
Action-Based Learning: A Proposal for Robust Gesture &

Object Recognition using Spatio-Temporal Domain Models

Matthew Devlin Yiannis Aloimonos

Abstract

In recent years, there has been a significant amount of

effort into object recognition techniques as well as

vision-based learning algorithms. But view

invariance, complex gesture-object interactions, and

the lack of reasoning in vision systems continues to

make this an incredibly challenging problem. In this

paper, we propose an Action-Based Learning model

in which the AI learns gestures, objects, and their

relationships by observing videos of humans

completing a task by performing gestures on objects

present in the scene.

Keywords: 3D Object Recognition, 3D Action &

Gesture Recognition, Semi-Supervised Machine

Learning, Spatio-Temporal Domain Models.

1. Introduction

Learning through observation is a fundamental aspect

of human learning, as it enables us to learn how to

recognize new objects and perform new actions with

them. The goal of this paper is to propose a new

model for an intelligent vision-based learning system,

capable of utilizing domain knowledge and reasoning

about objects in order to improve accuracy and

performance.

Problem: Given a video of a human completing a

task, generate a list of instructions for another human

to complete the same task, including the objects and

interactions.

From the videos, we are trying to learn a sequence of

Actions that are performed in order to complete a

high-level Task. An action is composed of a Gesture

performed on Objects.

For this project, we focus on processing an entire

continuous video that consists of a human completing

some task, rather than processing individual images.

This provides several advantages for recognizing

objects and gestures, because we are able to use a

number of techniques that are not as effective when

working with images, such as motion, accurate depth

data, full skeletal tracking, and easier tracking of

humans and objects present in the scene. Another

benefit of using a continuous video is that we are able

to analyze the scene at any point in the time range,

which can be used to (a) improved recognition of

occluded objects by searching for a time t where the

object is more visible, (b) understand the effects an

action has on the environment by examining the state

of objects before and after an action occurs, (c)

sequential action recognition using rule based

learning to categorize what actions the human is

performing and learn new actions based on existing

ones.

Another benefit most papers don’t look at: We are

assuming we have a human in the scene interacting

with these objects. Object affordance + gesture

recognition can be combined to improve accuracy.

Combined with domain knowledge involving actions

(and their preconditions/typical sequentially

performed order), we can create an intelligent system

without creating a general recognition system.

Existing object recognition algorithms have fairly

high accuracy rates, depending on the training and

testing datasets used. Object recognition remains a

challenging problem due to large intra-class

variability and inter-class similarity, which makes

accurate recognition relying only on RGB data a

difficult challenge [21]. In addition to processing

RGB with depth data, we have access to a video feed

consisting of time frames which may also contain

motion which is called a Spatio-temporal relationship

[19]. We can leverage this to improve the

performance of our algorithm, such as identifying

occluded objects by finding a time t, where the object

is not occluded. Processing video footage also means

that we can analyze the effects of an action on the

environment by looking at the scene before and after

the action occurs.

Another advantage of this system is that we can use

the human in the scene to determine which objects are

relevant to the actions being performed. Segmenting

and recognizing all the objects in a given scene is a

far more difficult problem than recognizing a single

object being manipulated by a human. When a human

interacts with an object, we usually gain additional

views of the object from the camera's perspective,

such as when an object is physically moved or

rotated. Some actions may not provide any useful

additional perspectives of the object, such as flipping

a light switch, but the significance is the change in

state of the light switch.

2. Related Work

There has been extensive research into 3D object and

gesture recognition, and many frameworks are

available to process the RGB-D footage gathered

from sensors like the Kinect. In addition to depth

data, the Kinect also provides recognition and

tracking for human body masks as well as individual

body joints. These features are especially useful for

recognizing gestures involving large amounts of

movement between distinguishable joints.

Recognizing smaller, more detailed actions such as

gestures involving only the hands can be much more

difficult but there have been several successful

projects to recognize these gestures including [8] and

[9].

Since our definition of an action is a sequence of

gestures performed on at least one object, we can

limit our search for potential actions to time intervals

where an object interaction is possible. Locality is an

obvious restriction to impose on object interactions,

meaning the human must be near an object for it to be

considered the target of an action. Sections 3.1 and

3.2 focus on the vision aspects of this system, for

recognizing objects and gestures using RGB-D and

skeleton data.

In Section 3.4, the results of our vision system

(consisting of object and gesture recognition) is

processed using a Spatio-temporal model and

knowledge about relationships between objects and

gestures, gathered from the “cognitive dialog”

described in Section 3.3. These relationships can be

manually programmed into a system, but the goal is

to develop an intelligent system that learns to ask

complex questions based on the vision system’s

answers to simple questions to formulate more

complex questions based on domain knowledge.

In recent years, there has been a focus on Spatio-

temporal structures that focus on footage from RGB-

D videos consisting of a human performing 3D

motions over discrete time frames that aim to learn

human actions using conditional random fields (CRF)

and probabilistic models to formulate better

predictions based on past actions and potential future

actions [16, 17].

3. Approach

3.1 Notable Object Tracking & Recognition

Figure A: In the above image, a human is reaching

for a cereal box, but due to the camera angle and

distance, it is difficult for the system to make an

accurate prediction about the cereal box, until it is

brought into a better view as shown in Figure B.

Figure B: Left shows a much clearer RGB image that

provides much better views for texture-based

recognition. Right shows depth point cloud which is

much more accurate from this view.

While accurate 3D object recognition remains a

difficult problem, many algorithms have been

developed to address this problem. To process the

RGB-D video footage, we are using the Point Cloud

Library (PCL) which contains implementations for

most of the techniques discussed below [2]. PCL

contains a multitude of useful functions, including

object segmentation, numerous implementations for

3D object recognition, and 6-DOF pose estimations

for an object.

For this project, object recognition does not need to

be performed on the entire scene, since we are only

interested in objects that are the target of an action.

This allows us to limit our search space to objects

located near a human when a gesture is being

performed. To quickly determine if an object exists

near the human’s location, we can use a Hough

Voting approach adopted for 3D space [1].

To perform object recognition, there exists two

popular types of algorithms: geometric feature-based

recognition and pattern-based recognition [7]. In

geometric feature-based learning, we extract

descriptors from a 3D object that describe the

important visual features of an object such as its 3D

shape, the textures at particular points, depth data, and

other distinctive attributes [5]. There exist a large

number of descriptors that focus on different features,

but we can divide descriptors into two types: local

and global. A local surface feature describes the

attributes for a particular point on an object, and local

descriptors tend to be more robust to occlusion and

clutter, which are common in real-world

environments [3]. A global descriptor provides a

high-dimensional representation of an object’s

geometry and is used for recognition, geometric

categorization, and shape retrieval.

PCL provides many state-of-the-art implementations

for both local and global descriptors which are

frequently used for 3D object recognition including

Hierarchal Matching Pursuit (HMP) [13], Histograms

of Orientations (HOG), Point Feature Histograms

(PFH), Spin Images (SIs) [14], and Clustered

Viewpoint Feature Histogram (CVFH) [15]. Once

computed, these descriptors can be compared against

the feature points of an object in a scene to perform

object recognition and classification using algorithms

like correspondence grouping, hypothesis

verification, and LINEMOD. To learn new objects,

we add “templates” to our object database, which

describe the shape and texture of an object from a

particular camera angle. These recognition algorithms

typically have accuracies ranging between ~50% and

~85% on most RGB-D image datasets, but we can

improve this accuracy by incorporating an Action-

Based model that incorporates domain knowledge

about objects and gestures. This is implemented in the

form of a reasoning executive and domain model,

which are described in Section 3.3.

Another interesting problem pertaining to object

recognition is understanding an object's functionality

based on its geometric features. The potential

functions of an object are generally referred to as its

affordances. Myers et al. propose an approach to

detect object affordance based on superpixel HMP

and random structured forests [11]. These affordances

can be used in our domain model to represent likely

interactions between certain classes of objects and

classes of gestures. There are also several affordance

learning approaches consisting of both supervised

[12] and unsupervised [13] learning algorithms using

6-DOF pose estimation and HMP to learn

affordances. These algorithms have been studied in

Spatio-temporal models, based on RGB-D footage of

humans performing actions which involves both 3D

motions and a temporal component [14].

3.2 Gesture Recognition

Gesture recognition remains a difficult problem due

to the number of potential joint orientations and the

Spatio-Temporal aspects of gesture recognition. Since

a gesture is composed of gesture-parts over time, the

same approaches used in object recognition are not

applicable. Fortunately, gesture recognition is a

heavily researched area and there exist numerous

algorithms that analyze the RGB-D or skeleton joint

data over time to recognize gestures. Xia et al.

developed an algorithm that uses histograms of 3D

joint locations (HOJ3D) combined with a Hidden

Markov Model to represent the temporal evolution of

joints over time [4]. A major advantage of this

algorithm is that it is view invariant, meaning it will

recognize the gestures regardless of the human’s

orientation with respect to the camera. Amor et al.

proposed a similar gesture recognition system that

uses rate-invariant analysis of the skeletal shape

trajectories. This system focuses on temporal

registration which makes gesture recognition more

robust by recognizing the same gesture regardless of

how fast it is performed [22]. There also exist gesture

recognition algorithms that use Hidden Markov

Models to provide more accurate skeletal tracking

during actions in a Spatio-temporal domain, which is

based on the calculation of spherical angles between

selected joints, which is also invariant to viewpoints

[31].

Another popular approach is training a multi-class

Support Vector Machines (SVM) on the joint

differences between subsequent frames. We can

leverage the Kinect’s advanced joint tracking to get

an accurate motion profile for each joint, which can

be used to efficiently perform gesture recognition

using the trained SVM [10]. However, while the

SVMs used are efficiently computed they tend to be

less accurate than more robust methods utilize

additional properties at the cost of some efficiency,

which is not a problem for our offline system. Also,

we are only concerned with gestures that involve

interactions with objects such as using tools, meaning

we can ignore gestures that do not involve a nearby or

held object [28].

An even more difficult problem is correctly

recognizing Hand-Gestures since hands are much

smaller compared to the rest of our body, and have

more complex articulations that make them prone to

segmentation errors [6]. To address this, there exist

many algorithms that focus specifically on hand

localization and recognition, that use techniques

capable of handling noisy shapes, such as Finger-

Earth Mover’s Distance (FEMD) to measure

differences between two hand shapes [9]. By using

techniques specifically for hands, we can achieve

much higher accuracy for recognizing small Hand-

Gestures, with accuracy of around 90%. Additionally,

these techniques can be used to identify the grip of a

hand on an object, even when it is occluded.

3.3 Reasoning Executive & Domain Model

Using the algorithms described in Sections 3.1 and

3.2, we can develop a robust vision framework for

recognizing 3D objects and gestures, if we are given

enough training data for all the desired objects and

gestures that we want to learn. Requiring manual

training in our framework would severely limit the

usefulness of our proposed system. Creating a good

model for a 3D object or gesture is time consuming,

and whenever the system needs to learn a new object

or gesture, the training data must be manually added

to the system’s knowledge.

A much better approach is to design an intelligent

system that incorporates a domain model and a

reasoning executive, in addition to our described

vision system. The goal of the reasoning executive is

to model domain knowledge about objects and

gestures, and communicate with the vision system.

We call this communication between the vision

system and the reasoning executive “cognitive

dialog”. Through this dialog, the vision system can

ask the reasoning executive if a particular object or

gesture prediction makes sense in the context of the

domain model given the state of the human and the

other objects in the scene, which can help us correctly

recognize known or new objects. Since this system is

not being run online, we can spare some speed

efficiency for higher accuracy, and use this to develop

a learning system based on semantic representation

[29].

The reasoning executive utilizes the same three

methods of reasoning used by humans: (1) deduction,

(2) induction, and (3) abduction, to evaluate semantic

properties and expand on our domain knowledge.

(1) Through deduction, we can enable a rule

based learning approach for our system to

form conclusions on its own based on

previously known “facts”. For example, if our

reasoning system knows that knives are

associated with the cutting gesture and our

vision system detects the cut gesture with a

different but similar shaped knife, we can

conclude that there exists a relationship

between the two knife objects [27]

(2) Induction is forming generalizations based on

observed instances. This is harder to formulate

in an intelligent system than deduction

because it attempts to generalize relationships

based on what we’ve seen so far. When we

have a large sample size of objects and

gestures that all hold true for some statement,

it is likely safe to form generalizations. We

only perform induction when the size of

samples is large enough to minimize error the

chances of overgeneralizing objects through

inductive reasoning

(3) Abduction is when the major premise is

evident or observable, but the minor premise

and therefore conclusion is only probable. We

can use statistical models to perform

abduction by choosing the most likely

conclusion based on past observed situations

Formal Definitions:

• Task([Action]): A task is a sequence of

Actions ordered by the time they occur

• Action([Gesture]): An action is a sequence of

Gestures performed on one or more objects

• Gesture([GesturePart], Object): In this Action-

Based learning model, a gesture is defined as a

sequence of upper-body motions performed

either (a) on an object or (b) a movement

towards an object or location

• GesturePart(SkeletonData): A part of a

Gesture that includes skeleton data of the

gesture segment being performed. Generated

from Kinect depth sensor to track body

motions (emphasis on hands and arms)

• SceneObject(XYZ, 3DPointCloud): A

SceneObject is an Object that is being tracked

during video processing. SceneObjects have a

3D vector representing its (X,Y,Z) position as

it is tracked in the scene. SceneObjects also

have a 3DPointCloud gathered by a depth

sensor camera like the Kinect

• ObjectTemplate({3DPointCloud_Views},

name, {ObjectStates}, {Classes}): An object

model learned by our system, stored in the

database The 3DPointCloud is either provided

or generated by tracking SceneObjects. The

set of ObjectStates represents the possible

states of the object, including 3D models

representing the change in appearance, if

applicable. The set of classifiers are either

strong (highly likely) or weak (possible class

relationship through observation).

• ObjectState(Type, 3DPointCloud, Value): A

3DPointCloud of the object when it is in this

state. Type refers to the type of state this

object possess such as Binary (switch), Radial

(Rotate by a Vector, Turn to a Value),

Pressable (Keyboard, Buttons).

3.4 Action Recognition

Different classes of objects are interacted with

through different types of gesture/manipulations. The

result is an action, which has some observable effect

on the state of the objects in the scene. The effects of

humans on a scene has been studied using a number

of deep learning techniques including CRFs [19],

unsupervised learning [20], CNNs [21], RNNs [23],

and radius-margin bounded neural networks [24].

In humans, memory formation depends heavily on

changes [25]:

• When humans perform actions, they actively

change the environment and the states of

objects

• We are only interested deliberate actions that

involve object interactions changing its state.

So instead of trying to solve general gesture

recognition, we only need to examine gestures

that directly involve objects. This can be used

to significantly reduce false positives during

gesture recognition, by filtering out gestures

that do not involve objects

• Some actions may be more recognizable by

their state than from observing a gesture being

performed (e.g. when there is a lot of occluded

motion). For example, an action as simple as

flipping a light switch on, there are many

different ways to position your hand to flip the

switch (grasp with two fingers, pull down with

entire hand, or even use your wrist). For this

type of action, we are more concerned about

the object’s state after the action occurs than

we are about the specific hand motion or how

they grasp the switch. WE can introduce

Object-States to the system’s domain

knowledge to allow for more advanced

reasoning about objects by analyzing their

state’s over the time period of the video as a

human interacts with it.

3.5 Handling Special Cases: Occlusion,

Symmetry

• Occlusion: During a gesture, parts of an object (or

the entirety of it) may become occluded, causing

difficulty with recognition. In a Spatio-temporal

domain, we can solve this using several

techniques:

• (a) domain knowledge of an object’s possible

states

o E.g. learn to understand the state and

possible interactions of an object and

learn to recognize differences between

states

• (b) grip position and orientation to

approximate object shape based on visible

hand or object parts

• (c) infer object symmetry based on grip for

partially occluded objects to generate a more

accurate model

4. Implementation Details

4.1 Actions & Relationship Graph

Goal: Model high-level relationships between

Actions, Objects, & Gestures and learn new

relationships from this model.

• Object  Object

o Identify similar geometric shapes or

feature descriptors

o Object States

• Gesture  Object

o Gestures performed on an object

(conditions that must hold true to

perform action)

• Action  Object

o Object state before and after an Action

• Classification Relationships

• State Logic Rules

Suppose in our Kinect footage, the Task being

performed by the human is making a bowl of cereal

and milk. We can look at this simple task as three

High-Level Actions (which are composed of a

sequence of Low-Level Actions). The three Actions

can be modeled as:

Action A: Put [Bowl] on [Counter]

Action B: Pour [Cereal] into [Bowl]

Action C: Pour [Milk] into [Bowl]

We may observe other High-Level Actions being

performed in the footage, such as putting the cereal

and milk back into their original locations (i.e. cabinet

for cereal, fridge for milk). These are called

“cleanup” actions because they revert the effects of a

past action and restore objects in the environment to

their original state. For this Task, let’s assume we

observed two “cleanup” actions for Actions B and C:

Action B’: Put [Cereal] inside [Cabinet]

Action C’: Put [Milk] inside [Fridge]

Additionally, tasks may or may not depend on a strict

ordering of actions: Actions B and C are dependent

on the [Bowl] object retrieved in Action A, so we can

infer that A must come before these actions every

time the task is performed. The same applies to the

“cleanup” actions: B must come before B’ and C must

come before C’, otherwise the objects will not be in

valid states. We can provide formal definitions to

model an action’s preconditions (based on temporal

state variables) and its effects on the human, objects,

or environment. For example, here is the definition

for the “Pour” Action:

Action: Pour
Notation: Pour [Primary Object] into [Secondary Object] with

{Hand}

Preconditions

P1. Involves Two Objects:

• [Primary Object]: The object being poured

• [Secondary Object]: The object being poured into

P2. [Primary Object] is currently held in {Hand}

P3. [Primary Object] is located above [Secondary Object]

P4. {Primary Hand} is rotating towards [Secondary Object]

Effects

E1. Transfer Contents of [Primary Object] into [Secondary

Object]

Observed Relationships

O1. [Primary Object] is typically of class “Container”

O2. [Secondary Object] is typically of class “Container”

4.2 Action Graphs

Note on Processing Temporal Footage: Our Kinect

footage is a sequence of time frames that can be

labelled [t1, …, tn] where t1 is the first frame and tn is

the last frame, and ti denotes a time frame such that t1

<= ti <= tn. Some preconditions can be evaluated for

every individual time, such as determining if the

human is “Near” an object [o] at time ti. This just

requires a check to see if Human.Near([o], ti) is true,

which we can evaluate using the skeletal tracking

provided in the time frame and object tracking system

discussed in Section 3.1 of the paper. Some

conditions need to be evaluated over a sequence of

intervals, such as gestures which are spatio-temporal

and need to be evaluated with respect to both space

and time. For example, to determine if a hand is

rotating an object we need a time interval ti to tj,

where ti < tj, to analyze so we can track the motion of

body joints and objects over the time interval and

perform gesture recognition. This is done using a

combination of techniques described in Section 3.2,

including temporal registration and part-based hand

gesture recognition.

• Actions (Diamond Nodes): The definition of an

action, which consists of a name and a list of

parameters that are used to perform the Action. These

parameters can be objects, positional or rotational

vectors, or human state variables (i.e. the states and

locations of hands/body joints).

• Preconditions: A conditional that operates on

parameters to determine if the action can be currently

performed based on the states and values of the

parameters. If any predicate node predicts that it is

unlikely for the condition to be true at that time, we

can determine that the Action is likely not a match. To

represent preconditions in our graph, we divide them

into two categories:

o Instantaneous Predicates (Circle Nodes):
Represent predicates that can be evaluated at

individual time frames.

o Temporal Predicates (Hexagon Nodes):
Represent predicates that operate on a

sequence of time intervals such as recognizing

gestures and tracking object motion (i.e.

spatio-temporal)

• Effects (Rectangle Nodes): The effect of the action

on the environment, which can only be performed

when all the conditions are likely to be true. Effects

change the state of objects and the environment.

4.3 Integrating Domain Knowledge

Using domain knowledge, we can improve our

accuracy when performing object and gesture

recognition using the state-based predicate system

shown in the Action Graphs. Instead of relying only

on vision, we incorporate the state of the environment

and the actions being performed using the object. If

we are able to identify the action being performed, we

can use that knowledge to improve 3D object

recognition accuracy by searching known objects of

the class “Container”. After observing the entire

footage and identifying all the performed actions, the

result can be modeled as a Task Graph (example on

next page), which shows the High-Level and Low-

Level Actions that make up the Task. Note that the

Task Graph doesn’t show all the knowledge learned

such as object models, gestures, or object classes.

Handling Occlusion: During an Action, it is very

likely for objects and body parts to become occluded,

making it impossible to determine which gesture was

performed or the object that was interacted with. This

is where tracking the effects of an action on the

environment’s state is useful, because we can predict

which action was performed in the past, based on its

effect. For example, suppose that when picking the

milk up from the fridge, the gesture and milk cartoon

are occluded during the duration of the action. We

can still determine that the PickUp action was

performed on [Milk], by examining changes in the

scene to predict which action was performed based on

the state of the environment before and after the

action. For example, during Action C when the hand

and object become visible while pouring the milk, we

can see an object is now being held and perform 3D

OR to recognize the held object as [Milk]. We can

determine that this was the result of a past action and

use domain knowledge to predict which action was

performed and when, even if we cannot perform

accurate recognition during the action itself.

Figure C: Action Graphs for Pour, WalkTo, PickUp, and PutDown

Figure D: Actions B and C being performed with Object and Gesture Recognition, to find the Action that best

matches based on domain knowledge and the current state of the environment.

Same Secondary Object
in Both Actions

[Milk]

[Cereal]

Pour
Gesture

[Bowl]

Y

X

Y

X

Y

X

Y

X

Same Hand Gesture
in Both Actions

Action C:
Depth + Skeletal Tracking

Action B:
Depth + Skeletal Tracking

Action B:
RGB + Object
Segmentation

Action C:
RGB + Object
Segmentation

Search for Action that Best Fits
or Identify New Action

Pour(Object primary,
Object secondary,

 Hand hand)

{hand} is
Holding

[primary]

[primary] is
Above

[secondary]

Contents of |primary|
Transferred to |secondary|Gesture

Matches?

{hand} is rotating
towards [secondary]

along Y-Axis

Pour(Object primary,
Object secondary,

 Hand hand)

{hand} is
Holding

[primary]

[primary] is
Above

[secondary]

Contents of |primary|
Transferred to |secondary|Gesture

Matches?

{hand} is rotating
towards [secondary]

along Y-Axis

PickUp(Object target,
Hand hand)

{Hand} is
Empty

{hand} Holding [target] = True
{Hand} is

Near
[target]

{hand} is gripping
[target]

Gesture
Matches?

{hand} is moving
[target] to Person

PickUp(Object target,
Hand hand)

{Hand} is
Empty

{hand} Holding [target] = True
{Hand} is

Near
[target]

{hand} is gripping
[target]

Gesture
Matches?

{hand} is moving
[target] to Person

PutDown(Object primary,
Object secondary, Hand hand)

{Hand} is
Holding

[primary]

{hand} Holding [primary] = False
[primary] Location = [secondary]

{Hand} is
Near

[secondary]

{hand} is gripping
[primary]

Gesture
Matches?

{hand} is moving
[primary] to
[secondary]

PutDown(Object primary,
Object secondary, Hand hand)

{Hand} is
Holding

[primary]

{hand} Holding [primary] = False
[primary] Location = [secondary]

{Hand} is
Near

[secondary]

{hand} is gripping
[primary]

Gesture
Matches?

{hand} is moving
[primary] to
[secondary]

4.4 Task Graph

Below is a diagram of the Task which shows the High-Level Actions (A, B, C), the Cleanup Actions (B’, C’),

and the Low-Level Actions they are composed of (Diamonds). We can determine the High-Level Action by

looking at the effects of an Action minus its Cleanup Action (if one exists). The set of effects in B – B’, is just

the Pour effect, because B’ restored the cereal to its original state, leaving Pour as the only action that resulted

in an observable effect to complete the Task.

PullOpen([Fridge],

{RightHand})

Pickup([Milk], {RightHand})

PushClose([Fridge],

{LeftHand})

WalkTo([Bowl])

PullOpen([Cabinet1],

{LeftHand})

PickUp([Bowl], {RightHand})

PushClose([Cabinet1],

{LeftHand})

PutDown([Bowl],

[Counter], {RightHand})

Pour([Milk], [Bowl],

{RightHand}, Y-Axis)

WalkTo([Fridge])

PullOpen([Cabinet2],

{RightHand})

Pickup([Cereal], {LeftHand})

PushClose([Cabinet2],

{RightHand})

WalkTo([Bowl])

Pour([Cereal], [Bowl],

{LeftHand}, Y-Axis)

WalkTo([Cabinet2])

WalkTo([Cabinet2])

PullOpen([Cabinet2],

{RightHand})

PutDown([Cereal],

[Cabinet2], {LeftHand})

PushClose([Cabinet2,

{RightHand}])

WalkTo([Cabinet2])

PullOpen([Cabinet2],

{RightHand})

PutDown([Cereal],

[Cabinet2], {LeftHand})

PushClose([Cabinet2,

{RightHand}])

Task: Pour
Cereal & Milk

into a Bowl

5. Conclusion

This paper researched state-of-the-art techniques for

handling object recognition, gesture recognition,

Spatio-temporal data processing, and a proposed

system which incorporates a reasoning executive

which improve accuracy over just using vision data to

classify and learn objects.

References

[1] Tombari, F., & Di Stefano, L. (2010,

November). Object recognition in 3D scenes

with occlusions and clutter by Hough voting.

In Image and Video Technology (PSIVT),

2010 Fourth Pacific-Rim Symposium on (pp.

349-355). IEEE.

[2] Aldoma, A., Marton, Z. C., Tombari, F.,

Wohlkinger, W., Potthast, C., Zeisl, B., &

Vincze, M. (2012). Tutorial: Point cloud

library: Three-dimensional object recognition

and 6 dof pose estimation. IEEE Robotics &

Automation Magazine, 19(3), 80-91.

[3] Guo, Y., Bennamoun, M., Sohel, F., Lu, M.,

& Wan, J. (2014). 3D Object Recognition in

Cluttered Scenes with Local Surface Features:

A Survey. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 36(11),

2270-2287.

[4] Xia, L., Chen, C. C., & Aggarwal, J. K. (2012,

June). View invariant human action

recognition using histograms of 3d joints.

In Computer Vision and Pattern Recognition

Workshops (CVPRW), 2012 IEEE Computer

Society Conference on (pp. 20-27). IEEE.

[5] Llarena, A., Boldt, J. F., Steinke, N. S.,

Engelmeyer, H., & Rojas, R. BerlinUnited@

Home 2013 Team Description Paper.

[6] Suarez, J., & Murphy, R. R. (2012,

September). Hand gesture recognition with

depth images: A review. In RO-MAN, 2012

IEEE (pp. 411-417). IEEE.

[7] Janoch, A., Karayev, S., Jia, Y., Barron, J. T.,

Fritz, M., Saenko, K., & Darrell, T. (2013). A

category-level 3d object dataset: Putting the

Kinect to work. In Consumer Depth Cameras

for Computer Vision (pp. 141-165). Springer

London.

[8] Lv, X., Jiang, S. Q., Herranz, L., & Wang, S.

(2015). RGB-D hand-held object recognition

based on heterogeneous feature

fusion. Journal of Computer Science and

Technology, 30(2), 340.

[9] Ren, Z., Yuan, J., Meng, J., & Zhang, Z.

(2013). Robust part-based hand gesture

recognition using Kinect sensor. IEEE

transactions on multimedia, 15(5), 1110-1120.

[10] Biswas, K. K., & Basu, S. K. (2011,

December). Gesture recognition using

Microsoft Kinect®. In Automation, Robotics

and Applications (ICARA), 2011 5th

International Conference on (pp. 100-103).

IEEE.

[11] Myers, A., Teo, C. L., Fermüller, C., &

Aloimonos, Y. (2015, May). Affordance

detection of tool parts from geometric features.

In Robotics and Automation (ICRA), 2015

IEEE International Conference on (pp. 1374-

1381). IEEE.

[12] Aldoma, A., Tombari, F., & Vincze, M.

(2012, May). Supervised learning of hidden

and non-hidden 0-order affordances and

detection in real scenes. In Robotics and

Automation (ICRA), 2012 IEEE International

Conference on (pp. 1732-1739). IEEE.

[13] Bo, L., Ren, X., & Fox, D. (2013).

Unsupervised feature learning for RGB-D

based object recognition. In Experimental

Robotics (pp. 387-402). Springer International

Publishing.

[14] Koppula, H. S., Gupta, R., & Saxena, A.

(2013). Learning human activities and object

affordances from RGB-D videos. The

International Journal of Robotics

Research, 32(8), 951-970.

[15] Koppula, H. S., & Saxena, A. (2013, June).

Learning Spatio-Temporal Structure from

RGB-D Videos for Human Activity Detection

and Anticipation. In ICML (3) (pp. 792-800).

[16] Koppula, H. S., & Saxena, A. (2014,

September). Physically grounded spatio-

temporal object affordances. In European

Conference on Computer Vision (pp. 831-847).

Springer International Publishing.

[17] Koppula, H. S., & Saxena, A. (2016).

Anticipating human activities using object

affordances for reactive robotic response. IEEE

transactions on pattern analysis and machine

intelligence, 38(1), 14-29.

[18] Wang, K., Wang, X., Lin, L., Wang, M., &

Zuo, W. (2014, November). 3D human activity

recognition with reconfigurable convolutional

neural networks. In Proceedings of the 22nd

ACM international conference on

Multimedia (pp. 97-106). ACM.

[19] Jiang, Y., & Saxena, A. (2013, June). Infinite

Latent Conditional Random Fields for

Modeling Environments through Humans.

In Robotics: Science and Systems (pp. 1-8).

[20] Wu, C., Zhang, J., Savarese, S., & Saxena, A.

(2015). Watch-n-patch: Unsupervised

understanding of actions and relations.

In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (pp.

4362-4370).

[21] Han, F., Reily, B., Hoff, W., & Zhang, H.

(2017). Space-time representation of people

based on 3D skeletal data: A review. Computer

Vision and Image Understanding.

[22] Amor, B. B., Su, J., & Srivastava, A. (2016).

Action recognition using rate-invariant analysis

of skeletal shape trajectories. IEEE

transactions on pattern analysis and machine

intelligence, 38(1), 1-13.

[23] Jain, A., Zamir, A. R., Savarese, S., & Saxena,

A. (2016). Structural-RNN: Deep learning on

spatio-temporal graphs. In Proceedings of the

IEEE Conference on Computer Vision and

Pattern Recognition (pp. 5308-5317).

[24] Lin, L., Wang, K., Zuo, W., Wang, M., Luo,

J., & Zhang, L. (2016). A deep structured

model with radius–margin bound for 3D

human activity recognition. International

Journal of Computer Vision, 118(2), 256-273.

[25] Tayyub, J., Tavanai, A., Gatsoulis, Y., Cohn,

A. G., & Hogg, D. C. (2014, November).

Qualitative and quantitative spatio-temporal

relations in daily living activity recognition.

In Asian Conference on Computer Vision (pp.

115-130). Springer International Publishing.

[26] Ramirez-Amaro, K., Beetz, M., & Cheng, G.

(2015). Transferring skills to humanoid robots

by extracting semantic representations from

observations of human activities. Artificial

Intelligence.

[27] Bütepage, J., Black, M., Kragic, D., &

Kjellström, H. (2017). Deep representation

learning for human motion prediction and

classification. arXiv:1702.07486.

[28] Jain, A. (2016). Learning From Natural

Human Interactions For Assistive

Robots (Doctoral dissertation, Cornell

University).

[29] Park, C. W., Choi, J., & Lee, S. Analysis on

Recurrent Neural Network using Human

Action Recognition Problem. neural

networks, 6(7), 8.

[30] Huang, Z., Wan, C., Probst, T., & Van Gool,

L. (2016). Deep Learning on Lie Groups for

Skeleton-based Action

Recognition. arXiv:1612.05877.

[31] Papadopoulos, G. T., Axenopoulos, A., &

Daras, P. (2014, January). Real-time skeleton-

tracking-based human action recognition using

Kinect data. In International Conference on

Multimedia Modeling (pp. 473-483). Springer

International Publishing.

[32] Parisi, G. I., Weber, C., & Wermter, S. (2015).

Self-organizing neural integration of pose-

motion features for human action

recognition. Frontiers in neurorobotics, 9, 3.

