
The Opsis Project: Materialized Views for
Data Warehouses and the Web

Nick Roussopoulos1, Yannis Kotidis2?, Alexandros Labrinidis1, and Yannis Sismanis1

1 Department of Computer Science
University of Maryland

College Park, MD 20742, USA
fnick,labrinid,isisg@cs.umd.edu

2 AT&T Labs Research
180 Park Ave, P.O. Box 971,

Florham Park, NJ 07932, USA
kotidis@research.att.com

Abstract. The real world we live in is mostly perceived through an incredibly large col-
lection of views generated by humans, machines, and other systems. This is the view re-
ality. The Opsis project concentrates its efforts in dealing with the multifaceted form and
complexity of data views including data projection views, aggregateviews, summary views
(synopses), point of view views, and finally web views. In particular, Opsis deals with
the generation, the storage organization (Cubetrees), the efficient run-time management
(Dynamat) of materialized views for Data Warehouse systems, and for web servers with
dynamic content (WebViews).

1 Introduction

Most of the data stored and used today is in the form of materialized views, generated from sev-
eral possibly distributed and loosely coupled source databases. These views are sorted and or-
ganized appropriately in order to rapidly answer various types of queries. The relational model
is typically used to define each view and each definition serves a dual purpose, first as a speci-
fication technique and second as an execution plan for the derivation of the view data.

Materialized views are approximately 10 years younger than the relational model. Early
papers that foresaw their importance include [26, 25, 7, 29, 34, 31, 30]. During this period, ma-
terialized views were considered by top relationalists as the “Pandora’s box”. It took another
6-7 years before it was realized how useful and versatile they were. Then, a flurry of papers
rehashed the earlier results and almost brought the research on materialized views to extinc-
tion. But, materialized views were too important and research continues as of today. Relational
views have several forms:

– pure program: an unmaterialized view is a program specification, “the intention”, that gen-
erates data. Query modification [32] and compiled queries [2] were the first techniques ex-
ploiting views– their basic difference is that the first is used as a macro that does not get
optimized until run-time, while the second stores optimized execution plans. Each time

? Work performed while the author was with the Department of Computer Science, University of Mary-
land, College Park.

the view program is invoked, it generates (materializes) the data at a cost that is roughly
the same for each invocation.

– derived data: a materialized view is “the extension” of the pure program form and has the
characteristics of data like any other relational data. Thus, it can be further queried to build
views-on-views or collectively grouped to build super-views. The derivation operations are
attached to materialized views. These procedural attachments along with some “delta” re-
lational algebra are used to perform incremental updates on the extension.

– pure data: when materialized views are converted to snapshots, the derivation procedure
is detached and the views become pure data that is not maintainable (pure data is at the
opposite end of the spectrum from pure program).

– pure index: view indexes [26] and ViewCaches [27] illustrate this flavor of views. Their
extension has only pointers to the underlying data which are dereferenced when the values
are needed. Like all indexing schemes, the importance of indexes lies in their organization,
which facilitates easy manipulation of pointers and efficient single-pass dereferencing, and
thus avoids thrashing.

– hybrid data & index: a partially materialized view [3] stores some attributes as data while
the rest are referenced throughpointers. This form combines data and indexes. B-trees, Join
indexes [35], star-indexes and most of the other indexing schemes belong to this category,
with appropriate schema mapping for translating pointers to record field values.

– OLAP aggregate/indexing: a data cube [10] is a set of materialized or indexed views [12,
23, 18]. They correspond to projections of the multi-dimensional space data to lesser di-
mensionality subspaces and store aggregate values in it. In this form, the data values are ag-
gregated from a collection of underlying relation values. Summary tables and Star Schemas
belong in this form as well.

– WebViews: HTML fragments or entire web pages that are automatically created from base
data, typically stored in a DBMS [20]. Having a WebView materialized can potentiallygive
significantly lower query response times, compared computing it on the fly. However, it
may also lead to performance degradation, if the update workload is too high.

Each of these forms is used by some component of a relational system. Having a unified
view of all forms of relational views is important in recognizing commonalities, re-using im-
plementation techniques, and discovering potential uses not yet exploited. The Opsis project has
focused on developing storage and update techniques for all forms of materialized views. We
have been particularly careful with the efficient implementation and scalability of these meth-
ods. We have architected, designed, implemented, and tested giant-scale materialized view en-
gines for the demands of todays abundance of connectivity and data collection.

This paper is organized as follows. In the next section we describe the Cubetree Data Model,
a storage abstraction for the data cube, and also present a compact representation for it using
packed R-trees [24]. In Section 3, we present our algorithm for bulk incremental updates of the
data cube. Section 4 has a brief outline of DynaMat, a view management system that materi-
alizes results from incoming aggregate queries as views and exploits them for future reuse. In
Section 5 we explore the materialization policies for WebViews and present results from ex-
periments on an industrial-strength prototype. Section 6 discusses the Quality of Service and
Quality of Data considerations for WebViews. Finally, we conclude in Section 7.

2 A Storage Abstraction for OLAP Aggregate Views

Consider the relation R(A;B;C;Q) where A, B, and C are the grouping attributes that we
would like to compute the cube for the measure attribute Q. We represent the grouping at-
tributes A, B, and C on the three axes of AxBxC and then map each tuple T (a; b; c; q) of R
using the values a,b,c for coordinates and the value q as the content of the data point T (a; b; c).
We now project all the data points on all subspaces of AxBxC and aggregate their content. We
assume that each domain of R has been extended to include a special value (zero in this exam-
ple) on which we do the projections. A projection on a subspaceDK with dimensionK <= N ,
whereN is the number of grouping attributes, represents the group by of all those attributes that
correspond to DK . The aggregate values of DK are stored in the intersection points between
D
K and the orthogonal (N �K)-dimensional hyper-planes that correspond to the remaining

dimensions not included in DK . For example, the projection planes P1,P2,... parallel to plane
BxC shown in Figure 1, correspond to group by A and their aggregated values are stored in
the content of their intersection point with axisA. The originO(0; 0; :::; 0) is used to store the
(super)-aggregate value obtained by no grouping at all. We call this the Cubetree Data Model
(CDM).

A

C

B

O

(3,0,0)

(4,0,0)

(5,0,0)
(6,0,0)

(7,0,0)

P1

P2

P3

P4

P5

P6

Fig. 1. group by A projections

A

C

B

O

(3,0,0)

(4,0,0)

(5,0,0)
(6,0,0)

(0,0,9)

SQ

P1

P2

P3

P4

Fig. 2. Querying the Cube

In CDM, we map cube and relational queries into multi-dimensional range queries. For ex-
ample, a query to find all the group by A values for A between 3 and 6 would be formulated as
a range query [(3; 0; 0)< A < (6; 0; 0)] shown by the bold-dashed lineSQ in Figure 2. If now
we would like to find out the percent contribution (multidimensional ratio) of C = 9 to these
group by A values, we obtain the intersection points of line C = 9 with planes P1, P2, etc.
and the content of them is divided by the corresponding aggregates on A.

Clearly, different combinations of relational, 1-dimensional or multi-dimensional storage
structures can be used to realize the CDM. For example, the whole CDM can be realized by
just a conventional relational storage [10] with no indexing capability for the cube. Another
possibility,would be to realize CDM by an R-tree [14], or a combination of relational structures,
R-trees and B-trees [5]. Since most of the indexing techniques are hierarchical, without loss of
generality, we assume that the CDM is a tree-like (forest-like) structure that we refer to as the
Cubetree of R.

3 Bulk Incremental Updates

Random record-at-a-time insertions are not only very slow because of the continuous reorgani-
zation of the space, but also destroy data clustering in all multidimensional indexing schemes.
Packed R-trees, introduced in [24], avoid these problems by first sorting the objects in some
desirable order and then bulk loading the R-tree from the sorted file and packing the nodes
to capacity. This sort-pack method achieves excellent clustering and significantly reduces the
overlap and dead space (i.e. space that contains no data points).

The proposed bulk incremental update computation is split into a sort phase where an up-
date increment dR of relation R is sorted, and a merge-pack phase where the old Cubetree is
packed together with the updates: cubetree(R[dR) = Merge-Pack(cubetree(R); sort(dR)):
Sorting could be the dominant cost factor in the above incremental computation, but it can be
parallelized and/or confined to a quantity that can be controlled by appropriate schedules for re-
freshing the cube. Note that dR contains any combination of relation insertions, deletions, and
updates. For aggregate functions that are Self Maintainable [21] like count() and sum(), they are
all equivalent because they all correspond to a write of all projection points with their content
adjusted by appropriate arithmetic expressions.

We assume that a tuple in dR has the following structure: < v1; v2; : : : ; vN , q >; where
vj , denotes the value on dimension j, j= 1; : : : ; N and q is the measure attribute. The gener-
alization with more measure attributes is straightforward. During the sorting phase, we read
dR and create a sorted run dgi for each group by in the Cube. The format of a tuple in dgi is:
< v

i
1
; v
i
2
; : : : ; v

i
mi

, agr1; : : : ; agrk >; where vij; j = 1; : : : ;mi, denotes the values of each di-
mension in that group by. For a specified point in this mi-dimensional space agr1; : : : ; agrk
hold the aggregated values. In order to be able to merge dgi with the existing aggregates that
are stored within the Cubetrees, the data within each update increment dgi are being sorted in
the same order as the data within the Cubetrees. For example, if all points of group by ABC are
stored in theA! B ! C order, then the same sort order is being used for the new projections
from the deltas.

During the second merge-pack phase the old Cubetrees are packed together with the up-
dates. For each Cubetree r, all increments dgi that are stored in that Cubetree are opened and
merge-packed with r to create a new instance of the index.

3.1 Creation/Maintenance Measurements for a Grocery Demo Dataset

We used a synthetically generated grocery demo dataset that models supermarket transactions.
The data warehouse is organized according to the star schema [17] organization. There is a sin-
gle fact table sales that includes 12 dimension attributes and two real (4-byte) measure at-
tributes, namely revenue and cost. We pre-computed several aggregate views and stored
them within Cubetrees. These views aggregate data over attributes chosen from the dataset and
compute the sum() aggregate for both measures.1

We ran the experiment on a 360MHz Ultra SPARC 60 with two SCSI 18GB Seagate Chee-
tah hard drives. For sorting the data, we used a simple quick-sort utility. There are numerous
optimizations that we could have exploited for speeding up this phase, see [1, 22]. Table 1 shows

1 A more detailed description of the dataset as well as an online demo are available at
http://opsis.umiacs.umd.edu:8080

the time for the initial load of the Cubetrees and the time for each bulk-incremental update with
a year’s and five month’s worth of data. The corresponding sizes for each update increment dR
are also given.

Transactions Ins+Upds Total Records Sort Time Pack Time Cubetrees (GB) Packing rate

1/1/90-12/31/97 127,702,708 127,702,708 3h 04m 30s 5m 51s 2.92 29.95 GB/h
1/1/98-12/31/98 22,468,605 143,216,789 13m 52s 7m:54s 3.41 25.95 GB/h
1/1/99-5/31/99 26,027,692 160,587,143 10m 11s 8m 53s 3.83 25.88 GB/h

Table 1. Initial Bulk-load and Bulk-incremental Updates

For sorting and packing we utilized both Seagate Cheetah disks i.e. reading the input from
one disk and packing the Cubetrees in the other. The size of the views for the initial creation
was 2.92GB and the packing phase was completed in less than 6 minutes. This corresponds to a
packing rate (speed) of 29.95GB/h or 8.52MB/sec, roughly 68% of the raw serial disk write rate.
The remaining bandwidth is lost due to the necessary processing of the input. The second and
third lines of the table show the performance during bulk-incremental updates. The effective
disk packing rate that we got for updates was slightly slower, at about 26GB/h. This is because
we only used two disks, storing the input data (updates) in the first and the Cubetrees in the
second. Therefore, during updates both the old and the new-version of the Cubetrees were on
the same disk sharing its I/O bandwidth.

4 Dynamic Management of Aggregate Views

Disk space and creation/maintenance overhead will not allow us to materialize all interesting
group-bys of the data cube. The view selection problem [26, 15, 4, 33, 16] consists of finding
those group-bys that minimize query response time under a resource constraint (typically disk
space) and store them as materialized views.

This static selection of views however, contradicts the dynamic nature of decision support
analysis. Especially for ad-hoc queries where the expert user is looking for interesting trends
in the dataset, the query pattern is difficult to predict. Furthermore, as query patterns and data
trends change overtime and as the data warehouse is evolving with respect to new business re-
quirements that continuouslyemerge, even the most fine-tuned selection of views that we might
have obtained at some point, will very quickly become outdated. In addition, the maintenance
window, the disk space restrictions and other important functional parameters of the system also
change. For example, an unexpected large volume of daily updates will throw the selected set
of views as not update-able unless some of these views are discarded.

Another inherit drawback of a static view selection scheme is that the system has no way
of tuning a wrong selection by re-using results of queries that couldn’t be answered by the ma-
terialized set. Notice that although OLAP queries take an enormous amount of disk I/O and
CPU processing time to be completed, their output is often quite small as they summarize the
underlying data. Moreover, during roll�up operations [10] the data is examined at a progres-
sively coarser granularity and future queries are likely to be computable from previous results
without accessing the base tables at all.

In [19] we introduced DynaMat, a dynamic view management system for data warehouses.
Our work has been motivated by earlier research on caching and resusing query results in rela-
tional database systems [31, 9]. DynaMat manages a dedicated disk space that we call the View

Pool, in which previously computed aggregates are stored. There are two distinct modes of op-
eration. The first is the “on-line” mode during which user queries are allowed. DynaMat deter-
mines whether or not aggregates (views) stored in the View Pool can be used in a cost-effective
manner to answer a new query, in comparison to running the same query against the detailed
records in the data warehouse. This is achieved by probing the query-optimizer and getting an
estimate of the execution cost of the query at the data warehouse. Whenever a new query result
is computed, DynaMat uses an admission/replacement strategy that exploits spatio-temporal
locality in the user access pattern, but also takes into account the computational dependencies
of the stored query results.

Periodically, updates received from the data sources get shipped to the data warehouse and
the View Pool gets refreshed. During updates, DynaMat switches to an “off-line” mode during
which queries are not permitted. The maximum length of the update phase is specified by the
administrator.Different update policies are implemented, depending on the types of updates, the
properties of the data sources and the aggregate functions that are computed by the query results.
From DynaMat’s point of view the goal is to select and update the most useful fragments within
the update time constraint. Notice that this is not equivalent to updating as many fragments as
possible, although often both yield similar results.

5 WebView Materialization

WebViews are HTML fragments that are automatically created from based data, which are typ-
ically stored in a DBMS. For example, a search at an online bookstore for books by a particular
author returns a WebView that is generated dynamically; a query on a cinema server generates
a WebView that lists the current playing times for a particular movie; a request for the current
sports scores at a newspaper site returns a WebView which is generated on the fly. Except for
generating web pages as a result of a specific query, WebViews can also be used to produce
multiple versions (views) of the same data (for example, translating the contents of a web page
in multiple languages), and to support multiple web devices, especially browsers with limited
display or bandwidth capabilities, such as cellular phones or networked PDAs.

Although there are a few web servers that support arbitrary queries on their base data, most
web applications “publish” a relatively small set of predefined or parameterized WebViews,
which are to be generated automatically through DBMS queries. A weather web server, for ex-
ample, would most probably report current weather information and forecast for an area based
on a ZIP code, or a city/state combination. Given that weather web pages can be very popu-
lar and that the update rate for weather information is not high, materializing such WebViews
would most likely improve performance.

Personalized WebViews [6] can also be considered for materialization, if first they are de-
composed into a hierarchy of WebViews. Take for example a personalized newspaper. It can
have a selection of news categories (only metro, international news), a localized weather fore-
cast (for Washington, DC) and a horoscope page (for Scorpio). Although this particular com-
bination might be unique or unpopular, if we decompose the page into four WebViews, one for
metro news, one for international news, one for the weather and one for the horoscope, then
these WebViews can be accessed frequently enough to merit materialization.

5.1 WebView Materialization Policies

We explore three materialization policies: virtual, materialized inside the DBMS and materi-
alized at the web server. In the virtual policy, everything is computed on the fly. To produce
a WebView we must query the DBMS and format the results in HTML. Since no views are
cached, we only need to update the base tables, whenever there is an update.

In the materialized inside the DBMS policy, we save the results of the SQL query that is
used to generate the WebView. To produce the WebView, we must access the stored results and
format them in HTML. The main difference of WebView materialization from web caching is
that, in the materialization case, the stored query results need to be kept up to date all the time.
This leads to an immediate refresh of the materialized views inside the DBMS with every update
to the base tables they are derived from.

Finally, in the materialized at the web server policy, in order to satisfy user requests we
simply have to read the WebView from the disk, where a fresh version is expected to be stored.
This means that on every update to one of the base tables that produce the WebView, we have
to refresh the WebView (or recompute it, if it cannot be incrementally refreshed) and save it as
a file for the web server to read.

5.2 The selection problem

The choice of materialization policy for each WebView has a big impact on the overall perfor-
mance. For example, a WebView that is costly to compute and has very few updates, should be
materialized to speed up access requests. On the other hand, a WebView that can be computed
fast and has much more updates than accesses, should not be materialized, since materialization
would mean more work than necessary. We define the WebView selection problem as follows:

For every WebView at the server, select the materializationstrategy (virtual, material-
ized inside the DBMS, materialized at the web server), which minimizes the average
query response time on the clients.

We assume that there is no storage constraint, since storage means disk space (not main mem-
ory), and also WebViews are expected to be relatively small. The decision whether to mate-
rialize a WebView or not, is similar to the problem of selecting which views to materialize in
a data warehouse [11, 13, 28], known as the view selection problem. There are two crucial dif-
ferences. First of all, the multi-tiered architecture of typical database-backed web servers raises
the question of where to materialize a WebView. Secondly, updates are performed online at web
servers, as opposed to data warehouses which are usually off-line during updates.

5.3 Experiments

In [20] we considered the full spectrum of materialization choices for WebViews in a database-
backed web server. We compared them analytically using a detailed cost model that accounts
for both the inherent parallelism in multitasking systems and also for the fact that updates on
the base data are to be done concurrently with the accesses. We have implemented all flavors
of WebView materialization and run extensive experiments on an industrial strength prototype,
based on the Apache web server and Informix, running on a SUN UltraSparc-5 with 320MB
of memory and a 3.6GB hard disk. We used a pool of 22 SUN Ultra-1 workstations as clients.
Due to space constraints we only present two of our experiments.

0

0.5

1

1.5

2

Query
Response
Time (sec)

Access Rate (requests/sec)

virt 0.09604 0.51774 1.05175 1.59493

mat-db 0.33903 0.84658 1.3145 1.83115

mat-web 0.00921 0.00459 0.00576 0.05372

10 25 35 50

Fig. 3. Scaling up the access rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Query
Response
Time (sec)

Update Rate (updates/sec)

virt 0.354 0.518 0.636 0.724 0.812 0.877

mat-db 0.323 0.847 1.228 1.336 1.34 1.37

mat-web 0.003 0.005 0.004 0.006 0.005 0.005

0 5 10 15 20 25

Fig. 4. Scaling up the update rate

In the first set of experiments, we varied the incoming access request rate (10-50 requests/sec)
and measured the average query response time under the three different materialization poli-
cies: virtual (virt), materialized inside the DBMS (mat-db) and materialized at the web server
(mat-web). A load of 50 requests/sec corresponds to a rather “heavy” web server load of 4.3
million hits per day for dynamically generated pages. The incoming update rate was 5 up-
dates/sec for all experiments.

In Figure 3 we report the average query response time per WebView as they were measured
at the web server. We immediately notice that the mat-web policy has average query response
times that are consistently at least an order of magnitude (10 - 230 times) less than those of the
virt or mat-db policies. Under the mat-web policy, servicing a request involves simply read-
ing a file from disk, whereas, under the virt and mat-db policies, the system needs to compute
a query at the DBMS for every request. Furthermore, since the web processes are “lighter” than
the DBMS processes, the mat-web policy scales better than the other two.

In the second set of experiments, we varied the incoming update rate from 0 to 25 updates/sec,
while the access request rate was set at 25 accesses/sec. In Figure 4 we plot the average query
response times for this experiment under the three materialization policies. Our first observa-
tion is that the average query response time remains practically unchanged for the mat-web

policy despite the updates, because the updates are performed in the background. The second
observation is that the virt policy is performing 56% - 93% better than the mat-db policy in
the presence of updates. This is explained by the fact that updates under the mat-db policy lead
to extra work at the DBMS in order for the materialized views to be kept up to date.

6 Measuring the Quality of Web Servers

Caching of static web pages [8] is known to improve the Quality of Service (QoS) for user re-
quests, since it improves the average query response time. For dynamic content however, web
caching does not provide any freshness guarantees on the cached data. Servicing user requests
fast is of paramount importance only if the data is fresh and correct, otherwise it may be more
harmful than slow or even no data service. In general, when measuring the Quality of a system
that uses materialized views, we need to evaluate both QoS and the Quality of Data (QoD), or
how “fresh” the served data are. Web caching improves QoS dramatically, but completely ig-
nores QoD of the cached data. On the other hand, when QoD is very important, web servers rely

on computing frequently changing web data on-demand . This achieves near-perfect QoD, but
seriously impedes performance or leads to server melt-downs. WebView Materialization [20,
36] aims at bridging this gap, since it prolongs the QoS benefits of caching using amortization
and incremental update algorithms on the cached data. This improves the QoD at a small degra-
dation in QoS. In our work we try to provide the best trade-off between QoS and QoD based
on the user/application requirements and the incoming workload.

7 Conclusions

In this paper we concentrated on the most important feature of the relational database model:
materialized views. We focused on their usage on data warehousing and Web servers, with em-
phasis on updateability, performance, and scalability.

Specifically, we presented the Cubetree Data Model, a storage abstraction for the data cube.
Cubetrees maintain the view records internally sorted (using packed R-trees) and allow bulk
incremental updates through an efficient merge-packing algorithm. We briefly described Dyna-
Mat, a dynamic view management system that manages collections of materialized aggregate
views based on user workload and available system resources (disk space, update cost). Finally,
we explored the materialization policies for WebViews, presented experimental results from an
industrial-strength prototype and discussed the Quality of Service and Quality of Data consid-
erations for WebViews.

References

1. S. Agrawal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and S. Sarawagi.
On the Computation of Multidimensional Aggregates. In Proc. of 22nd VLDB conference, pages
506–521, Bombay, India, August 1996.

2. M.M. Astrahan et al. System R: Relational Approach to Database Management. ACM Transactions
on Database Systems, 1(2):97–137, June 1976.

3. Lars Baekgraard and Nick Roussopoulos. “Efficient Refreshment of Data Warehouse Views”. Tech-
nical Report CS-TR-3642, Dept. of Computer Science, Univ of Maryland, May 1996.

4. E. Baralis, S. Paraboschi, and E. Teniente. Materialized View Selection in a Multidimensional Data-
base. In Proc. of the 23th VLDB Conference, Athens, Greece, August 1997.

5. R. Bayer and E. McCreight. Organization and Maintenance of Large Ordered Indexes. Acta Infor-
matica, 1(3):173–189, 1972.

6. Phil Bernstein et al. “The Asilomar Report on Database Research”. SIGMOD Record, Dec. 1998.
7. José A. Blakeley, Per Ȧke Larson, and Frank Wm. Tompa. “Efficiently Updating Materialized

Views”. In Proc. of the ACM SIGMOD Conference, pages 61–71, Washington, DC, May 1986.
8. Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. “Web Caching and Zipf-like Dis-

tributions: Evidence and Implications”. In Proc. of INFOCOM’99, New York, USA, March 1999.
9. A. Delis and N. Roussopoulos. Performance and Scalability of Client-Server Database Architectures.

In Proc. of the 18th VLDB, pages 610–623, Vancouver, Canada, 1992.
10. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab, and Sub-Totals. In Proc. of the 12th ICDE, pages 152–159,New
Orleans, February 1996. IEEE.

11. Ashish Gupta and Inderpal Singh Mumick. “Maintenance of Materialized Views: Problems, Tech-
niques, and Applications”. Data Engineering Bulletin, 18(2):3–18, June 1995.

12. H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index Selection for OLAP. In Proceedings
of ICDE, pages 208–219, Burmingham, UK, April 1997.

13. Himanshu Gupta. “Selection of Views to Materialize in a Data Warehouse”. In Proc. of the 6th
International Conference on Database Theory (ICDT ’97), Delphi, Greece, January 1997.

14. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc. of the ACM SIG-
MOD International Conference on Management of Data, Boston, MA, June 1984.

15. V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing Data Cubes Efficiently. In Proc. of ACM
SIGMOD, pages 205–216, Montreal, Canada, June 1996.

16. H. J. Karloff and M. Mihail. On the Complexity of the View-Selection Problem. In Proceedings
of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
167–173, Philadelphia, Pennsylvania, May 1999.

17. R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, 1996.
18. Y. Kotidis and N. Roussopoulos. An Alternative Storage Organization for ROLAP Aggregate Views

Based on Cubetrees. In Proceedingsof the ACM SIGMOD International Conferenceon Management
of Data, pages 249–258, Seattle, Washington, June 1998.

19. Yannis Kotidis and Nick Roussopoulos. DynaMat: A Dynamic View Management System for Data
Warehouses. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 371–382, Philadelphia, Pennsylvania, June 1999.

20. Alexandros Labrinidis and Nick Roussopoulos. “WebView Materialization”. In Proc. of the ACM
SIGMOD Conference, Dallas, Texas, USA, May 2000.

21. I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of Data Cubes and Summary Tables in a
Warehouse. In Proc. of the ACM SIGMOD Conference, Tucson, Arizona, May 1997.

22. K.A. Ross and D. Srivastava. Fast Computation of Sparse Datacubes. In Proceedings of the 23th
VLDB Conference, pages 116–125, Athens, Greece, Augoust 1997.

23. N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: Organization of and Bulk Incremen-
tal Updates on the Data Cube. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 89–99, Tucson, Arizona, May 1997.

24. N. Roussopoulos and D. Leifker. Direct Spatial Search on Pictorial Databases Using Packed R-trees.
In Procs. of 1985 ACM SIGMOD, pages 17–31, Austin, 1985.

25. Nick Roussopoulos. “The Logical Access Path Schema of a Database”. IEEE Transactions on Soft-
ware Engineering, 8(6):563–573, November 1982.

26. Nick Roussopoulos. “View Indexing in Relational Databases”. ACM Transactions on Database Sys-
tems, 7(2):258–290, June 1982.

27. Nick Roussopoulos. “An Incremental Access Method for ViewCache:Concept, Algorithms, and Cost
Analysis”. ACM Transactions on Database Systems, 16(3), September 1991.

28. Nick Roussopoulos. “Materialized Views and Data Warehouses”. SIGMOD Record, March 1998.
29. Nick Roussopoulos and Hyunchul Kang. “Principles and Techniques in the Design of ADMS �”.

Computer, pages 19–25, December 1986.
30. A. Segev and J. Park. Maintaining Materialized Views in Distributed Databases. In Proceedings of

the 5th International Conference on Data Engineering, Los Angeles, CA, 1989.
31. Timos Sellis. “Intelligent caching and indexing techniques for relational database systems”. Infor-

mation Systems, 13(2), 1988.
32. Michael Stonebraker. “Implementation of Integrity Constraints and Views by Query Modification”.

In Proc. of the ACM SIGMOD Conference, San Jose, California, May 1975.
33. D. Theodoratos and T. Sellis. Data Warehouse Configuration. In Proc. of the 23th International

Conference on VLDB, pages 126–135, Athens, Greece, August 1997.
34. F. Tompa and J. Blakeley. Maintaining Materialized Views Without Accessing Base Data. Informa-

tion Systems, 13(4):393–406, 1988.
35. Patrick Valduriez. “Join Indices”. ACM Transactions on Database Systems, 12(2), June 1987.
36. Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Valduriez. “Caching Strategies for

Data-Intensive Web Sites”. In Proc. of the 26th VLDB Conference, Cairo, Egypt, Sep 2000.

