
State-of-the-Art in Automated Graphical
User Interface Testing

Zebao Gao, Gregory Kramida, Andrew Ruef, and Weiwei Yang
University of Maryland, College Park

P
eople rely on and use software for many
tasks, ranging from launching spacecraft,
writing reports, and communicating with

other people. But, because of bugs, people are
not always happy with software. Sometimes,
software does not do what it should and this can
make users unhappy or sometimes have very
serious effects on the world. Software should
be a tool that people can rely on, but often it
is not.

The (in)famous blue screen of death
came to symbolize software errors.

Traditional Software Testing

So how can we ensure reliability of software?
For testing software at a low level, there are
advanced techniques and tools for software de-
velopers to use. However, these tools operate
on the software at a much lower level than users
of the software. Users typically interact with
software via a Graphical User Interface (GUI),

and errors there cannot easily be detected by
the bug-finding software currently in use by in-
dustry or prepared by the research community.

The traditional industry approach is to per-
form manual testing on graphical applications,
which is expensive, time consuming, and often
unreliable. This increases the cost of software
and the time to market. A study conducted by
NIST in 2002 reports that software bugs cost
the U.S. economy $59.5 billion annually. More
than a third of this cost could be avoided if
better software testing was performed.

Enter GUITAR

H
ow can we improve this? Many test-
ing frameworks either require human
testers to manually record/script work-

flows (e.g., Selenium1, HP UFT2) or randomly
trigger controls in the application (e.g. Mon-
key3). GUITAR4 (GUI Testing FrAmewoRk),
designed and developed by Dr. Memon and
his research team at University of Maryland,
is more systematic and efficient: GUITAR au-
tomatically creates an Event Flow Graph, or
EFG, to represent a user’s interaction with an
application.

The graph represents the connections be-
tween possible events in the GUI, for example
clicking “File” and then “Open”. The EFG
can then be converted directly and automat-
ically into test cases. And more importantly,
the entire process is fully automated.

1http://www.seleniumhq.org/
2http://www8.hp.com/us/en/software-solutions/unified-functional-automated-testing
3http://developer.android.com/tools/help/monkey.htm
4http://sourceforge.net/projects/guitar/

February 2015 Page 1 of 3

http://www.seleniumhq.org/
http://www8.hp.com/us/en/software-solutions/unified-functional-automated-testing
http://developer.android.com/tools/help/monkey.htm
http://sourceforge.net/projects/guitar/

This bar-chart compares the OME* technique with and without context-aware mapping
(green and blue bars, respectively) to baseline GUITAR and random path testing.

The OME* paradigm

T
his is not the end of the story. Soft-
ware continues to grow in complexity,
including interactive complexity. The

automatic construction of the EFG is impor-
tant to the scalability of the testing technique,
but the size and complexity of some applica-
tions make this difficult. Until recently, it was
impossible for GUITAR to build a precise and
complete EFG in one run of programs with
complex GUIs. Some software is so complex
that no state-of-the-art planning techniques are
able to depict a full picture of their EFG due

to lack of domain knowledge.

Researchers in Dr. Memons lab working
on GUITAR have defined a new technique,
Observe-Model-Exercise* (OME*). They no-
ticed that one major limitation in GUITAR is
lack of context information during execution
time. By keeping a context-aware mapping
table, this problem is greatly alleviated. In ad-
dition, instead of conceptually separating the
EFG modeling and test case execution proce-
dures, they introduce a ciclic workflow which
observes new widgets and events during execu-
tion of test cases.

The event space for a budgeting program Buddi grows from the small model obtained by
GUITAR without OME* (a), to an expansive network after five iterations with OME*.

February 2015 Page 2 of 3

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6714448&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumbe%3D6714448

References

[1] Nguyen, B. N., and Memon, A. M. (2014). An Observe-Model-Exercise* Paradigm to
Test Event-Driven Systems with Undetermined Input Spaces. Software Engineering, IEEE
Transactions on, 40(3), 216-234.

February 2015 Page 3 of 3

