
very high threshold searches are also more likely to pro-
duce noresultsat all.

B. Robustness

In therest of theresults, we analyze two components of
the system: how long it takes for the system to stabilize,
and how well our system holds up agai nst malicious users.
Modeling malicious users is an important open research
guestion: one for which we do not provide any particular
insightsin this paper. Instead, we use arelatively simplis-
tic user model with three different types of users.

o Good users: Good users awaysimplement the entire
protocol correctly. If a good user interacts with an-
other good user, then the cookie value assigned is a -
ways 1.0. Good users do not know theidentity of any
other good (or otherwise) usersat the beginning of the
simulation.

+ Regular users: Regular users always implement the
entire protocol correctly; however, when a regular
user interacts with another user, transactions result
in cookie value that range exponentially between 0.0
and 1.0, withamean of 0.7. Regular usersalso do not
know of any other users when the simulations begin.

o Madlicioususers: All malicioususersform acooperat-
ing clique before the simulationbegins. Further, each
malicious user always reports implicit trust (cookie
value 1.0) for every other malicioususer. Onceama-
licioususer interactswith anon-malicioususer, there
is a 50% probability that the transaction produces a
cookie of value between 0.9 and 1.0 and a 50% prob-
ability that the transaction fails (and produces alow
value cookie with average 0.05).

In the experimentsthat follow, each user stores 40 good

cookies and 40 negative cookies. Each experiment was



conducted with 512 users, of which 24 were good.

At each time step in the simulation, a user (say Alice),
is chosen uniformly at random. Alice selects another user
(say Bob) from her preference list to initiate a transac-
tion with. If Alice's preference list is empty, she chooses
the user Bob uniformly at random. This transaction com-
mences if Bob can find at least one path of strength at least
0.85 between himself and Aliceand if Bob cannot locate a
negative cookiefor Alice. If thetransaction between Alice
and Bob cannot proceed, Alicetries her transaction with a
different user. After two unsuccesful tries, Alice chooses
arandom Bob and the simul ator alows a transaction with-
out checking Alice scredentials. Cookiesare flushed from
auser’s cookie cache using the following rule: cookies of
value 1.0 are not flushed; other cookies are discarded with
uniform probability.

In the first result, we only consider good and regular
users (there were 488 regular users and 24 good usersin
thisexperiment). In Figure 6, we plot thefraction of trans-
actions between good users and the fraction of paths be-
tween good users. The z-axis shows the total number of
transactionsin which at least one party was a good node.
(We choose this measure as the z-axis because in a real
system, malicous nodes can fabricate any number of spu-
rioustransactions, and the only transactionsthat matter are
the ones involving good nodes). The effect of the pref-
erence listsis clear from the plot: even though thereisa
less than 5% chance of a good node interacting with an-
other good node, there is a path between any two good
node within 1500 transactions. By 2500 total transactions,
the majority of which were between good nodes and regu-
lar nodes, all good nodes have cookiesfrom all other good
nodes, and the robust cooperative group hasformed. This
good clique will not be broken unless a good node turns
bad, since 1.0 valued cookiesare not flushed from the sys-
tem.
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Fig. 6. Systeminitialization with good and regular users.
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Fig. 7. Failed transactions for good users (40 cookies at each node,
512 nodestotal).

In the next set of results, we introduce bad (malicious)
nodes. Figure 7 illustrates the fraction of failed transac-
tions involving good nodes normalized by the total num-
ber of transactions involving good nodes. There are two
sets of curvesin the figure corresponding to failed trans-
actions involving regular nodes and bad nodes, averaged
over 1000 transaction intervals. (We define failed trans-
actions as those that produce a cookie of value less than
0.2). Once again, the z-axis is the number of transactions
involving good users, and we report resultsfor four differ-
ent bad node clique sizes (24, 48, 128, and 256). As ex-
pected, in the beginning of the simulation, the number of
failed transactions are proportional to the number of bad
usersinthesystem. However, for all bad user populations,
the good users identify all bad users and the number of
good-bad transactions approaches zero. The effect of the
preference lists is again apparent in this experiment: re-
call that al bad nodes awaysreport 1.0 trust for other bad
nodes. Thus, bad nodes rapidly fill the preference lists of
good nodes, but are quickly identified as malicious.

In our experiments, good users do not preferentially in-
teract with other good users (aswould be expectedinarea
system). Instead, if their preference lists are empty, they
pick arandom user tointeract with. Recall that therearean
order of magnitude more regular users in the system than
good users. Thus, good users continuetointeract withreg-
ular users and approximately 5% of good user transactions
result in failures. In a deployed system, the fraction of
failed transactions would be much smaller, since the vast
majority of transactionsinitiated by good users would in-
volve other good users.

It is important to note that even with many malicious
users, arobust cooperative group emerges in our system.
This property istrue, regardless of the number of positive
or negative cookiesgood userskeep, aslongasgood users



can choose random other users to conduct transactions
with. Otherwise, bad cliques can stop good users from
ever communicating with another good user. However, as
long as bad users cannot stop whom good users tak to,
a cooperative group emerges. The good users eventually
find and keep state from other good users, and this state
cannot be displaced by malicous users. Obviously, the
number of transactions required for good cliques to form
depends on the number of malicious nodesin the system,
but good users rapidly find other good users by using their
preferencelists. It ispossiblefor amalicous nodesto infil-
trate good cliques for prolonged periods, but as these bad
nodes conduct transactions that fail, the negative cookies
will be rapidly discard these users from the good clique.

a) Other user models: We have varied other pa-
rameters in our experiments, and present a summary of
our findings. We experimented with a different malicious
node model inwhich the bad nodes do not forward queries
from non-malicious nodes. Theresultsfor thismodel was
not appreciably different from the model we have used
in our results. Also, it is not immediately clear how to
choose the probability with which transactions with ma-
licious users fail. If this probability is high, then mali-
cioususerscan beidentified relatively easily (usually after
one transaction). If this probability is set too low, thenin
effect, the user is not malicious since it acts much like a
regular user. In our experiments, as the bad nodes reduce
the transaction failure probability, the number of transac-
tions required to identify all bad nodes increases, but the
total number of bad transactionsremain similar. We have
al so experimented with model sin which bad usersactively
publish negativecookiesfor good users. Astheseusersare
identified as bad by the good users, these negative cookies
are rendered useless. Lastly, we note that our good user
model is probably too simplistic. Even good users may
be involvedin failed transactions, possibly dueto no fault
of their own. However, we believe our results will still
hold as long as there is a definite and marked difference
between the behaviour of good and bad users.

VI. SUMMARY AND CONCLUSIONS

The main contribution of this paper is a low overhead
trust information storage and search agorithm which is
used in the NICE system to implement a range of trust
inference agorithms. Our scheme is unique in that the
search and inference performance for the whole group in-
Ccreases as users store more information that is explicitly
beneficia for their own cause. We have presented a scal-
ability study of our algorithms, and have shown that our
technique is robust against a variety of attacks by mali-
cioususers. We believe techniques presented in this paper
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areacrucia piecefor buildinglarge peer-to-peer systems
for deployment over the Internet.
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