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Abstract 

In recent years, there has been a significant amount of 

effort into object recognition techniques as well as 

vision-based learning algorithms. But view 

invariance, complex gesture-object interactions, and 

the lack of reasoning in vision systems continues to 

make this an incredibly challenging problem. In this 

paper, we propose an Action-Based Learning model 

in which the AI learns gestures, objects, and their 

relationships by observing videos of humans 

completing a task by performing gestures on objects 

present in the scene. 

Keywords: 3D Object Recognition, 3D Action & 

Gesture Recognition, Semi-Supervised Machine 

Learning, Spatio-Temporal Domain Models. 

1. Introduction 

Learning through observation is a fundamental aspect 

of human learning, as it enables us to learn how to 

recognize new objects and perform new actions with 

them. The goal of this paper is to propose a new 

model for an intelligent vision-based learning system, 

capable of utilizing domain knowledge and reasoning 

about objects in order to improve accuracy and 

performance. 

Problem: Given a video of a human completing a 

task, generate a list of instructions for another human 

to complete the same task, including the objects and 

interactions. 

From the videos, we are trying to learn a sequence of 

Actions that are performed in order to complete a 

high-level Task. An action is composed of a Gesture 

performed on Objects.  

For this project, we focus on processing an entire 

continuous video that consists of a human completing 

some task, rather than processing individual images. 

This provides several advantages for recognizing 

objects and gestures, because we are able to use a 

number of techniques that are not as effective when 

working with images, such as motion, accurate depth 

data, full skeletal tracking, and easier tracking of 

humans and objects present in the scene. Another 

benefit of using a continuous video is that we are able 

to analyze the scene at any point in the time range, 

which can be used to (a) improved recognition of 

occluded objects by searching for a time t where the 

object is more visible, (b) understand the effects an 

action has on the environment by examining the state 

of objects before and after an action occurs, (c) 

sequential action recognition using rule based 

learning to categorize what actions the human is 

performing and learn new actions based on existing 

ones. 

Another benefit most papers don’t look at: We are 

assuming we have a human in the scene interacting 

with these objects. Object affordance + gesture 

recognition can be combined to improve accuracy. 

Combined with domain knowledge involving actions 

(and their preconditions/typical sequentially 

performed order), we can create an intelligent system 

without creating a general recognition system. 

Existing object recognition algorithms have fairly 

high accuracy rates, depending on the training and 

testing datasets used. Object recognition remains a 

challenging problem due to large intra-class 

variability and inter-class similarity, which makes 

accurate recognition relying only on RGB data a 

difficult challenge [21]. In addition to processing 

RGB with depth data, we have access to a video feed 

consisting of time frames which may also contain 

motion which is called a Spatio-temporal relationship 

[19]. We can leverage this to improve the 

performance of our algorithm, such as identifying 

occluded objects by finding a time t, where the object 

is not occluded. Processing video footage also means 

that we can analyze the effects of an action on the 

environment by looking at the scene before and after 

the action occurs. 

Another advantage of this system is that we can use 

the human in the scene to determine which objects are 



relevant to the actions being performed. Segmenting 

and recognizing all the objects in a given scene is a 

far more difficult problem than recognizing a single 

object being manipulated by a human. When a human 

interacts with an object, we usually gain additional 

views of the object from the camera's perspective, 

such as when an object is physically moved or 

rotated. Some actions may not provide any useful 

additional perspectives of the object, such as flipping 

a light switch, but the significance is the change in 

state of the light switch. 

2. Related Work 

There has been extensive research into 3D object and 

gesture recognition, and many frameworks are 

available to process the RGB-D footage gathered 

from sensors like the Kinect. In addition to depth 

data, the Kinect also provides recognition and 

tracking for human body masks as well as individual 

body joints. These features are especially useful for 

recognizing gestures involving large amounts of 

movement between distinguishable joints. 

Recognizing smaller, more detailed actions such as 

gestures involving only the hands can be much more 

difficult but there have been several successful 

projects to recognize these gestures including [8] and 

[9].  

Since our definition of an action is a sequence of 

gestures performed on at least one object, we can 

limit our search for potential actions to time intervals 

where an object interaction is possible. Locality is an 

obvious restriction to impose on object interactions, 

meaning the human must be near an object for it to be 

considered the target of an action. Sections 3.1 and 

3.2 focus on the vision aspects of this system, for 

recognizing objects and gestures using RGB-D and 

skeleton data. 

In Section 3.4, the results of our vision system 

(consisting of object and gesture recognition) is 

processed using a Spatio-temporal model and 

knowledge about relationships between objects and 

gestures, gathered from the “cognitive dialog” 

described in Section 3.3. These relationships can be 

manually programmed into a system, but the goal is 

to develop an intelligent system that learns to ask 

complex questions based on the vision system’s 

answers to simple questions to formulate more 

complex questions based on domain knowledge.  

In recent years, there has been a focus on Spatio-

temporal structures that focus on footage from RGB-

D videos consisting of a human performing 3D 

motions over discrete time frames that aim to learn 

human actions using conditional random fields (CRF) 

and probabilistic models to formulate better 

predictions based on past actions and potential future 

actions [16, 17]. 

3. Approach 

3.1 Notable Object Tracking & Recognition 

 

Figure A: In the above image, a human is reaching 

for a cereal box, but due to the camera angle and 

distance, it is difficult for the system to make an 

accurate prediction about the cereal box, until it is 

brought into a better view as shown in Figure B. 

 

Figure B: Left shows a much clearer RGB image that 

provides much better views for texture-based 

recognition. Right shows depth point cloud which is 

much more accurate from this view. 

While accurate 3D object recognition remains a 

difficult problem, many algorithms have been 

developed to address this problem. To process the 

RGB-D video footage, we are using the Point Cloud 

Library (PCL) which contains implementations for 

most of the techniques discussed below [2]. PCL 



contains a multitude of useful functions, including 

object segmentation, numerous implementations for 

3D object recognition, and 6-DOF pose estimations 

for an object. 

For this project, object recognition does not need to 

be performed on the entire scene, since we are only 

interested in objects that are the target of an action. 

This allows us to limit our search space to objects 

located near a human when a gesture is being 

performed. To quickly determine if an object exists 

near the human’s location, we can use a Hough 

Voting approach adopted for 3D space [1].  

To perform object recognition, there exists two 

popular types of algorithms: geometric feature-based 

recognition and pattern-based recognition [7]. In 

geometric feature-based learning, we extract 

descriptors from a 3D object that describe the 

important visual features of an object such as its 3D 

shape, the textures at particular points, depth data, and 

other distinctive attributes [5]. There exist a large 

number of descriptors that focus on different features, 

but we can divide descriptors into two types: local 

and global. A local surface feature describes the 

attributes for a particular point on an object, and local 

descriptors tend to be more robust to occlusion and 

clutter, which are common in real-world 

environments [3]. A global descriptor provides a 

high-dimensional representation of an object’s 

geometry and is used for recognition, geometric 

categorization, and shape retrieval. 

PCL provides many state-of-the-art implementations 

for both local and global descriptors which are 

frequently used for 3D object recognition including 

Hierarchal Matching Pursuit (HMP) [13], Histograms 

of Orientations (HOG), Point Feature Histograms 

(PFH), Spin Images (SIs) [14], and Clustered 

Viewpoint Feature Histogram (CVFH) [15]. Once 

computed, these descriptors can be compared against 

the feature points of an object in a scene to perform 

object recognition and classification using algorithms 

like correspondence grouping, hypothesis 

verification, and LINEMOD. To learn new objects, 

we add “templates” to our object database, which 

describe the shape and texture of an object from a 

particular camera angle. These recognition algorithms 

typically have accuracies ranging between ~50% and 

~85% on most RGB-D image datasets, but we can 

improve this accuracy by incorporating an Action-

Based model that incorporates domain knowledge 

about objects and gestures. This is implemented in the 

form of a reasoning executive and domain model, 

which are described in Section 3.3. 

Another interesting problem pertaining to object 

recognition is understanding an object's functionality 

based on its geometric features. The potential 

functions of an object are generally referred to as its 

affordances. Myers et al. propose an approach to 

detect object affordance based on superpixel HMP 

and random structured forests [11]. These affordances 

can be used in our domain model to represent likely 

interactions between certain classes of objects and 

classes of gestures. There are also several affordance 

learning approaches consisting of both supervised 

[12] and unsupervised [13] learning algorithms using 

6-DOF pose estimation and HMP to learn 

affordances. These algorithms have been studied in 

Spatio-temporal models, based on RGB-D footage of 

humans performing actions which involves both 3D 

motions and a temporal component [14]. 

 

3.2 Gesture Recognition 

Gesture recognition remains a difficult problem due 

to the number of potential joint orientations and the 

Spatio-Temporal aspects of gesture recognition. Since 

a gesture is composed of gesture-parts over time, the 

same approaches used in object recognition are not 

applicable. Fortunately, gesture recognition is a 

heavily researched area and there exist numerous 

algorithms that analyze the RGB-D or skeleton joint 

data over time to recognize gestures. Xia et al. 

developed an algorithm that uses histograms of 3D 

joint locations (HOJ3D) combined with a Hidden 

Markov Model to represent the temporal evolution of 

joints over time [4]. A major advantage of this 

algorithm is that it is view invariant, meaning it will 

recognize the gestures regardless of the human’s 

orientation with respect to the camera. Amor et al. 

proposed a similar gesture recognition system that 

uses rate-invariant analysis of the skeletal shape 

trajectories. This system focuses on temporal 

registration which makes gesture recognition more 

robust by recognizing the same gesture regardless of 



how fast it is performed [22]. There also exist gesture 

recognition algorithms that use Hidden Markov 

Models to provide more accurate skeletal tracking 

during actions in a Spatio-temporal domain, which is 

based on the calculation of spherical angles between 

selected joints, which is also invariant to viewpoints 

[31].  

Another popular approach is training a multi-class 

Support Vector Machines (SVM) on the joint 

differences between subsequent frames. We can 

leverage the Kinect’s advanced joint tracking to get 

an accurate motion profile for each joint, which can 

be used to efficiently perform gesture recognition 

using the trained SVM [10]. However, while the 

SVMs used are efficiently computed they tend to be 

less accurate than more robust methods utilize 

additional properties at the cost of some efficiency, 

which is not a problem for our offline system. Also, 

we are only concerned with gestures that involve 

interactions with objects such as using tools, meaning 

we can ignore gestures that do not involve a nearby or 

held object [28]. 

An even more difficult problem is correctly 

recognizing Hand-Gestures since hands are much 

smaller compared to the rest of our body, and have 

more complex articulations that make them prone to 

segmentation errors [6]. To address this, there exist 

many algorithms that focus specifically on hand 

localization and recognition, that use techniques 

capable of handling noisy shapes, such as Finger-

Earth Mover’s Distance (FEMD) to measure 

differences between two hand shapes [9]. By using 

techniques specifically for hands, we can achieve 

much higher accuracy for recognizing small Hand-

Gestures, with accuracy of around 90%. Additionally, 

these techniques can be used to identify the grip of a 

hand on an object, even when it is occluded. 

3.3 Reasoning Executive & Domain Model 

Using the algorithms described in Sections 3.1 and 

3.2, we can develop a robust vision framework for 

recognizing 3D objects and gestures, if we are given 

enough training data for all the desired objects and 

gestures that we want to learn. Requiring manual 

training in our framework would severely limit the 

usefulness of our proposed system. Creating a good 

model for a 3D object or gesture is time consuming, 

and whenever the system needs to learn a new object 

or gesture, the training data must be manually added 

to the system’s knowledge. 

A much better approach is to design an intelligent 

system that incorporates a domain model and a 

reasoning executive, in addition to our described 

vision system. The goal of the reasoning executive is 

to model domain knowledge about objects and 

gestures, and communicate with the vision system. 

We call this communication between the vision 

system and the reasoning executive “cognitive 

dialog”. Through this dialog, the vision system can 

ask the reasoning executive if a particular object or 

gesture prediction makes sense in the context of the 

domain model given the state of the human and the 

other objects in the scene, which can help us correctly 

recognize known or new objects. Since this system is 

not being run online, we can spare some speed 

efficiency for higher accuracy, and use this to develop 

a learning system based on semantic representation 

[29]. 

The reasoning executive utilizes the same three 

methods of reasoning used by humans: (1) deduction, 

(2) induction, and (3) abduction, to evaluate semantic 

properties and expand on our domain knowledge. 

(1) Through deduction, we can enable a rule 

based learning approach for our system to 

form conclusions on its own based on 

previously known “facts”. For example, if our 

reasoning system knows that knives are 

associated with the cutting gesture and our 

vision system detects the cut gesture with a 

different but similar shaped knife, we can 

conclude that there exists a relationship 

between the two knife objects [27] 

(2) Induction is forming generalizations based on 

observed instances. This is harder to formulate 

in an intelligent system than deduction 

because it attempts to generalize relationships 

based on what we’ve seen so far. When we 

have a large sample size of objects and 

gestures that all hold true for some statement, 

it is likely safe to form generalizations. We 

only perform induction when the size of 

samples is large enough to minimize error the 



chances of overgeneralizing objects through 

inductive reasoning 

(3) Abduction is when the major premise is 

evident or observable, but the minor premise 

and therefore conclusion is only probable. We 

can use statistical models to perform 

abduction by choosing the most likely 

conclusion based on past observed situations 

Formal Definitions: 

• Task([Action]): A task is a sequence of 

Actions ordered by the time they occur 

• Action([Gesture]): An action is a sequence of 

Gestures performed on one or more objects 

• Gesture([GesturePart], Object): In this Action-

Based learning model, a gesture is defined as a 

sequence of upper-body motions performed 

either (a) on an object or (b) a movement 

towards an object or location 

• GesturePart(SkeletonData): A part of a 

Gesture that includes skeleton data of the 

gesture segment being performed. Generated 

from Kinect depth sensor to track body 

motions (emphasis on hands and arms) 

• SceneObject(XYZ, 3DPointCloud): A 

SceneObject is an Object that is being tracked 

during video processing. SceneObjects have a 

3D vector representing its (X,Y,Z) position as 

it is tracked in the scene. SceneObjects also 

have a 3DPointCloud gathered by a depth 

sensor camera like the Kinect 

• ObjectTemplate({3DPointCloud_Views}, 

name, {ObjectStates}, {Classes}): An object 

model learned by our system, stored in the 

database The 3DPointCloud is either provided 

or generated by tracking SceneObjects. The 

set of ObjectStates represents the possible 

states of the object, including 3D models 

representing the change in appearance, if 

applicable. The set of classifiers are either 

strong (highly likely) or weak (possible class 

relationship through observation). 

• ObjectState(Type, 3DPointCloud, Value): A 

3DPointCloud of the object when it is in this 

state. Type refers to the type of state this 

object possess such as Binary (switch), Radial 

(Rotate by a Vector, Turn to a Value), 

Pressable (Keyboard, Buttons). 

3.4 Action Recognition 

Different classes of objects are interacted with 

through different types of gesture/manipulations. The 

result is an action, which has some observable effect 

on the state of the objects in the scene. The effects of 

humans on a scene has been studied using a number 

of deep learning techniques including CRFs [19], 

unsupervised learning [20], CNNs [21], RNNs [23], 

and radius-margin bounded neural networks [24]. 

In humans, memory formation depends heavily on 

changes [25]: 

• When humans perform actions, they actively 

change the environment and the states of 

objects 

• We are only interested deliberate actions that 

involve object interactions changing its state. 

So instead of trying to solve general gesture 

recognition, we only need to examine gestures 

that directly involve objects. This can be used 

to significantly reduce false positives during 

gesture recognition, by filtering out gestures 

that do not involve objects 

• Some actions may be more recognizable by 

their state than from observing a gesture being 

performed (e.g. when there is a lot of occluded 

motion). For example, an action as simple as 

flipping a light switch on, there are many 

different ways to position your hand to flip the 

switch (grasp with two fingers, pull down with 

entire hand, or even use your wrist). For this 

type of action, we are more concerned about 

the object’s state after the action occurs than 

we are about the specific hand motion or how 

they grasp the switch. WE can introduce 

Object-States to the system’s domain 

knowledge to allow for more advanced 

reasoning about objects by analyzing their 

state’s over the time period of the video as a 

human interacts with it. 

 

 

 



3.5 Handling Special Cases: Occlusion, 

Symmetry 

• Occlusion: During a gesture, parts of an object (or 

the entirety of it) may become occluded, causing 

difficulty with recognition. In a Spatio-temporal 

domain, we can solve this using several 

techniques: 

• (a) domain knowledge of an object’s possible 

states 

o E.g. learn to understand the state and 

possible interactions of an object and 

learn to recognize differences between 

states 

• (b) grip position and orientation to 

approximate object shape based on visible 

hand or object parts 

• (c) infer object symmetry based on grip for 

partially occluded objects to generate a more 

accurate model 

4. Implementation Details 

4.1 Actions & Relationship Graph 

Goal: Model high-level relationships between 

Actions, Objects, & Gestures and learn new 

relationships from this model. 

• Object  Object  

o Identify similar geometric shapes or 

feature descriptors 

o Object States 

• Gesture  Object 

o Gestures performed on an object 

(conditions that must hold true to 

perform action) 

• Action  Object 

o Object state before and after an Action 

• Classification Relationships 

• State Logic Rules 

Suppose in our Kinect footage, the Task being 

performed by the human is making a bowl of cereal 

and milk. We can look at this simple task as three 

High-Level Actions (which are composed of a 

sequence of Low-Level Actions). The three Actions 

can be modeled as:  

 

Action A: Put [Bowl] on [Counter] 

Action B: Pour [Cereal] into [Bowl]  

Action C: Pour [Milk] into [Bowl]  

We may observe other High-Level Actions being 

performed in the footage, such as putting the cereal 

and milk back into their original locations (i.e. cabinet 

for cereal, fridge for milk). These are called 

“cleanup” actions because they revert the effects of a 

past action and restore objects in the environment to 

their original state. For this Task, let’s assume we 

observed two “cleanup” actions for Actions B and C: 

Action B’: Put [Cereal] inside [Cabinet] 

Action C’: Put [Milk] inside [Fridge] 

Additionally, tasks may or may not depend on a strict 

ordering of actions: Actions B and C are dependent 

on the [Bowl] object retrieved in Action A, so we can 

infer that A must come before these actions every 

time the task is performed. The same applies to the 

“cleanup” actions: B must come before B’ and C must 

come before C’, otherwise the objects will not be in 

valid states. We can provide formal definitions to 

model an action’s preconditions (based on temporal 

state variables) and its effects on the human, objects, 

or environment. For example, here is the definition 

for the “Pour” Action: 

 

Action: Pour 
Notation: Pour [Primary Object] into [Secondary Object] with 

{Hand} 

Preconditions 

P1. Involves Two Objects:  

• [Primary Object]: The object being poured 

• [Secondary Object]: The object being poured into  

P2. [Primary Object] is currently held in {Hand} 

P3. [Primary Object] is located above [Secondary Object] 

P4. {Primary Hand} is rotating towards [Secondary Object]  

Effects 

E1. Transfer Contents of [Primary Object] into [Secondary 

Object] 

Observed Relationships 

O1. [Primary Object] is typically of class “Container” 

O2. [Secondary Object] is typically of class “Container” 

 



4.2 Action Graphs 

Note on Processing Temporal Footage: Our Kinect 

footage is a sequence of time frames that can be 

labelled [t1, …, tn] where t1 is the first frame and tn is 

the last frame, and ti denotes a time frame such that t1 

<= ti <= tn. Some preconditions can be evaluated for 

every individual time, such as determining if the 

human is “Near” an object [o] at time ti. This just 

requires a check to see if Human.Near([o], ti) is true, 

which we can evaluate using the skeletal tracking 

provided in the time frame and object tracking system 

discussed in Section 3.1 of the paper. Some 

conditions need to be evaluated over a sequence of 

intervals, such as gestures which are spatio-temporal 

and need to be evaluated with respect to both space 

and time. For example, to determine if a hand is 

rotating an object we need a time interval ti to tj, 

where ti < tj,  to analyze so we can track the motion of 

body joints and objects over the time interval and 

perform gesture recognition. This is done using a 

combination of techniques described in Section 3.2, 

including temporal registration and part-based hand 

gesture recognition. 

• Actions (Diamond Nodes): The definition of an 

action, which consists of a name and a list of 

parameters that are used to perform the Action. These 

parameters can be objects, positional or rotational 

vectors, or human state variables (i.e. the states and 

locations of hands/body joints). 

• Preconditions: A conditional that operates on 

parameters to determine if the action can be currently 

performed based on the states and values of the 

parameters. If any predicate node predicts that it is 

unlikely for the condition to be true at that time, we 

can determine that the Action is likely not a match. To 

represent preconditions in our graph, we divide them 

into two categories:  

o Instantaneous Predicates (Circle Nodes): 
Represent predicates that can be evaluated at 

individual time frames. 

o Temporal Predicates (Hexagon Nodes): 
Represent predicates that operate on a 

sequence of time intervals such as recognizing 

gestures and tracking object motion (i.e. 

spatio-temporal) 

• Effects (Rectangle Nodes): The effect of the action 

on the environment, which can only be performed 

when all the conditions are likely to be true. Effects 

change the state of objects and the environment. 

 

4.3 Integrating Domain Knowledge 

Using domain knowledge, we can improve our 

accuracy when performing object and gesture 

recognition using the state-based predicate system 

shown in the Action Graphs. Instead of relying only 

on vision, we incorporate the state of the environment 

and the actions being performed using the object. If 

we are able to identify the action being performed, we 

can use that knowledge to improve 3D object 

recognition accuracy by searching known objects of 

the class “Container”. After observing the entire 

footage and identifying all the performed actions, the 

result can be modeled as a Task Graph (example on 

next page), which shows the High-Level and Low-

Level Actions that make up the Task. Note that the 

Task Graph doesn’t show all the knowledge learned 

such as object models, gestures, or object classes. 

 

Handling Occlusion: During an Action, it is very 

likely for objects and body parts to become occluded, 

making it impossible to determine which gesture was 

performed or the object that was interacted with. This 

is where tracking the effects of an action on the 

environment’s state is useful, because we can predict 

which action was performed in the past, based on its 

effect. For example, suppose that when picking the 

milk up from the fridge, the gesture and milk cartoon 

are occluded during the duration of the action. We 

can still determine that the PickUp action was 

performed on [Milk], by examining changes in the 

scene to predict which action was performed based on 

the state of the environment before and after the 

action. For example, during Action C when the hand 

and object become visible while pouring the milk, we 

can see an object is now being held and perform 3D 

OR to recognize the held object as [Milk]. We can 

determine that this was the result of a past action and 

use domain knowledge to predict which action was 

performed and when, even if we cannot perform 

accurate recognition during the action itself.  

 

 

 



Figure C: Action Graphs for Pour, WalkTo, PickUp, and PutDown 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D: Actions B and C being performed with Object and Gesture Recognition, to find the Action that best 

matches based on domain knowledge and the current state of the environment. 
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4.4 Task Graph 

Below is a diagram of the Task which shows the High-Level Actions (A, B, C), the Cleanup Actions (B’, C’), 

and the Low-Level Actions they are composed of (Diamonds). We can determine the High-Level Action by 

looking at the effects of an Action minus its Cleanup Action (if one exists). The set of effects in B – B’, is just 

the Pour effect, because B’ restored the cereal to its original state, leaving Pour as the only action that resulted 

in an observable effect to complete the Task. 
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5. Conclusion 

This paper researched state-of-the-art techniques for 

handling object recognition, gesture recognition, 

Spatio-temporal data processing, and a proposed 

system which incorporates a reasoning executive 

which improve accuracy over just using vision data to 

classify and learn objects. 
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