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Abstract

A data warehouse is a redundant collection of data

replicated from several possibly distributed and loosely

coupled source databases, organized to answer OLAP

queries. Relational views are used both as a speci�cation

technique and as an execution plan for the derivation

of the warehouse data. In this position paper, we

summarize the versatility of relational views and their

potential.

1 Views

The importance of the \algebraic closedness" of the
relational model has not been recognized enough
in its 27 years of existence. Although a lot of
energy has been consumed on dogmatizing on the
\relational purity", on its interface simplicity, on its
mathematical foundation, etc., there has not been a
single paper with a central focus on the importance
of relational views, their versatility, and their yet-to-
be exploited potential.
What is a relational view? Is it a program? Is

it data? Is it an index? Is it an OLAP aggregate?
It is all these. And a lot more. Below I summarize
the most important uses, techniques, and bene�ts
pertaining to views. Note that the cited work here
is not meant to be exhaustive but representative and
easily accessible from my short-term memory.

2 The Multifaceted Form of Views

Relational views have several forms:

� pure program: an unmaterialized view is a pro-
gram speci�cation, \the intension", that gener-
ates data. Query modi�cation [Sto75] and com-
piled queries [ABC+76] were the �rst techniques
exploiting views{ their basic di�erence is that
the �rst is used as a macro that does not opti-
mize until run-time while the second stores op-
timized execution plans. Such a view form is a
pure program with no extensional attachments.
Each time the view program is invoked, it gen-

erates (materializes) the data at a cost that is
roughly the same for each invocation.

� derived data: a materialized view is \the exten-
sion" of the pure program form and has the char-
acteristics of data like any other relational data.
Thus, it can be further queried to build views-

on-views or collectively grouped [Pap94] to build
super-views. The derivation operations are at-
tached to materialized views. These procedural
attachments along with some \delta" relational
algebra are used to perform incremental updates
on the extension.

� pure data: when materialized views are con-
verted to snapshots, the derivation procedure is
detached and the views become pure data that
is not maintainable (pure data is at the opposite
end of the spectrum from pure program).

� pure index: view indexes [Rou82b] and View-
Caches [Rou91] illustrate this avor of views.
Their extension has only pointers to the underly-
ing data which are dereferenced when the values
are needed. Like all indexing schemes, the impor-
tance of indexes lies in their organization, which
facilitates easy manipulation of pointers and ef-
�cient single-pass dereferencing, and thus avoids
thrashing.

� hybrid data & index: a partially materialized
view [BR96] stores some attributes as data while
the rest are referenced through pointers. This
form combines data and indexes. B-trees, Join
indexes [Val87], star-indexes [Sys96] and most
of the other indexing schemes belong to this
category, with appropriate schema mapping for
translating pointers to record �eld values. Note
that in this form, the data values are drawn
directly from the underlying relations and no
transformation to these values is required1.

1This is how the indexed form is almost exclusively used

although there is no intrinsic reason for not applying a



� OLAP aggregate/indexing: a data cube [GBLP96]
is a set of materialized or indexed views [GHRU96,
RKR97]. They correspond to projections of the
multi-dimensional space data to lesser dimension-
ality subspaces and store aggregate values in it.
In this form, the data values are aggregated from
a collection of underlying relation values. Sum-
mary tables and Star Schemas [Sys96] belong in
this form (the latter belongs here as much as in
the previous category).

Each of these forms is used by some component
of a relational system. Having a uni�ed view of all
forms of relational views is important in recognizing
commonalities, re-using implementation techniques,
and discovering potential uses not yet exploited.

3 Discovery and Re-use of Views

RDBMSs do nothing else but generate or access
materialized views 24 hours a day whether these
are prede�ned views, results of compiled queries,
ad hoc queries, or even materialized view fragments

[RCK+95], i.e., temporary results generated during
the execution of a larger query. Unfortunately, com-
mercial RDBMSs discard these views immediately
after they are delivered to the user or to a subse-
quent execution phase. The cost for generating the
views is for one-time-use only instead of being amor-

tized over multiple and/or shared accesses [Rou91].
Caching query (intermediate) results for speed-

ing up intra- and inter-query processing has been
studied widely [Fin82, LY85, Rou91, Sel87, Jhi88,
DR92, AL80, Rou82b, Rou91, Sel88, Jhi88, RK86b,
BALT86, Fin82, LY85, DR92, HS93, RK86b, Han87a,
Han87b, JMRS93]. The goals of these studies range
from improving query optimization and processing
to supporting rules in active databases, to query
processing in client-server and distributed/replicated
database architectures, to handling time queries, to
obtaining e�cient update dissemination, to avoiding
expensive computations of external predicates, etc.
All these techniques have one common underlying
theme: the re-use of views to save cost.
Amortization and re-use of views can only be

possible if they can be discovered by the query
optimizer2 which decides to plug-in those views
which reduce the cost of the query. The bene�ts are
multiplied in a multi-user environment with a lot of
shared access to views. Despite this, only the ADMS
prototype has extended the query optimizer and its
cost model [CR94b] to include in its plan selection

transformation function, other than the identity one, to the

underlying values before indexing them- e.g., calibrate the

values before entered in a B-tree.
2the user cannot be aware of views generated by the system

and other users.

materialized views, ViewCaches, and incremental
access methods and a tailored bu�er manager , as
well as a tailored bu�er manager designed to support
these access methods [CR93]. However, both IBM
and Microsoft plan to incorporate similar constructs
in their DB2 and Sequel Server future releases.
The most common technique for discovering views

(in any of its forms) is subsumption [Rou82a, Fin82,
LY85, Rou91, BJNS94]. Subsumption in its most
general form is an undecidable problem, but for the
most common queries can be reduced to an NP-
complete problem. For simple conjunctive query
views, it further reduces to polynomial-time and very
e�cient algorithms [Rou82a, CR94b].
In a data warehouse where query execution and

I/O are magni�ed, the mandate for re-use cannot
be ignored. Furthermore, in an OLAP environment,
(unlike OLTP), updates come in bulk rather than
a few-at-a-time, making incremental update tech-
niques more e�ectively amortized [RKR97]. There-
fore, query optimizers based on materialized view
fragments are a necessity. At this point, data ware-
houses rely solely on users' memory for re-using pre-
computed summary tables. This severely limits their
performance potential.

4 Processing of Views

Now let's examine view processing for all the view
forms except for the pure data (snapshots) which
are not maintainable. View processing involves
view scanning, incremental update, or both applied
simultaneously. Scanning and incremental update of
views imply special locks, locking protocols [RES93],
authorization [RB85], and consistency protocols
for asynchronous updates from multiple sources
[ZGMHW95]. I will concentrate here on performance
issues.
View scanning in the pure program view form is

typically the same as re-execution of the query that
created the view. There is no performance bene�t
for unmaterialized views other than predicting re-
execution cost more accurately after the �rst time.
The performance is bad but predictable. Scanning
a materialized view has a cost that depends on
the ratio of the useful tuples in it to answer a
given query, called density of the view. For a
100% ratio, scanning a materialized view is optimal
because it has all the data for answering the query
compacted in a tight storage space. If the density
is low, the noise can be more than the amount of
useful data. For the index view form, scanning
cost can range from near optimal, when the pointers
are aligned and point to a tight space, to very
high, when pointer dereferencing causes thrashing
(similar to unclustering indexes in RDBMSs or in



OODBMSs). For this reason, in the index form, it is
very important that the pointers be well organized
[RK87, AR90] and use a tailored bu�er manager
[CR93] which avoids thrashing caused by the multi-
dimensionality of the view. ViewCache uses a
form of puzzle-shaped packed R-trees [RL85] and
tailored cache replacement strategies. Cubetrees
[RKR97] utilize multi-dimensional compressed and
packed R-trees [RL85]. Again, for performance, the
organization is the only thing that matters.

Incremental update techniques for views are ma-
ture, as they go back for more than a decade of re-
search [BLT86, RK86b, Rou87, Rou91, RES93]. The
same techniques were the foundation for the man-
agement of replicated data [RK86a, RK86b] which
found its way to the log-based replication tools of
commercial RDBMSs.

Incremental update of a view depends again
on its underlying form. In its un-materialized
form the cost of an incremental update is the
cost of re-execution. For other forms we must
distinguish two cases. The �rst case occurs when
the incremental update is done in real-time during
the query execution. In this case, the update is
combined with scanning and therefore, the cost of
incremental update is subsumed by the scanning
cost. This was the main objective of the one-pass
incremental update algorithms of ViewCache. The
subsumed cost savings are signi�cant and this was
shown by comparing worst case analysis estimations
against actual timed experiments [RES93]. This
was especially true for views-on-views because of
the elimination of storing and accessing intermediate
results.

The second case is when the incremental update of
a view is done at times other than scanning. This is
the typical case in a data warehouse where updates
from multiple sources are applied asynchronously ei-
ther when they arrive or at scheduled (often o�-line)
times. The bene�t of combining scanning and up-
dating is not a factor any more. Therefore, minimal
dereferencing is a good target optimization. Par-
tially materialized views [BR96] which materialize
only the subset of the attributes useful for the incre-
mental update, outer-joins instead of joins, or other
appropriate attribute caching techniques [Sta89] are
best suited. On the other hand, fully materialized
views are cumbersome and generate a lot of unneces-
sary I/O and data movement for just updating views
that are to be used in the future.

It should be mentioned here that the issue of
self-maintenance [GJM96] of views is important.
However, the additional information necessary for
the incremental update and its storage organization
must be well designed since this a�ects performance.

For example, the storage organization of the deltas

may have an equivalent adverse e�ects to thrashing
if their tuples are scattered in an unclustered space.

5 Data Mining within Views

Views which are materialized or partially material-
ized contain valuable information in them such as
value distributions and other statistical information
that are much more accurate than the clumsy ones
maintained by the DBMS statistics utility which is
run once in a while. Having accurate value distribu-
tions avoids those unrealistic assumptions and gues-
timates based on the uniformity assumption. Since
RDBMSs do nothing else but generate materialized
views, a smarter system can extract this valuable
meta-data and, with a query feedback mechanism
[CR94a], maintain precise statistics. This was shown
to incur no additional I/O cost and have negligible
CPU only overhead for a big return, as the error in
the estimation is very close to none.

6 Harvesting the Executions of

Views

Consider a view as a program again. Whether we
execute it to materialize it or to incrementally up-
date it, the system's behavior can be observed dur-
ing this execution and be used to adapt resource al-
location during subsequent executions. For example,
bu�er page fault behavior during a view's execution
can be accurately predicted using regression from a
few executions of it [CR93]. Using this information,
bu�er allocation is done much more e�ciently using
a marginal gain technique [FNS91]. Clearly, bu�ers
are some of the most important resources to be man-
aged, but other resources such as locks, logs, threads,
etc., can be observed during view execution and used
to adapt strategies for improving performance.

Repeated materialization of views can also be
harvested to obtain patterns of access and use them
for just-in-time page prefetching from disk. This
not only enhances bu�er management, but more
importantly, reduces context switching overhead.
Similar techniques have been engaged successfully in
OS studies [PG96] where the patterns are much less
predictable than re-materializing a view.

7 Conclusion

Views are the most important asset of the relational
model. They provide a uniform conceptual and im-
plementation model of relational programs, derived
data, indexes, and aggregated derived data. I can
think of a very few things that are so elegant and
practical too.



These are my views on views. And, like most
views, they are evolving and incrementally updating
with time. I am impressed with views' versatility,
resilience, and refusal of retiring [Mum96]. As for the
yet-to-be discovered uses of views that I promised at
the beginning of the paper, I remind you that it is
just a speculative view on my part.
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