The OpsisProject: Materialized Viewsfor
Data War ehouses and the Web

Nick Roussopoulos!, YannisKotidis**, Alexandros Labrinidis!, and Yannis Sismanis

! Department of Computer Science
University of Maryland
College Park, MD 20742, USA
{nick,labrinid,isis} @cs.umd.edu
2 AT&T LabsResearch
180 Park Ave, PO. Box 971,
Florham Park, NJ 07932, USA
kotidis@research.att.com

Abstract. Therea world we liveinis mostly perceived through an incredibly large col-
lection of views generated by humans, machines, and other systems. Thisis the view re-
ality. The Opsis project concentratesits efforts in dealing with the multifaceted form and
complexity of dataviewsincluding dataprojection views, aggregateviews, summary views
(synopses), point of view views, and finally web views. In particular, Opsis deals with
the generation, the storage organization (Cubetrees), the efficient run-time management
(Dynamat) of materialized views for Data Warehouse systems, and for web serverswith
dynamic content (WebViews).

1 Introduction

Most of the datastored and used today isin theform of materialized views, generated from sev-
era possibly distributed and loosely coupled source databases. These views are sorted and or-
ganized appropriately in order to rapidly answer varioustypes of queries. The relational model
istypically used to define each view and each definition serves adua purpose, first as a speci-
fication technique and second as an execution plan for the derivation of the view data

Materialized views are approximately 10 years younger than the relational modd. Early
papers that foresaw their importance include[26, 25, 7, 29, 34, 31, 30]. During this period, ma-
terialized views were considered by top relationalists as the “Pandora’s box”. It took another
6-7 years before it was realized how useful and versatile they were. Then, aflurry of papers
rehashed the earlier results and amost brought the research on materiaized views to extinc-
tion. But, materialized views were too important and research continues as of today. Relational
views have severd forms:

— pureprogram: an unmaterialized view isaprogram specification, “theintention”, that gen-
erates data. Query modification [32] and compiled queries[2] were thefirst techniques ex-
ploiting views— their basic difference is that the first is used as a macro that does not get
optimized until run-time, while the second stores optimized execution plans. Each time

* Work performed while the author was with the Department of Computer Science, University of Mary-
land, College Park.

the view program isinvoked, it generates (materiaizes) the data at a cost that is roughly
the same for each invocation.

— derived data: amateriaized view is“the extension” of the pure program form and has the
characteristics of datalike any other relationa data. Thus, it can be further queried to build
views-on-viewsor collectively grouped to build super-views. The derivation operationsare
attached to materialized views. These procedura attachments along with some “delta’ re-
lationa agebra are used to perform incremental updates on the extension.

— pure data: when materiaized views are converted to snapshots, the derivation procedure
is detached and the views become pure data that is not maintainable (pure data is at the
opposite end of the spectrum from pure program).

— pure index: view indexes [26] and ViewCaches [27] illustrate this flavor of views. Their
extension has only pointersto the underlying datawhich are dereferenced when the values
are needed. Likeall indexing schemes, theimportance of indexesliesin their organization,
which facilitates easy manipulation of pointersand efficient single-pass dereferencing, and
thus avoids thrashing.

— hybrid data & index: a partially materialized view [3] stores some attributesas data while
therest are referenced through pointers. Thisform combines dataand indexes. B-trees, Join
indexes [35], star-indexes and most of the other indexing schemes belong to this category,
with appropriate schema mapping for tranglating pointersto record field values.

— OLAP aggregate/indexing: a data cube [10] is a set of materiaized or indexed views[12,
23,18]. They correspond to projections of the multi-dimensional space data to lesser di-
mensionality subspaces and storeaggregate valuesinit. Inthisform, thedatavaluesare ag-
gregated fromacollection of underlying relationvalues. Summary tablesand Star Schemas
belong in thisform as well.

— WebMiews: HTML fragments or entire web pages that are automatically created from base
data, typically storedinaDBM S[20]. Having aWebView materiaized can potentially give
significantly lower query response times, compared computing it on the fly. However, it
may also lead to performance degradation, if the update workload istoo high.

Each of these formsis used by some component of arelationa system. Having a unified
view of all forms of relational viewsisimportant in recognizing commonalities, re-using im-
plementation techni ques, and discovering potential uses not yet exploited. The Opsisproject has
focused on devel oping storage and update techniques for all forms of materialized views. We
have been particularly careful with the efficient implementation and scalability of these meth-
ods. We have architected, designed, implemented, and tested giant-scale materialized view en-
gines for the demands of todays abundance of connectivity and data collection.

Thispaper isorganized asfollows. Inthe next section we describethe Cubetree DataModd,
a storage abstraction for the data cube, and aso present a compact representation for it using
packed R-trees[24]. In Section 3, we present our algorithmfor bulk incremental updates of the
data cube. Section 4 has a brief outline of DynaMat, a view management system that materi-
alizes results from incoming aggregate queries as views and exploits them for futurereuse. In
Section 5 we explore the materialization policies for WebViews and present results from ex-
periments on an industrial-strength prototype. Section 6 discusses the Quality of Service and
Quality of Data considerationsfor WebViews. Finally, we conclude in Section 7.

2 A Storage Abstraction for OLAP Aggregate Views

Consider the relation R(A, B, C, Q) where A, B, and C' are the grouping attributes that we
would like to compute the cube for the measure attribute . We represent the grouping at-
tributes A, B, and C' on the three axes of AxBxC' and then map each tuple T'(a, b, ¢, ¢) of R
using thevalues a,b,c for coordinates and the value ¢ as the content of the data point 7'(«, b, ¢).
We now project al the data pointson all subspaces of AXxBxC and aggregate their content. We
assume that each domain of R has been extended to include a specia value (zero in this exam-
ple) on whichwe do theprojections. A projectiononasubspace D* withdimension K <= N,
where NV isthe number of grouping attributes, represents thegroup by of all those attributesthat
correspond to D . The aggregate values of DX are stored in the intersection points between
DX and the orthogonal (N — K)-dimensional hyper-planesthat correspond to the remaining
dimensions not included in D% . For example, the projection planes P1,P2,... paralld to plane
BxC' shown in Figure 1, correspond to group by A and their aggregated values are stored in
the content of their intersection point with axis A. Theorigin 0(0, 0, ..., 0) isused to storethe
(super)-aggregate value obtained by no grouping at al. We call thisthe Cubetree Data Model
(CDM).

Fig. 1. group by A projections Fig. 2. Querying the Cube

In CDM, we map cube and relational queries into multi-dimensional range queries. For ex-
ample, aquery tofind al the group by A valuesfor A between 3 and 6 would be formulated as
arangequery [(3,0,0) < A < (6,0, 0)] shown by the bold-dashed line SQ in Figure2. If now
we would like to find out the percent contribution (multidimensional ratio) of C' = 9 to these
group by A values, we obtain the intersection pointsof line C' = 9 with planes P1, P2, etc.
and the content of them is divided by the corresponding aggregates on A.

Clearly, different combinations of relational, 1-dimensiona or multi-dimensional storage
structures can be used to realize the CDM. For example, the whole CDM can be redlized by
just a conventional relationa storage [10] with no indexing capability for the cube. Another
possibility, would betorealize CDM by an R-tree[14], or acombination of relationa structures,
R-trees and B-trees [5]. Since most of the indexing techniques are hierarchical, without | oss of
generality, we assume that the CDM is atree-like (forest-like) structure that we refer to as the
Cubetree of R.

3 Bulk Incremental Updates

Random record-at-a-timeinsertionsare not only very slow because of the continuous reorgani-
zation of the space, but a so destroy data clustering in al multidimensional indexing schemes.
Packed R-trees, introduced in [24], avoid these problems by first sorting the objects in some
desirable order and then bulk loading the R-tree from the sorted file and packing the nodes
to capacity. This sort-pack method achieves excellent clustering and significantly reduces the
overlap and dead space (i.e. space that contains no data points).

The proposed bulk incremental update computation is split into a sort phase where an up-
date increment d R of relation R is sorted, and a merge-pack phase where the old Cubetreeis
packed together with the updates: cubetree(RU dR) = Merge-Pack(cubetree(R), SOrt(dR)).
Sorting could be the dominant cost factor in the above incremental computation, but it can be
parallelized and/or confined to aquantity that can be controlled by appropriate schedulesfor re-
freshing the cube. Notethat d R contains any combination of relation insertions, deletions, and
updates. For aggregate functionsthat are Self Maintainable[21] like count() and sum(), they are
all equivalent because they all correspond to awrite of al projection pointswith their content
adjusted by appropriate arithmetic expressions.

We assume that atuplein d R has the following structure: < vy, vs, ..., v5, ¢ >, Where
v;, denotes the value on dimension j, j=1, ..., N and ¢ isthe measure éttribute. The gener-
alization with more measure attributes is straightforward. During the sorting phase, we read
dR and create a sorted run dg; for each group by in the Cube. The format of atuplein dy; is:
< vl vh .. vfm, agry,...,agry >, WherEU;»,j =1,..., m;, denotes the values of each di-
mension in that group by. For a specified point in this m;-dimensiona space agry, . .., agry
hold the aggregated values. In order to be able to merge dg; with the existing aggregates that
are stored within the Cubetrees, the data within each update increment dg; are being sorted in
the same order as the datawithinthe Cubetrees. For example, if all pointsof groupby ABC are
storedinthe A — B — C order, then the same sort order isbeing used for the new projections
from the deltas.

During the second merge-pack phase the old Cubetrees are packed together with the up-
dates. For each Cubetree r, all increments dg; that are stored in that Cubetree are opened and
merge-packed with r to create a new instance of theindex.

3.1 Creation/Maintenance M easurements for a Grocery Demo Dataset

We used a synthetically generated grocery demo dataset that model s supermarket transactions.
The datawarehouse is organized according to the star schema[17] organization. Thereisasin-
glefact table sal es that includes 12 dimension attributes and two real (4-byte) measure at-
tributes, namely r evenue and cost . We pre-computed severa aggregate views and stored
them within Cubetrees. These views aggregate data over attributes chosen from the dataset and
compute the sum() aggregate for both measures.*

We ran the experiment on a360MHz Ultra SPARC 60 with two SCSI 18GB Seagate Chee-
tah hard drives. For sorting the data, we used a simple quick-sort utility. There are numerous
optimizationsthat we could have exploited for speeding up thisphase, see[1, 22]. Table 1 shows

YA more detailed description of the dataset as well as an online demo are available at
http://opsis.umiacs.umd.edu:8080

thetimefor theinitial load of the Cubetrees and thetime for each bulk-incremental updatewith
ayear’'sand five month’sworth of data. The corresponding sizes for each updateincrement d R
are also given.

| Transactions | Ins+Upds|Total Records| Sort Time|Pack Time|Cubetrees (GB)[Packing rate]

1/1/90-12/31/97|127,702,708| 127,702,7083h 04m 30s| 5m 51s 292 29.95 GB/h

1/1/98-12/31/98| 22,468,605 143,216,789] 13m52s 7m:54s 341 25.95 GB/h

1/1/99-5/31/99 | 26,027,692| 160,587,143 10m1ls| 8m53s 3.83 25.88 GB/h
Table 1. Initial Bulk-load and Bulk-incremental Updates

For sorting and packing we utilized both Seagate Cheetah disksi.e. reading the input from
one disk and packing the Cubetrees in the other. The size of the views for the initia creation
was 2.92GB and the packing phase was compl eted in less than 6 minutes. This correspondsto a
packing rate (speed) of 29.95GB/h or 8.52M B/sec, roughly 68% of theraw serial disk writerate.
The remaining bandwidth is lost due to the necessary processing of the input. The second and
third lines of the table show the performance during bulk-incrementa updates. The effective
disk packing rate that we got for updates was slightly slower, a about 26GB/h. Thisis because
we only used two disks, storing the input data (updates) in the first and the Cubetrees in the
second. Therefore, during updates both the old and the new-version of the Cubetrees were on
the same disk sharing its1/0 bandwidth.

4 Dynamic Management of Aggregate Views

Disk space and creation/maintenance overhead will not allow us to materialize dl interesting
group-bys of the data cube. The view selection problem [26, 15, 4, 33, 16] consists of finding
those group-bys that minimize query response time under a resource constraint (typicaly disk
space) and store them as materiaized views.

This static selection of views however, contradicts the dynamic nature of decision support
analysis. Especialy for ad-hoc queries where the expert user is looking for interesting trends
in the dataset, the query patternis difficult to predict. Furthermore, as query patterns and data
trends change overtime and as the data warehouse is evolving with respect to new business re-
guirementsthat continuously emerge, even the most fine-tuned sel ection of viewsthat we might
have obtained at some point, will very quickly become outdated. In addition, the maintenance
window, the disk space restrictionsand other important functional parameters of thesystem also
change. For example, an unexpected large volume of daily updates will throw the selected set
of views as not update-abl e unless some of these views are discarded.

Another inherit drawback of a static view selection scheme is that the system has no way
of tuning awrong selection by re-using results of queriesthat couldn’t be answered by the ma-
terialized set. Notice that athough OLAP queries take an enormous amount of disk I/0O and
CPU processing time to be compl eted, their output is often quite small as they summarize the
underlying data. Moreover, during roll —up operations[10] the datais examined a a progres-
sively coarser granularity and future queries are likely to be computable from previous results
without accessing the base tables at al.

In [19] weintroduced DynaMat, a dynamic view management system for data warehouses.
Our work has been motivated by earlier research on caching and resusing query resultsin rela
tional database systems [31, 9]. DynaMat manages a dedicated disk space that we call the View

Pool, in which previously computed aggregates are stored. There are two distinct modes of op-
eration. Thefirst isthe“on-line€’ mode during which user queries are allowed. DynaMat deter-
mines whether or not aggregates (views) stored in the View Pool can be used in a cost-effective
manner to answer a new query, in comparison to running the same query against the detailed
recordsin the data warehouse. Thisis achieved by probing the query-optimizer and getting an
estimate of the execution cost of the query at the datawarehouse. Whenever anew query result
is computed, DynaMat uses an admission/replacement strategy that expl oits spatio-temporal
locality in the user access pattern, but also takes into account the computational dependencies
of the stored query results.

Periodicaly, updates received from the data sources get shipped to the data warehouse and
the View Pool gets refreshed. During updates, DynaMat switches to an “off-lineg’” mode during
which queries are not permitted. The maximum length of the update phase is specified by the
adminigtrator. Different update policiesareimplemented, depending on thetypesof updates, the
propertiesof thedatasources and the aggregate functionsthat are computed by the query results.
From DynaMat’s point of view thegod isto select and update the most useful fragmentswithin
the update time constraint. Notice that thisis not equiva ent to updating as many fragments as
possible, athough often both yield similar results.

5 WebView Materialization

WebViewsare HTML fragmentsthat are automatically created from based data, which aretyp-
icaly storedinaDBMS. For example, asearch at an online bookstore for books by a particul ar
author returns a WebView that is generated dynamically; aquery on acinema server generates
aWebView that liststhe current playing times for a particular movie; a request for the current
sports scores at a newspaper site returns a WebView which is generated on the fly. Except for
generating web pages as a result of a specific query, WebViews can aso be used to produce
multipleversions (views) of the same data (for example, trand ating the contents of aweb page
in multiple languages), and to support multipleweb devices, especialy browsers with limited
display or bandwidth capabilities, such as cellular phones or networked PDAS.

Althoughthere are afew web serversthat support arbitrary queries on their base data, most
web applications “publish” a relatively small set of predefined or parameterized WebViews,
which areto be generated automatically through DBM S queries. A weather web server, for ex-
ample, would most probably report current weather information and forecast for an area based
on a ZIP code, or a city/state combination. Given that weather web pages can be very popu-
lar and that the update rate for weather information is not high, materiaizing such WebViews
would most likely improve performance.

Personalized WebViews [6] can aso be considered for materiaization, if first they are de-
composed into a hierarchy of WebViews. Take for example a personalized newspaper. It can
have a sel ection of news categories (only metro, international news), alocalized weather fore-
cast (for Washington, DC) and a horoscope page (for Scorpio). Although this particular com-
bination might be unique or unpopular, if we decompose the page into four WebViews, one for
metro news, one for international news, one for the weather and one for the horoscope, then
these WebViews can be accessed frequently enough to merit materialization.

51 WebView Materialization Policies

We explore three materiaization policies: virtual, materialized inside the DBMS and materi-
alized at the web server. In the virtual policy, everything is computed on the fly. To produce
a WebView we must query the DBMS and format the resultsin HTML. Since no views are
cached, we only need to update the base tables, whenever thereis an update.

In the materialized inside the DBMS policy, we save the results of the SQL query that is
used to generate the WebView. To produce the WebView, we must access the stored resultsand
format them in HTML. The main difference of WebView materialization from web caching is
that, in the materialization case, the stored query results need to be kept up to date al thetime.
Thisleadsto animmediaterefresh of themateriaized viewsinsidetheDBM Swith every update
to the base tables they are derived from.

Finally, in the materialized at the web server policy, in order to satisfy user requests we
simply have to read the WebView from the disk, where afresh version is expected to be stored.
This means that on every update to one of the base tables that produce the WebView, we have
to refresh the WebView (or recomputeit, if it cannot be incrementally refreshed) and save it as
afilefor the web server to read.

5.2 The sdection problem

The choice of materiaization policy for each WebView has abig impact on the overall perfor-
mance. For example, aWebView that is costly to compute and has very few updates, should be
materialized to speed up access reguests. On the other hand, a WebView that can be computed
fast and has much more updates than accesses, should not be materialized, since materialization

would mean more work than necessary. We define the WebView selection problem as follows:
For every Web\Miew at the server, select the materializationstrategy (virtual, material-

ized insidethe DBMS, materialized at the web server), which minimizesthe average

guery response time on the clients.
We assume that there is no storage constraint, since storage means disk space (not main mem-
ory), and a'so WebViews are expected to be relatively small. The decision whether to mate-
rialize a WebView or not, is similar to the problem of selecting which views to materialize in
adatawarehouse [11, 13, 28], known as the view selection problem. There are two crucia dif-
ferences. First of all, the multi-tiered architecture of typica database-backed web serversraises
the question of whereto materiaize aWebView. Secondly, updatesare performed onlineat web
servers, as opposed to data warehouses which are usually off-line during updates.

5.3 Experiments

In[20] we considered the full spectrum of materialization choicesfor WebViewsin adatabase-
backed web server. We compared them analytically using a detailed cost model that accounts
for both the inherent parallelism in multitasking systems and also for the fact that updates on
the base data are to be done concurrently with the accesses. We have implemented all flavors
of WebView materialization and run extensive experiments on an industrial strength prototype,
based on the Apache web server and Informix, running on a SUN UltraSparc-5 with 320MB
of memory and a 3.6GB hard disk. We used apool of 22 SUN Ultra-1 workstationsas clients.
Due to space constraints we only present two of our experiments.

2+ 1.4
12
1.5 1
Query Query 0.8
Response 14 Response
Time (sec) Time (sec) 0.6
0.54 0.4
0.2
0 ot I m e e [l | et |
10 25 35 50 0 5 10 | 15 | 20 | 25
‘Dvirt 0.09604|0.51774|1.05175 | 1.59493 ‘Dvirt 0.354/0.518|0.636|0.724|0.812|0.877
Omat-db |0.33903|0.84658| 1.3145 |1.83115 Omat-db |0.323|0.847|1.228|1.336| 1.34 | 1.37
W mat-web | 0.00921 | 0.00459 | 0.00576 | 0.05372 W mat-web |0.003]|0.005[0.004{0.006|0.005|0.005
Access Rate (requests/sec) Update Rate (updates/sec)
Fig. 3. Scaling up the accessrate Fig. 4. Scaling up the update rate

Inthefirst set of experiments, wevaried theincoming access request rate (10-50 requests/sec)
and measured the average query response time under the three different materialization poli-
cies: virtua (vi rt), materialized insidetheDBM S (nat - db) and materialized at theweb server
(mat - web). A load of 50 requests/sec corresponds to a rather “heavy” web server load of 4.3
million hits per day for dynamically generated pages. The incoming update rate was 5 up-
dates/sec for al experiments.

In Figure 3 we report the average query response time per WebView as they were measured
at theweb server. We immediately notice that the mat - web policy has average query response
timesthat are consistently at least an order of magnitude (10 - 230 times) less than those of the
vi rt ormat - db policies. Under themat - web policy, servicing arequest involvessimply read-
ing afilefromdisk, whereas, under thevi rt and mat - db policies, the system needsto compute
aquery at the DBM Sfor every request. Furthermore, since theweb processesare “lighter” than
the DBM S processes, the mat - web policy scales better than the other two.

Inthesecond set of experiments, we varied theincoming updateratefrom 0 to 25 updates/sec,
while the access request rate was set at 25 accesses/sec. |n Figure 4 we plot the average query
response times for this experiment under the three materidization policies. Our first observa-
tion is that the average query response time remains practically unchanged for the nat - web
policy despite the updates, because the updates are performed in the background. The second
observationisthat thevi rt policy is performing 56% - 93% better than the mat - db policy in
the presence of updates. Thisisexplained by thefact that updates under themat - db policy lead
to extrawork at the DBM S in order for the materialized viewsto be kept up to date.

6 Measuring the Quality of Web Servers

Caching of static web pages [8] isknown to improve the Quality of Service (QoS) for user re-
guests, since it improvesthe average query response time. For dynamic content however, web
caching does not provide any freshness guarantees on the cached data. Servicing user requests
fast is of paramount importance only if the datais fresh and correct, otherwise it may be more
harmful than slow or even no data service. In general, when measuring the Quality of a system
that uses materialized views, we need to eval uate both QoS and the Quality of Data (QoD), or
how “fresh” the served data are. Web caching improves QoS dramatically, but completely ig-
nores QoD of the cached data. On the other hand, when QoD isvery important, web serversrely

on computing frequently changing web data on-demand . This achieves near-perfect QoD, but
serioudly impedes performance or leads to server melt-downs. WebView Materialization [20,
36] aims at bridging this gap, since it prolongsthe QoS benefits of caching using amortization
and incremental update a gorithmson the cached data. Thisimprovesthe QoD at asmall degra
dationin QoS. In our work we try to provide the best trade-off between QoS and QoD based
on the user/application requirements and the incoming workload.

7 Conclusions

In this paper we concentrated on the most important feature of the relational database model:
materialized views. We focused on their usage on datawarehousing and Web servers, with em-
phasis on updateability, performance, and scal ability.

Specifically, we presented the Cubetree DataModel, a storage abstraction for the data.cube.
Cubetrees maintain the view records internally sorted (using packed R-trees) and allow bulk
incremental updatesthrough an efficient merge-packing al gorithm. We briefly described Dyna-
Mat, a dynamic view management system that manages collections of materiaized aggregate
views based on user workload and avail able system resources (disk space, updatecost). Finaly,
we explored the materialization policiesfor WebViews, presented experimental resultsfrom an
industrial-strength prototype and discussed the Quality of Service and Quality of Data consid-
erations for WebViews.

References

1. S. Agrawal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and S. Sarawagi.
On the Computation of Multidimensional Aggregates. In Proc. of 22nd VLDB conference, pages
506-521, Bombay, India, August 1996.

2. M.M. Astrahan et al. System R: Relational Approach to Database Management. ACM Transactions
on Database Systems, 1(2):97-137, June 1976.

3. LarsBaekgraard and Nick Roussopoulos. “ Efficient Refreshment of Data Warehouse Views”. Tech-
nical Report CS-TR-3642, Dept. of Computer Science, Univ of Maryland, May 1996.

4. E. Bardlis, S. Paraboschi, and E. Teniente. Materialized View Selection in aMultidimensional Data-
base. In Proc. of the 23th VLDB Conference, Athens, Greece, August 1997.

5. R. Bayer and E. McCreight. Organization and Maintenance of Large Ordered Indexes. Acta Infor-
matica, 1(3):173-189, 1972.

6. Phil Bernstein et a. “The Asilomar Report on Database Research”. SGMOD Record, Dec. 1998.

7. José A. Blakeley, Per Ake Larson, and Frank Wm. Tompa. “Efficiently Updating Materialized
Views'. In Proc. of the ACM SSGMOD Conference, pages 61-71, Washington, DC, May 1986.

8. LeeBreslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. “Web Caching and Zipf-like Dis-
tributions: Evidence and Implications’. In Proc. of INFOCOM’'99, New York, USA, March 1999.

9. A.DelisandN. Roussopoulos. Performanceand Scalability of Client-Server Database Architectures.
In Proc. of the 18th VLDB, pages 610-623, Vancouver, Canada, 1992.

10. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals. In Proc. of the 12th ICDE, pages 152-159, New
Orleans, February 1996. |IEEE.

11. Ashish Gupta and Inderpal Singh Mumick. “Maintenance of Materialized Views: Problems, Tech-
niques, and Applications’. Data Engineering Bulletin, 18(2):3-18, June 1995.

12

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.
36.

H. Gupta, V. Harinarayan, A. Rgjaraman, and J. Ullman. Index Selection for OLAP. In Proceedings
of ICDE, pages 208-219, Burmingham, UK, April 1997.

Himanshu Gupta. “Selection of Views to Materialize in a Data Warehouse”. In Proc. of the 6th
International Conferenceon Database Theory (ICDT '97), Delphi, Greece, January 1997.

A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc. of the ACM SIG-
MOD International Conference on Management of Data, Boston, MA, June 1984.

V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing Data CubesEfficiently. In Proc. of ACM
SIGMOD, pages 205-216, Montreal, Canada, June 1996.

H. J. Karloff and M. Mihail. On the Complexity of the View-Selection Problem. In Proceedings
of the 18th ACM SIGACT-SIGMOD-SIGART Symposiumon Principles of Database Systems, pages
167-173, Philadelphia, Pennsylvania, May 1999.

R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, 1996.

Y. Kotidisand N. Roussopoulos. An Alternative Storage Organization for ROLAP Aggregate Views
Based on Cubetrees. In Proceedingsof the ACM SIGMOD Inter national Conferenceon Management
of Data, pages 249258, Seattle, Washington, June 1998.

Yannis Kotidis and Nick Roussopoulos. DynaMat: A Dynamic View Management System for Data
Warehouses. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 371-382, Philadelphia, Pennsylvania, June 1999.

Alexandros Labrinidis and Nick Roussopoulos. “WebView Materialization”. In Proc. of the ACM
SIGMOD Conference, Dallas, Texas, USA, May 2000.

I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of Data Cubes and Summary Tablesin a
Warehouse. In Proc. of the ACM SSIGMOD Conference, Tucson, Arizona, May 1997.

K.A. Ross and D. Srivastava. Fast Computation of Sparse Datacubes. In Proceedings of the 23th
VLDB Conference, pages 116125, Athens, Greece, Augoust 1997.

N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: Organization of and Bulk Incremen-
tal Updates on the Data Cube. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 89-99, Tucson, Arizona, May 1997.

N. Roussopoulosand D. Leifker. Direct Spatial Search on Pictorial Databases Using Packed R-trees.
In Procs. of 1985 ACM SSIGMOD, pages 17-31, Austin, 1985.

Nick Roussopoulos. “The Logical Access Path Schema of a Database”. IEEE Transactions on Soft-
ware Engineering, 8(6):563-573, November 1982.

Nick Roussopoulos. “View Indexing in Relational Databases’. ACM Transactionson Database Sys-
tems, 7(2):258-290, June 1982.

Nick Roussopoulos. “ AnIncremental AccessMethod for ViewCache: Concept, Algorithms, and Cost
Analysis’. ACM Transactionson Database Systems, 16(3), September 1991.

Nick Roussopoulos. “Materialized Views and Data Warehouses’. SGMOD Record, March 1998.
Nick Roussopoulos and Hyunchul Kang. “Principles and Techniquesin the Design of ADMS +”.
Computer, pages 19-25, December 1986.

A. Segev and J. Park. Maintaining Materialized Views in Distributed Databases. In Proceedings of
the 5th International Conferenceon Data Engineering, Los Angeles, CA, 1989.

Timos Sellis. “Intelligent caching and indexing techniquesfor relational database systems’. Infor-
mation Systems, 13(2), 1988.

Michael Stonebraker. “Implementation of Integrity Constraints and Views by Query Modification”.
In Proc. of the ACM SSGMOD Conference, San Jose, California, May 1975.

D. Theodoratos and T. Sellis. Data Warehouse Configuration. In Proc. of the 23th International
Conference on VLDB, pages 126-135, Athens, Greece, August 1997.

F. Tompaand J. Blakeley. Maintaining Materialized Views Without Accessing Base Data. Informa-
tion Systems, 13(4):393-406, 1988.

Patrick Valduriez. “Join Indices’. ACM Transactions on Database Systems, 12(2), June 1987.
Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Valduriez. “Caching Strategies for
Data-Intensive Web Sites”. In Proc. of the 26th VLDB Conference, Cairo, Egypt, Sep 2000.

