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Credit Where Credit is Due

This talk is based on parts of the following AWESOME books:

The Satisfiability Problem SAT, Algorithms and Analyzes
by

Uwe Schoning and Jacobo Torán

Exact Exponential Algorithms
by

Fedor Formin and Dieter Kratsch
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OUR GOAL

We will show algorithms for 3SAT that

1. Run in time O(αn) for various α < 1. Some will be
randomized algorithms. NOTE: By O(αn) we really mean
O(p(n)αn) where p is a poly. We ignore such factors.

2. Quite likely run even better in practice, or modifications of
them do.
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2SAT

2SAT is in P:
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Convention For All of our Algorithms

Definition:

1. A Unit Clause is a clause with only one literal in it.

2. A Pure Literal is a literal that only shows up as non negated
or only shows up as negated.

Conventions:

1. If have unit clause assign its literal to TRUE.

2. If have POS-pure literal then assign it to be TRUE.

3. If have NEG-pure literal then assign it to be FALSE.

4. If we have a partial assignment z .

4.1 If (∀C )[C (z) = TRUE then output YES.
4.2 If (∃C )[C (z) = FALSE ] then output NO.

CONVENTION: Abbreviate this STAND (for STANDARD).
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DPLL ALGORITHM

DPLL (Davis-Putnam-Logemann-Loveland) ALGORITHM

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
Pick a v a r i a b l e x (VERY CLEVERLY)
ALG(F ; z ∪ {x = T})
ALG(F ; z ∪ {x = F})
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Key Idea Behind Recursive 7-ALG

KEY1: If F is a 3CNF formula and z is a partial assignment either

1. F (z) = TRUE , or

2. there is a clause C = (L1 ∨ L2) or (L1 ∨ L2 ∨ L3) that is not
satisfied. (We assume C = (L1 ∨ L2 ∨ L3).)

KEY2: In ANY extension of z to a satisfying assignment ONE of
the 7 ways to make (L1 ∨ L2 ∨ L3) true must happen.
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Recursive-7 ALG

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
i f F (z) i n 2CNF use 2SAT ALG
f i n d C = (L1 ∨ L2 ∨ L3) a c l a u s e not s a t i s f i e d
f o r a l l 7 ways to s e t (L1, L2, L3) so t h a t C=TRUE

Let z ′ be z e x t e n d e d by t h a t s e t t i n g
ALG(F ; z ′ )

T (n) = 7T (n − 3) so T (n) = O((1.913)n)
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GOOD NEWS/BAD NEWS

1. Good News: BROKE the 2n barrier. Hope for the future!

2. Bad News: Still not that good a bound.

3. Good News: Similar ideas gets time to O((1.84)n).

4. Bad News: Still not that good a bound.
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IDEAS

Definition: If F is a fml and z is a partial assignment then z is
COOL if every clause that z affects is made TRUE.
Lemma: Let F be a 3CNF fml and z be a partial assignment.

1. If z is COOL then F ∈ 3SAT iff F (z) ∈ 3SAT .

2. If z is NOT COOL then F (z) will have a clause of length 2.
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Recursive-3 ALG MODIFIED MORE

ALG(F : 3CNF fml, z : partial assignment)

COMMENT: This s l i d e i s when a 2CNF c l a u s e not s a t i s f i e d . )
STAND
i f (∃C = (L1 ∨ L2) not s a t i s f i e d then

z1 = z ∪ {L1 = T})
i f z1 i s COOL then ALG(F ; z1)

e l s e
z01 = z ∪ {L1 = F , L2 = T})
i f z01 i s COOL then ALG(F ; z01)

e l s e
ALG(F ; z1)
ALG(F ; z01)

e l s e (COMMENT: The ELSE i s on n e x t s l i d e . )
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Recursive-3 ALG MODIFIED MORE

(COMMENT: This s l i d e i s when a 3CNF c l a u s e not s a t i s f i e d . )
i f (∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then

z1 = z ∪ {L1 = T})
i f z1 i s COOL then ALG(F ; z1)

e l s e
z01 = z ∪ {L1 = F , L2 = T})
i f z01 i s COOL then ALG(F ; z01)

e l s e
z001 = z ∪ {L1 = F , L2 = F , L3 = T})
i f z001 i s COOL then ALG(F ; z001)

e l s e
ALG(F ; z1)
ALG(F ; z01)
ALG(F ; z001)
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IS IT BETTER?

VOTE: IS THIS BETTER THAN O((1.84)n)?

IT IS!
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IT IS BETTER!

KEY1: If any of z1, z01, z001 are COOL then only ONE
recursion: T (n) = T (n − 1) + O(1).
KEY2: If NONE of the z0, z01 z001 are COOL then ALL of the
recurrences are on fml’s with a 2CNF clause in it.
T (n)= Time alg takes on 3CNF formulas.
T ′(n)= Time alg takes on 3CNF formulas that have a 2CNF in
them.
T (n) = max{T (n − 1),T ′(n − 1) + T ′(n − 2) + T ′(n − 3)}.
T ′(n) = max{T (n − 1),T ′(n − 1) + T ′(n − 2)}.
Can show that worst case is:
T (n) = T ′(n − 1) + T ′(n − 2) + T ′(n − 3).
T ′(n) = T ′(n − 1) + T ′(n − 2).
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The Analysis

T ′(0) = O(1)
T ′(n) = T ′(n − 1) + T ′(n − 2).

T ′(n) = O((1.618)n).

So

T (n) = O(T (n)) = O((1.618)n).

VOTE: Is better known?
VOTE: Is there a proof that these techniques cannot do any
better?
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Hamming Distances

Definition If x , y are assignments then d(x , y) is the number of
bits they differ on.

KEY TO NEXT ALGORITHM: If F is a fml on n variables and F is
satisfiable then either

1. F has a satisfying assignment z with d(z , 0n) ≤ n/2, or

2. F has a satisfying assignment z with d(z , 1n) ≤ n/2.
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HAM ALG

HAMALG(F : 3CNF fml, z : full assignment, h: number) h bounds
d(z , s) where s is SATisfying assignment h is distance

STAND
i f ∃C = (L1 ∨ L2) not s a t i s f i e d then

ALG(F ; z ⊕ {L1 = T}; h − 1}
ALG(F ; z ⊕ {L1 = F , L2 = T}; h − 1)

i f ∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then
ALG(F ; z ⊕ {L1 = T}; h − 1)
ALG(F ; z ⊕ {L1 = F , L2 = T}; h − 1)
ALG(F ; z ⊕ {L1 = F , L2 = F , L3 = T}; h − 1)
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REAL ALG

HAMALG(F ; 0n ; n/2)
I f r e t u r n e d NO then HAMALG(F ; 1n ; n/2)

VOTE: IS THIS BETTER THAN O((1.61)n)?

IT IS NOT! It is O((1.73)n).
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KEY TO HAM

KEY TO HAM ALGORITHM: Every element of {0, 1}n is within
n/2 of either 0n or 1n

Definition: A covering code of {0, 1}n of SIZE s with RADIUS h is
a set S ⊆ {0, 1}n of size s such that

(∀x ∈ {0, 1}n)(∃y ∈ S)[d(x , y) ≤ h].

Example: {0n, 1n} is a covering code of SIZE 2 of RADIUS n/2.
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ASSUME ALG

Assume we have a Covering code of {0, 1}n of size s and radius h.
Let Covering code be S = {v1, . . . , vs}.

i = 1
FOUND=FALSE
w h i l e (FOUND=FALSE) and ( i ≤ s )

HAMALG(F ; vi ; h )
I f r e t u r n e d YES then FOUND=TRUE

e l s e
i = i + 1

end w h i l e
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ANALYSIS OF ALG

Each iteration satisfies recurrence
T (0) = 1
T (h) = 3T (h − 1)
T (h) = 3h.
And we do this s times.
ANALYSIS: O(s3h).
Need covering codes with small value of O(s3h).
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IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value
of O(s3h).

THATS NOT ENOUGH: We need to actually CONSTRUCT the
covering code in good time.
YOU”VE BEEN PUNKED: We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.
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IN SEARCH OF A GOOD COVERING CODE- RANDOM!

CAN find with high prob a covering code with

I Size s = n22.4063n

I Distance h = 0.25n.

Can use to get SAT in O((1.5)n).
Note: Best known: O((1.306)n).
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