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ABSTRACT 

     Alarm fatigue caused by false alarms and 

alerts is an extremely important issue for medical 

staff in Intensive Care Units.  The ability to 

predict and classify ECG and ABP patient 

waveforms can potentially help the staff and 

hospital systems better classify a patient’s 

waveforms and subsequent alarms.  This project 

approaches this problem by evaluating the 

effectiveness of different Echo State Network 

(ESN) architectures at predicting ECG and ABP 

waveforms.  Several architectures and metrics are 

evaluated showing similar performance between 

parallel ESN architectures and integrated 

architectures.  The results also suggest potentially 

greater benefit of larger integrated reservoirs at 

predicting ECG waveforms and the adaptability 

of such models across individuals.  Although 

there are limitations to this analysis, the work 

presented here offers a unique way of 

understanding and predicting a patient’s 

waveforms and provides suggestions for further 

extensions of this research. 

 

1. INTRODUCTION and MOTIVATION 

     Intensive Care Units (ICUs) are designed to 

handle the most physiologically fragile patients in 

the hospital [12].  As a result, ICUs utilize a wide 

spectrum of machines, technologies, and tests to 

help its medical staff better understand and care 

for patients.  However, the wide array of stand-

alone machines often collect data and produce 

alarms and alerts independently, leaving the 

difficult integration tasks up to the medical staff.  

Time sensitive decisions, identifying non-critical 

alarms, are just some of the problems faced by 

ICU medical staffs.  Studies have shown that 

staffs in ICUs face an extraordinary amount of 

alarms each day, some as much as 1,000 alarms a 

day, most of which are non-actionable or not 

necessary for patient care [7, 17].  Excess 

amounts of non-critical alarms can lead to alarm 

fatigue which can adversely affect patient care [4, 

5, 11].  While there is ongoing research to 

effectively minimize false alarms, such as 

allowing nurses to adjust alarm thresholds, much 

work is still needed to better classify and develop 

systems that are less error prone to false alarms 

[5, 10].  One of the main challenges that arise is 

the development of algorithms robust enough to 

understand, integrate, and predict multiple 

physiological waveforms from patient data that 

can better classify and interpret alarms. 

     The recent release of clinical ICU patient data 

makes it possible to develop better models and 

support tools to aid medical workers in 

understanding and filtering the abundance of 

information and alarms they are exposed to [14].  

This publically available database, MIMIC II 

(Multiparameter Intelligent Monitoring in 

Intensive Care II), has already been analyzed and 

used in several ways, for example to develop 

decision support systems to better categorize and 

classify mortality rates in the ICU [2, 3, 6, 14, 

15].  Furthermore, a study has previously used 

this data and an expert review panel to reclassify 

five common ICU alarms into true alarms and 

false alarms.  They developed an algorithm that 

classified alarms based on both electrocardiogram 

(ECG) and arterial blood pressure (ABP) 

waveforms immediately prior to the machine 

generated alarms.  When tested, the algorithm 
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suppressed approximately 59.7% of the false 

alarms [1].  While their algorithm is focused on 

classification, this project aims to complement 

their work by developing a neural network that 

can predict an individual’s waveform.  An 

effective predictive model can help medical 

staff better anticipate a patient’s condition as 

well as the occurrence of false alarms. 

     The purpose of this project is to use recurrent 

neural network models to predict an 

individual’s waveform.  These networks will be 

learning to predict an individual’s ECG and ABP 

waveform data, which can potentially help 

prioritize alarms as well as predict life-

threatening situations in the ICU.  This project 

uses the clinical ICU patient data previously 

discussed to develop, train, and test various Echo 

State Network (ESN) architectures at predicting a 

patient’s ECG and ABP.  ESNs were chosen for 

this project because they have been previously 

shown to accurately predict chaotic time series 

without the need to train the specific internal 

representations of the system [9, 16].  These 

advantages make ESNs very attractive for 

predicting ECG and ABP time series which are 

both chaotic and difficult to learn.  The rest of 

this paper describes the data, approach taken, 

evaluations, discussion of the results, and 

suggestions for future work. 

 

2. DATA SOURCE 

     The data used for this project comes from the 

Multi-Parameter Intelligent Monitoring for 

Intensive Care II (MIMIC II) database which is 

publically available [13, 14, 15].  The complete 

database currently contains data from 

approximately 33,000 patients collected over 7 

years (beginning in 2001) from Boston’s Beth 

Israel Deaconess Medical Centers, and combines 

both clinical and physiological data.  The adult 

patient ages ranged from 18 to over 90 years 

(mean 68 years), and were collected from 48 

medical, surgical, and coronary intensive care 

beds.  Each patient record typically contains data 

from two electrocardiogram (ECG) leads, arterial 

blood pressure (ABP) and pulmonary arterial 

pressure (PAP) stored at 125Hz over time 

intervals that can range between a few hours to a 

few days, a sample of the raw data is shown in 

Figure 1.  The ECG was originally sampled at 

500Hz but was compressed to 125Hz while still 

preserving the peaks [1].  The resulting database 

is quite large (over 3TB).  This project focuses on 

the data from the ECG II and ABP data from six 

randomly select patients.  ECG II data was 

selected because it appeared to be more available 

from a cursory look at the patient records.  ABP 

was selected because of its relationship to ECG in 

the interpretation and classification of alarms [1]. 

 

3. METHOD 

     This project evaluates the performance of 

three different types of ESN architectures at 

predicting two related physiological waveforms.  

There are many parameters and conditions 

associated with a basic ESN, such as reservoir 

size, activation rule, learning rates, etc.  Some 

preliminary analysis was done to identify 

reasonable ranges of interesting parameters.  The 

following sections first describe the data and 

preprocessing of the data.  Next, a basic ESN 

architecture, was implemented, tested, and 

applied to both ECG and ABP waveforms which 

help fix some network parameters, such as 

activation and learning rules.  These parameters 

were then used to build three different types of 

ESNs which were evaluated on predictive 

performance. 

 

Figure 1: Samples of standard ECG II and ABP waveforms.  

This data was from patient a41278. 
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3.1 Data Processing 

     Although the data was publically available, a 

specialized WFDB (WaveForm DataBase) 

software package was required to download, 

interpret, and format the data [13].  Cygwin was 

used to connect directly to the server to download 

and format the data.  Unfortunately, this process 

was done manually because of the complex 

nature of the data and some limitations of 

Cygwin.  The downloaded data was converted to 

comma separable version files which were 

readable in Matlab. 

     Some basic preprocessing was needed to make 

the magnitudes for the two waveforms 

comparable.  A simple smoothing function, that 

averaged the data points in a 5-time step moving 

window, was applied to both the ECG and ABP 

data.  This window size was effective at 

smoothing the waveform while maintaining the 

important features of the waves.  The ABP data 

was also normalized to fall within the values 0 

and 1.  The ECG was vertically shifted up by the 

minimal value so it would be within the same 

range as the ABP data.  These transformations 

were done to make the two waveforms more 

comparable and similar in magnitude while 

maintaining unique features. 

 

3.2 Building and Testing a Basic ESN 

     A standard ESN, Figure 2, was first built, in 

Matlab, adopted from Jaeger and Tong’s previous 

work [9, 16].  This standard architecture has four 

sets of unique weights: Win_hidden were randomly 

assigned fully connected weights between the 

input node to the reservoir nodes, Whidden were 

sparsely connected, randomly assigned recurrent 

weights between the reservoir nodes, Whidden_out 

were randomly assigned fully connected weights 

from the reservoir nodes to the output node, and 

Win_out were randomly assigned weights from the 

input node to the output node.  Note that this 

architecture does not have connections from the 

output nodes back to the hidden nodes.  This was 

done to reduce the model complexity and to align 

more fully with some of the models previously 

discussed. Weights were initially assigned 

random values between -0.5 and 0.5.  Similar to 

previous work, approximately 20% of the 

possible connections in the reservoir had non-

zero weights and scaled with a spectral radius of 

0.98, using equation 1:  

  
 

where α is the spectral radius, W’hidden is the 

weight matrix for the reservoir prior to 

transformation, and λmax is the maximum 

eigenvalue of W’hidden [16]. 

     The activation for the hidden nodes, Ahidden, 

and output nodes, Aout, is: 

 

 
 

 
 

The learning rule and training only applied to the 

connections between the hidden nodes and the 

output nodes; all other weights remained 

unchanged through initialization, training, and 

testing.  Although several learning techniques to 

train these weights were tried, such as linear 

regression, simplified error back propagation, and 

other learning functions, a simple learning rule 

that incrementally changed the weight based on 

the product of the learning rate and the training 

error, was shown to be both effective and fast.  

To prevent excessive oscillations in weights, a 

minimal error threshold was applied such that 

weights would not change if the absolute value of 

Figure 2: Basic ESN with learning only on Whidden_out (dashed 

arrows). 
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the error was less than 0.0001 (determined 

empirically). 

     The basic ESN was first tested with a trivial 

simulated sine wave.  The data was divided into 

training data (2,000 time-steps) and testing data 

(1,000 time-steps).  The ESN, with 600 reservoir 

nodes and a learning rate of n = 0.0001, was 

initialized by passing all the data through the 

reservoir once to let the internal transients of the 

system dissipate.  Next the training data was 

introduced to the network and the hidden-to-

output weights were allowed to learn.  The 

purpose of this project was to develop a model 

that could predict a waveform; hence the teacher 

signal was the input signal 100 time-steps to the 

right (100 time-steps in the future).  This trivial 

example verified the basic workings of this 

network.  Mean Square Error (MSE) was used to 

evaluate this and subsequent test predictions: 

 
where N is the total number to time-steps in the 

test prediction,  t(n) is the actual teacher value at 

time-step n, and a(n) is the output predicted value 

at time-step n.   

     This trivial but useful prediction 

demonstration resulted in a low MSEtest of 0.025 

(run results in the Appendix).   

 

3.3 Refining ESN Parameters 

     It was next necessary to identify some useful 

ESN parameter ranges for the ECG and ABP 

waveform data.  Identifying which parameters to 

set and the ranges of interest made the 

comparisons of different ESN architectures more 

appropriate.  Two separate ESNs with similar 

architectures to the ESN mentioned above were 

used to predict ECG and ABP waveforms 625 

time-steps into the future. Different combinations 

of reservoir sizes and learning rates were tried 

because of their influence on how the waveforms 

were represented, decomposed, and learned by 

the system.    

     A cursory assessment was first completed with 

the ECG data, varying the number of hidden 

nodes (100, 500, 750, and 1000) and the learning 

rates (0.01, 0.001, and 0.0001). The data was 

divided into initializing (1-5,000 time-steps), 

training (5,001-8,000 time-steps), and testing 

segments (8,001-10,000 time-steps).  The data 

was tested 10 times for each combination.  As 

shown in Table 1, reservoirs with nodes ranging 

between 100 and 750 and learning rates ranging 

from 0.001 and 0.0001 had on average better 

performance, prompting additional investigation.  

 
Table 1: ECG MSE test results (standard deviations) 

MSE 

test 

100 500 750 1000 

0.01 3.78e42 

(6.55e42) 

7.83e7 

(1.26e8) 

4.1e13 

(7.1e13) 

4.6e76 

(8.0e76) 

0.001 0.026 

(0.023) 

18.39 

(31.07) 

1.42 

(2.32) 

1.6e6 

(2.7e6) 

0.0001 0.013 

(0.0018) 

0.02 

(0.0029) 

0.043 

(0.031) 

0.11 

(0.14) 

 

     Reservoir size and learning rate ranges were 

further investigated with higher fidelity.  The 

network ran ten more times with randomly 

initialized weights with new combinations of 

reservoir sizes (100, 200, 300, 400, 500, 600, and 

700) and learning rates (0.001, 0.0005, and 

0.0001).  The results suggested that learning rates 

of 0.0001 and reservoir sizes of 500 or less than 

300 tended to have better performance.   

Although both reservoir size and learning rate 

Figure 3: Lowering learning rates tend to reduce the average 

ECG MSE (error bars/marks show one standard deviation 

from the mean).  Results without a lower error bar indicate 

significantly larger differences only meaningful in the 

positive direction. 
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affected performance, the latter had much more 

influence on the results, as shown by the 

overlapping error marks in Figure 3.  As a result, 

a learning rate of 0.0001 and a reservoir size of 

500 were used for the ECG components of the 

test ESN architectures.  A reservoir size of 500 

was chosen because it had slightly less variability 

compared to sizes of 300 nodes or less. 

     A similar analysis, done using ABP data, 

suggested a learning rate of 0.0001 and a 

reservoir size of 400 for the ABP components of 

the test ESN architectures. 

 

3.4 ESN Architecture Designs 

     Three ESN architectures were designed to 

predict ECG and ABP waveforms using the 

previously discussed reservoir sizes and learning 

rates.  The first ESN, ESN1 in Figure 4, served as 

a control for the experiment, and was essentially 

two ESNs running in parallel with no connections 

between the networks.   

     The second architecture, ESN2 in Figure 5, 

was similar to the first architecture, having two 

separate reservoirs whose sizes were set by the 

initial findings previously discussed.  However, 

the nodes in both reservoirs were connected to 

each of the output nodes.  While the learning 

rates did not change, these weights were updated 

independently.  The learning of the hidden to 

output weights were specific to the error 

generated by the corresponding waveform.  For 

example, only the error between the predicted and 

actual ECG waveforms was used to update the 

Whidden_out connect to the ECG output node.  Both 

reservoirs were initialized synchronously with 

their corresponding waveform.  It was interesting 

to investigate if the predictions of one reservoir 

could benefit from the other reservoir with this 

architecture.  Furthermore, it was interesting to 

determine if having two separate reservoirs would 

make the overall network more robust to 

limitations associated with the randomly assigned 

weights. 

     The third architecture, ESN3 in Figure 6, 

comprised of one large reservoir with two input 

and two output nodes.  This architecture was 

Figure 4: Echo State Network architecture 1 (ESN1). 

Figure 5: Echo State Network architecture 2 (ESN2). 

Figure 6: Echo State Network architecture 3 (ESN3). 
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chosen to investigate how single reservoir 

systems compared to multiple reservoir systems 

when predicting multiple related waveforms.  It 

was interesting to test if initializing and training 

one reservoir with two related waveforms could 

lead to better performance.  To be consistent with 

ESN1 and ESN2, both the inputs and outputs 

were fully connected to the hidden nodes but 

inputs were only connected to their corresponding 

output waveform node.  The other network 

parameters, such as spectral radius, Whidden 

sparsity, were consistent with ESN1 and ESN2.  

This ensured that the analysis would primarily 

focus on differences resulting from the network 

architecture.  Nevertheless, a single reservoir 

system can perform differently based on its size.  

As a result, ESN3 with reservoirs of 800 and 700 

nodes were also investigated.  ESN3 was 

initialized with both waveforms, and similar to 

ESN2, the fully connected weights from the 

hidden to each output node were different and 

were trained based on the error associated with 

their corresponding predicted waveforms.  

     The performance of these three architectures 

was assessed on MSE, equation 1, and the 

maximum prediction error (max error) between 

the performance and the actual waveform for 

both ECG and ABP data.  A 10,000 time-step 

sample from patient record a41278 was used for 

this analysis.  The data was divided into 

initializing (1-5,000), training (5,001-8,000), and 

testing segments (8,001-10,000).  Initialization, 

training, and testing with all the networks 

followed the sample protocol.  After testing, the 

ECG and ABP MSE and max error were 

evaluated using one-way ANOVA.  This was 

used to determine if there were statistically 

significant differences between the ECG and 

ABP MSE and max error for the different 

architecture types (ESN1, ESN2, ESN3-900, 

ESN3-800, ESN3-700).  Based on these results, 

randomly sampled data from five individuals 

(a41325, a40416, a40076, a40432, and a41563) 

were used to evaluate the consistency and 

performance of one of the higher performing 

networks. 

 

4. RESULTS 

     Each ESN architecture ran thirty times with 

randomly initialized weights.  The networks were 

evaluated on their prediction/test MSE and the 

maximum error values for both ECG and ABP 

waveforms.  Figures 7 and 8 show data from a 

training and testing ESN1 run.  In Figure 7, the 

ESN1 was able to learn and adjust to match the 

phase and magnitude of an ABP waveform as 

well as have decent predictive performance. 

Additional, sample results from ESN1, ESN2, 

and ESN3-900 are included in the Appendix. 

     The boxplots in Figures 9 and 10 show the 

Figure 7: Sample ABP training run. 

Figure 8: Sample ABP test prediction. 

Figure 9: Boxplot of ECG test MSE for the different 

ESN architectures. 
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Figure 12: Median results for a) ECG MSE, b) ABP MSE, c) 

ECG max error, and d) ABP max error. 

MSE from both the ECG and ABP results binned 

by architecture type.  The outliers were most 

likely caused by poor randomly initialized 

weights.  These outliers (results greater than three 

standard deviations from the mean) were 

removed, approximately five per factor level, for 

the remainder of the analysis.  Similar boxplots 

for the maximum error results were produced and 

included in the Appendix.  

     Next the Kolmogorov-Smirnov (KS) test was 

used to test both the ECG and ABP MSE results 

for normality.  Although the KS values for the 

ECG and ABP distributions were 0.5 and 0.53 

respectively, parametric statistical tests could still 

be applicable considering the sample size.   

     One-way ANOVAs were used to evaluate the 

MSE and max error of the predictions.  The 

factors levels were the different architectures 

(ESN1, ESN2, ESN3-900, ESN3-800, and ESN3-

700).  Table 2 shows the F-values and the 

corresponding probability values of both the MSE 

and max errors for the different waveforms. 

 
Table 2: ANOVA results 

F-value (p-value) ECG ABP 

MSE 1.48 (0.21) 1.19 (0.32) 

Max Error 1.65 (0.17) 2.22  (0.071) 

 

     The results from the ABP max error analysis 

were marginally significant (p-value = 0.071), 

while the other evaluations were less significant.  

The ABP max error significance was most likely 

driven by the poor performance from ESN3-800 

and ESN3-700 as shown in Figure 11.  The 

ANOVA tests used factor level means for 

statistical comparisons which showed little 

statistical differences. However, there are 

interesting trends to note from the median metric 

values, Figure 12.  ESN3-900 tended to predict 

ECG waveforms slightly better than ESN1 and 

ESN2. However, ESN3’s performance decreased 

quickly with less hidden nodes.  This may be due 

to the inability of the reservoir to correctly learn 

the two waveforms.  In general, ESN1 gave a 

much better prediction for the ABP waveform, 

although ESN3-900 had comparable performance 

in terms of ABP max error predictions.  These 

results showed that there was no significant 

difference in the architectures at predicting two 

related waveforms together. There may also be 

increases in performance when combining 

waveforms in a single reservoir that is 

Figure 10: Boxplot of ABP test MSE for the different 

ESN architectures. 

Figure 11: Marginal significance most likely driven by 

ESN3-800 and ESN3-700. 

a b 

c d 
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approximately similar in size to the two 

individual reservoirs.  This showed the potential 

benefits of combining reservoirs to predict 

different but related waveforms.   

     Lastly, ESN3-900 was tested and compared 

using randomly sampled data from five 

individuals.  ESN3-900 was chosen because its 

performance was similar to the basic ESN1 

architecture and it was easier and faster to 

implement.  The results showed that the ECG and 

ABP, Figure 13 and 14, performance across 

subjects were fairly similar, with the exception of 

patient 3.  Though further work is needed, these 

results suggest that this architecture may be 

robust enough to be applied to different patients 

with little customization. 

     The next section will discuss these results in 

more detail as well as the limitations, 

improvements, recommendations, and further 

extensions and questions that can be investigated. 

 

5. DISCUSSION 

     The ability to predict and classify the ECG and 

ABP waveforms of patients is extremely 

important for the medical staff in Intensive Care 

Units.  This project approached this problem by 

evaluating the effectiveness of different Echo 

State Network (ESN) architectures at predicting 

ECG and ABP waveforms.  The results showed 

that there was little significant difference in 

performance when predicting ECG and ABP 

waveforms using the different ESN architectures.  

However, ESN3 showed potential benefits of 

using one large reservoir, especially when 

predicting the ECG waveform.  ESN3 was also 

test with different individuals with comparable 

results. 

 

5.1 ECG versus ABP 

     The ESN architectures in general tended to 

have much better performance predicting ECG 

compared to ABP.  This might be because the 

ECG waveforms have higher frequencies then the 

ABP waveforms.  The loosely coupled 

subsystems in the reservoir might resonate or 

echo at higher frequencies better compared to 

lower frequencies.  Furthermore, the ability of 

one larger reservoir to predict the waveforms was 

dramatically worsened as the size of the reservoir 

decreased.  As the reservoir size decreased, the 

performance degradation was much more 

apparent with ABP then with ECG.  This might 

also suggest that any coupling of ECG and ABP 

waveforms is biased toward the faster 

waveforms.  This is an area that will require 

further investigation. 

 

5.2 ESN3 Adaptability 

     Furthermore, analysis of ESN3-900 with five 

different individuals showed that this network 

architecture could be adaptable to different 

subjects.  Without changing the parameters of the 

model, ESN3-900 resulted in similar performance 

Figure 13: ECG MSE results for ESN3-900 tested with five 

randomly selected patients. 

Figure 14: ABP MSE results for ESN3-900 tested with five 

randomly selected patients. 
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for four of the five randomly selected patients.  

Having a model that can be applied to different 

patients with little or no tailoring is attractive, and 

can be very beneficial in developing a predictive 

system for hospitals.  

 

5.3 Two versus One Reservoir 

     Although this project was in some sense 

exploratory, it does highlight some potential 

advantages of having one large reservoir for 

learning and predicting two related waveforms.  

The performance of ESN3-900 was comparable 

to ESN1 and ESN3, and was easier to implement.  

This analysis hints at interactions between how 

these waveforms are learned and stored in the 

reservoir.  This could be investigated further and 

in more detail, perhaps starting with simpler, less 

chaotic waveforms.  There are many questions to 

ask: for example, could initializing two reservoirs 

separately and then combining and reinitializing 

them lead to more robust internal subsystems in 

the reservoir?  These and other queries can help 

further the understanding of Echo State Networks 

and make them more applicable for engineering 

and other applications. 

 

5.4 Limitations 

     There are limitations associated with this 

project, some of which were already discussed.  It 

would always be helpful to collect more data, test 

more patients, and try different combinations of 

waveforms (not just the ECG II and ABP 

waveforms).  Furthermore, the parameters for 

each network (besides the learning rates and 

reservoir sizes) could be optimized more 

individually.  This would greatly increase the 

number of factors to control for but with more 

time, a detailed factor level analysis of the 

network parameters would be very insightful.  

Data transformations of the results might also 

provide more normalized data.  However, more 

research is needed to understand what these 

transformations mean intuitively for the results 

before they should be applied.  

5.5 Alarm Classification 

     A model that can predict ECG and ABP 

waveforms can naturally be extended to classify 

waveforms and predict alarms.  A model that can 

forecast the accuracy of ECG alarms or classify 

false alarms based on predicted waveforms will 

be extremely beneficial to medical staff, 

especially those in the ICU.  There are several 

types of alarms in the ICU, each with unique 

waveform patterns, and this work can be 

extended to investigate the differences between 

predicted waveforms during a false alarm and a 

true alarm.  Models that can extrapolate what a 

patient’s waveforms will be like even a few 

seconds after an alarm can help medical staff and 

hospital systems better understand and classify 

alarms, with the ultimate goal of reducing false 

alarms, alarm fatigue, and improving patient care.   

 

6. CONCLUSION 

     Alarm fatigue caused by bedside machines is a 

serious issue in Intensive Care Units.  Part of this 

problem is the inability of these machines to 

predict and classify a patient’s ECG and ABP 

waveforms.  This study evaluated different Echo 

State Network architectures for predicting ECG 

and ABP waveforms.  The results showed that a 

large ESN reservoir architecture, ESN3-900, that 

combines both waveforms had a similar 

performance to separate smaller reservoirs.  ECG 

was generally predicted more accurately 

suggesting that the ESN with combined 

waveforms tended to learn the higher frequency 

waveform better.  Furthermore, results showed 

the potential benefits for applying a large ESN 

reservoir for different individuals, which could be 

very helpful for hospital systems.  This paper also 

discussed limitations of this project, as well as 

suggestions for future works, especially to 

investigate the one versus two reservoir 

interactions and applications for predictive alarm 

classifications. 
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APPENDIX 

 

Results from sine wave predictions 

This trivial example generated very low training MSE (0.0213) and test MSE (0.0250).  

The parameters in this model could be optimized further, however because this was just to show a proof 

of concept, the parameters were not further optimized. 

 
 

 

Results from testing ABP MSE for different combinations of reservoir size and learning rates 

 
 

 

Sample test results from ESN1, ESN2, and ESN3-900 (please note that these results were selected at 

random and do not reflect the best performing runs) 

 

ECG_ESN1 

 
 



  12 

 

 

ABP_ESN1 

 
 

ECG_ESN2 

 
 

ABP_ESN2 
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ECG_ESN3 

. 

 

ABP_ESN3 

 
 

 

Boxplot for ECG and ABP max error results binned by ESN architecture type 

 

 
 


