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ABSTRACT
Mobile location-based applications rely heavily on network
connections. When the mobile devices are offline, such ap-
plications become less accessible to users. A semantic cache-
based method is proposed to improve the offline accessibility
for mobile location-based applications. The central idea is
that when users are browsing information, the client pro-
gram stores this information for later retrieval. In order to
accomplish this on a continuous space, the map projection
must be discretized restricting the space to a finite number of
windows. On a map window query call, the continuous win-
dow is translated into a series of discretized windows which
either need to be retrieved from the server or are already
stored in the cache. By doing the discretization and caching
on the client, no changes must be made to the server allowing
it to be easily implemented into most existing applications.
An extension of semantic caching allows for prediction based
upon past user behavior. The usability of the technique is
demonstrated by prototyping it on top the NewsStand sys-
tem so that the query window is constantly changing as users
pan and zoom around the world using a gesturing interface,
among others. Evaluation shows the prototype to be effec-
tive while decreasing the response time.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; H.3.3 [Database Management]:
Information Storage and Retrieval—Information Search and
Retrieval

General Terms
Algorithms, Design, Performance, Reliability
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.

Mobile location-based applications, are gaining increas-
ing use in our daily lives. They are rooted in the desire
to incorporate the functionality previously available only in
geographic information systems (e.g., [18, 19]) for the rep-
resentation of spatial, spatio-temporal, and distributed data
(e.g., [8, 10, 16, 20, 26]). This has led to modern applications
such as Google Maps1, and Yelp2. People use them to search
for local attractions. The accessibility of these applications
becomes an important issue. If the mobile device hosting
the applications goes offline, then the applications become
inaccessible to users, and thus users’ experiences are sacri-
ficed. Existing work [4, 5, 6, 11, 14, 15, 25] has proposed a
cache-based method to solve this problem. Such a method
works well for those applications whose data is static, but
has trouble dealing with applications with rapidly changing
data, such as NewsStand [27], a system developed at the
University of Maryland for online browsing of news using a
map query interface.

In this paper, a semantic-aware cache-based approach is
proposed for spatial mobile applications with dynamic data.
This allows for offline interaction, reduction in network us-
age while requiring changes only to the client application and
not the server. The focus will be on map window queries
where the underlying data displayed changes as the user
moves the map whether it be by a pan, pinch or zoom ges-
ture. In a map projection, the set of all possible queries is
pseudo continuous since a map query window does not lock
to interval values so the probability a past query will be the
same as a future query may be negligible in many applica-
tions. To deal with this a map discretization method is used
to divide the map projection into grid cells based on the
zoom level and the device screen size. An extension of our
semantic caching technique allows for prediction of future
queries which slightly improves our results.

This semantic caching technique is applied to the News-
Stand system [27]. NewsStand is a map-based application
framework that aggregates and displays news from RSS feeds
at their respective locations based on the content of loca-
tion references in news articles [27]. Only the news stories
associated with locations bounded by the current map view-
ing window are displayed. In the case of a mobile device,
the current map viewing window would be the entire screen
when the application is being used. Each time a user up-
dates the map viewing window with an action (i.e. a swipe,
click, pinch, or tap) a request is sent to the server for the
news stories in the updated viewing window. The map-

1http://maps.google.com
2http://www.yelp.com



Figure 1: Screenshot of NewsStand for Android App
on a Samsung Galaxy S3.

based approach of NewsStand affords an inherent granular-
ity to search based on zoom level providing an approximate
search.

NewsStand currently has a web interface and mobile in-
terfaces for the Android (Figure 1), iOS platforms and Win-
dows Phone platforms. In this paper, we apply our approach
to the Android NewsStand application.

The rest of this paper is organized as follows. Section 2
describes the semantic caching architecture, along with the
SAC extension that provides prediction. Section 3 presents
the prototype implementation on top of NewsStand. The
evaluation results are discussed in Section 4. Section 5 re-
views related work, while Section 6 contains directions for
future research.

2. TECHNIQUE
In this section, we define semantic caching and how it

can be used as a layer on top of a typical location-based
mobile application. We then briefly describe the predictive
extension of this work by Liu [13] which is used in the im-
plementation of the semantic caching.

2.1 Semantic Caching
Semantic caching is the process by which the client stores

information pertaining to the data currently being cached.
This differs from other forms of caching where little addi-
tional information may be stored about the underlying data
being cached. The use of semantic caching uses the ad-
ditional semantic information stored by its cached data in
order to determine the contents currently held in the cache
and the remainder of the data that needs to be retrieved
from the server. [7]

Semantic caching can be used in a spatial application once
the projection has been divided into finite regions using a
process called discretization. For many spatial applications
without discretization, there is a small probability that the
semantic cache could be utilized even if the underlying data
in the cache may be useful due to the additional semantic
information not precisely matching the current state. Dis-
cretization is the process of taking continuous data and mak-
ing it discrete. In our case, this means converting pseudo
continuous map query windows such as latitude and longi-
tude values into discrete map query windows which can be
accomplished by dividing the map projection into a series of
grid cells. By making the grid cells at least as large as the
device screen, each query can be answered by one, two or

four grid cells. A map window query can then be answered
by a lookup to the semantic cache for the required cells fol-
lowed by queries to the server if some of the cells were not
currently in the cache.

2.2 Prediction
The caching technique described above only allows for

storage of previously seen queries. At times when an appli-
cation is idle, it may save a user more time in the future by
prefetching data that might be used later using prediction.
Liu [13] modified the semantic-aware caching technique to
calculate predictions based off of previously seen queries and
request these from the server while the application was idle.
This approach known as Semantic Adaptive Caching (SAC)
looked at the query logs to approximate user behavior and
predicted up to five queries.

3. IMPLEMENTATION
We applied the SAC algorithm to the Android version of

NewStand. This section describes the methods by which
SAC was implemented on NewsStand and how its map pro-
jection can be divided into a grid. We then describe how
caching can be applied to the client side of NewsStand.

3.1 Grid Structure
The Android version of NewsStand uses the Google Maps

Android API v2 [2] for its map. The Google Maps Android
API uses the spherical Mercator map projection based on
the WGS-84 coordinate system used in many commercial
mapping APIs including OpenStreetMap, Apple Maps and
HERE Maps which preserves the angles of the meridians,
but as a result distorts the size and shape of large areas
as the object moves away from the Equator. By limiting
the maximum latitude to 85.05112878◦ North and the min-
imum latitude to 85.05112878◦ South, the map projection
is a square [1]. This square can be mapped to a coordinate
grid structure where 179◦ West and 85.05112878◦ South cor-
responds to the point (0,0) and 180◦ E and 85.05112878 ◦ N
corresponds to the point (360, 360). Latitude and longitude
coordinates can be mapped to this grid structure [3] with
longitude, lon, directly mapping to the first dimension:

x = lon+ 180

and latitude, lat, being mapped to the grid with the follow-
ing formula:
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We then subdivide the grid into equal-sized rectangles

based on the current viewing window and the zoom level
based on a set of simple rules. The width and the height
of the rectangular grid cells must be at least as large as the
corresponding width and height of the map viewing window
where the width and height correspond to the points of the
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Figure 2: Examples of the grid structure (outlined in
black) applied to the NewsStand Android App with
(a) showing the grid cells at the maximum zoom out
level and (b) showing the grid cells at zoom level 9.

projection’s coordinate system visible for a current window
given a zoom level. The width and height must also evenly
divide 360, the square projection’s side length. For exam-
ple a Samsung Galaxy S3 at the lowest zoom level (furthest
zoomed out), contains a map viewing window of approxi-
mately 63.28 grid units for its width and 91.23 grid units
for its height and the grid at this level is divided into cells
that have width 72 units and height 120 units as seen in
Figure 2(a). While zooming in to the city level (zoom level
9) has a map viewing window of approximately 0.98 grid
units for its width and 1.43 grid units for its height has a
grid that is divided into cells that have width 1 unit and
height 2 units as seen in Figure 2(b). Given the fact that
all grid cells must be at least as large as the current map
viewing window, we know that any map viewing window is
contained in one, two or four grid cells.

3.2 Client Caching
Due to the nature of news needing to be up-to-date and

window queries being sent even with the most minor of up-
dates to the map viewing window, some form of caching
must take place in order to reduce duplicate or near-duplicate
queries from having to be recalculated. As was seen in Sec-
tion 3.1, the proposed grid structure could be used so that all
window queries could be answered from the sum of at most
four grid cells. By keeping track of the results of previously
seen grid cells and predicting future grid cells, the grid cell’s
associated data can be stored in a cache and future requests
for these cells may not need to be calculated.

We begin by initializing an empty cache, C, to store the
results of previously seen or current grid cells with their as-
sociated data and the time that they were downloaded from
the server and a τ value which is the maximum time down-
loaded data can be used before it is considered stale. Each
time the map viewing window is updated begin by removing

Data: window is the current map viewing window
Data: C is the current cache
Data: query log is the query log of the last 200 queries
grid cells = calculate grid cells associated with window
cached results = initialize to empty
for curr cell ∈ grid cells do

cell cached = false
for cached cell ∈ C do

if curr cell = cached cell then
cell cached = true
if cached cell is downloaded then

Append cell cached data to
cached results

end

end

end
if cell cached = false then

request data for curr cell from server
end

end
Wait (for all grid cells)
Display (results of grid cells)
predicted cells = predict (grid cells, query log)
for predicted cell ∈ predicted cells do

cell cached = false for cached cell ∈ C do
if predicted cell = cached cell then

cell cached = true
end

end
if cell cached = false then

request data for predicted cell from server
end

end

Algorithm 1: Map Window Change

all elements from C whose download time is greater than τ
which in the case of NewsStand should be fairly short (since
it deals with streaming news) such as 120 seconds. Once the
stale elements have been removed, pass the current cache C
and the current map viewing window to Algorithm 1.

Algorithm 1 begins by calculating the grid cells that
intersect with the current window storing the intersected
grid cells in grid cells and initializes an empty results list,
cached results. Each grid cell in grid cells is then checked for
membership in C. If a grid cell in grid cells is not contained
in C, an asynchronous server request is dispatched to down-
load the associated data. If a grid cell in grid cells is con-
tained in C and the cached grid cell has finished downloading
the data, then the results are appended to the cached results.
Note that due to the requests to the server being sent asyn-
chronously, a grid cell may exist in the cache that is still
waiting for its data to be returned from the server. On com-
pletion of an asynchronous call associated with the current
map viewing window, the data is appended to cached results
and a check is made to determine whether all of the current
grid cells have been downloaded. The cached results are not
displayed until all of the data for the current grid cells have
been downloaded thereby preventing data from populating
in only certain grid cells of the map while other grid cells
remain empty.

After each grid cell in grid cells has been checked for mem-
bership in C and the server has responded with all windows



k 0 1 2 3 4 5
Dataset 1

Cache Hit (%) 53.6 55.0 55.0 54.5 54.0 52.4
Coverage (%) 73.1 75.1 74.0 74.0 73.7 73.0

Dataset 2
Cache Hit (%) 44.0 45.2 45.0 44.8 44.2 43.8
Coverage (%) 58.7 60.9 61.0 60.3 60.6 59.9

Dataset 3
Cache Hit (%) 68.7 70.0 69.3 68.2 68.5 69.0
Coverage (%) 80.0 81.0 81.0 80.7 80.6 80.4

Table 1: Effectiveness study on mobile devices look-
ing at the cache hit and coverage percentage for
three datasets.

not in C, the map is updated with the results from grid cells.
Future grid cells are then predicted using grid cells and the
query log of the last 200 window queries, query log, using the
algorithm proposed by Liu [13] and the results are stored in
predicted cells. Each grid cell in predicted cells that is not
contained in C sends an asynchronous server request to re-
trieve the data for the current grid cell. C is set to the
union of the grid cells with their associated data and the
predicted cells with their associated data.

4. EVALUATION
We evaluate our implementation with respect to both ef-

fectiveness and efficiency. We studied the performance of
our algorithm on a mobile device by recording window move-
ments on the NewsStand Android application. We created
and analyzed three datasets and evaluated the effectiveness
of our cache along with the query running times.

Datasets.
We simulated users inputs by recording window move-

ments on the NewsStand Android application on a Samsung
Galaxy S3 capturing three different datasets. Each dataset
contained 200 window movements. Dataset 1 consisted of
primarily (over 60%) panning operations while Dataset 2
consisted of primarily (over 60%) zooming operations. Dataset
3 contained a similar amount of pan and zoom operations.
The results for both the effectiveness and running time are
the average of each of the datasets of three subsequent runs
to control for varying overhead when communicating with
the server.

Effectiveness.
To evaluate the effectiveness, we computed the cache hit

rate and the coverage. The cache hit rate is the percentage
of queries that can be completely answered by the cache. For
some queries, even though not all responses are in the cache,
a partial result may be available. The coverage computes
the percentage of the responses for the next query that can
be answered based on the contents in the cache.

We vary k, the number of predictive queries, from 0 to
5, and evaluate the system using a cache size of 100. Note
that when k is zero we are using a cache with no predic-
tion, i.e. we are using just the semantic caching algorithm.
The results are shown in Table 1. As can be seen the cache
hit varies from 43.8% in Dataset 2 to 70.0% in Dataset 3
while Dataset 1 falls in between. The highest cache hit rate
is achieved when k is set to 1 in all three datasets (note

Figure 3: Query response time (ms)

k 0 1 2 3 4 5 No-cache

Dataset 1 (ms) 260 216 209 204 183 201 263
Dataset 2 (ms) 272 266 261 280 294 326 350
Dataset 3 (ms) 188 162 147 170 171 161 325

Table 2: Query response on mobile device (in ms)

k=2 gives same cache hit rate for Dataset 1). The cover-
age percentage varies from 58.7% in Dataset 2 to 81.0% in
Dataset 3 while Dataset 1 again falls in between. Dataset 1
has the highest coverage percentage when k is set to 1 and in
Dataset 2 the highest coverage percentage is achieved when
k is set to 2. In Dataset 3, the highest coverage percentage
is when k is set to 1 or 2. We see that both the cache hit rate
and the coverage are quite similar for different k for a given
dataset. We observe that overall the results for k = 1 and
k = 2 are slightly better than those for k > 2. We believe
that this is due to SAC’s prediction algorithm only looking
at the overall past movements and not with respect to the
user’s current location or their most recent of requests.

The cache hit rate shown in Table 1 means that over 43.8%
of all window queries can be answered without additional
communication to the server since the results were previ-
ously cached. Additionally, over 58.7% of the discretized
windows are in the cache. Important to note, is that the
simulated dataset most like a typical user, Dataset 3, can
achieve both a 70.0% cache hit rate and 81.0% coverage
percentage when k is set to 1. This allows for high usability
when SAC is in offline mode due to limited or no connectiv-
ity.

Running Time.
We evaluated the query response time using SAC com-

pared with a no-cache solution. For SAC, we varied k from
0 to 5, and the cache size was 100. The average response
time for Dataset 3 for varying values of k and the no-cache
solution is plotted in Figure 3. From this figure, we observe
that the no-cache solution has a more stable response time
with periodic longer queries, while SAC’s response time is
more unstable with many queries taking under 50 millisec-
onds when SAC uses the cache. For those cache hit queries,
SAC’s response time is less than the no-cache solution. The
reason is that the no-cache solution will always submit a
query to the database server, while SAC will respond to a
user immediately. For cache miss queries, SAC may result
in a larger latency as up to four queries will be requested
from the server. Even though these are asynchronous calls,
the database server’s response time increases when respond-
ing to those queries and the client’s resources are divided in



order accommodate each of the requests.
The average response times in milliseconds for the three

datasets is shown in Table 2. Here we see that in all cir-
cumstances, including when k=0, on the average the cache
outperforms the no-cache solution. We see that by setting
k to 2 in Dataset 3 we get over a 50% reduction in average
query response time. Interestingly, an increase in k may de-
crease the average query response time even though there
is a decrease in the cache hit rate and coverage as was seen
in Table 1. This is most likely due to queries being pre-
dicted that are eventually used, but not necessarily when
they were expected to be called. In some cases, the SAC
query response time decreases compared to the decrease in
the no-cache solution may be considered negligible, but more
important is the fact that these windows are available offline.

5. RELATED WORK
Client-side caching for mobile devices has been widely re-

searched [4, 5, 6, 11, 14, 15, 25]. Barbará and Imieliński [5]
studied the issue of a large number of mobile devices query-
ing remote databases assuming there would be periods of
both awake and sleep times for the devices similar to cur-
rent mobile applications switching between other applica-
tions or the devices being on standby. In this model, they
believed that cached data would have to be explicitly invali-
dated with an invalidation report sent from the server while
our invalidation is determined on the client side requiring
no additional communication with the server. Lee et al. [11]
looked into semantic query caching for mobile devices and
had a timer associated with each caching unit where on ex-
piration a refresh would be sent to the server to update
the expired cache data. The cache accommodation used by
Lee et al. is similar to our approach in that it utilizes se-
mantic locality, adapting to the patterns of query results.
However, their proposed caching algorithm only accounts
for previously seen query results while our algorithm uses
both predictive analysis of future queries and the results of
previously seen queries resulting in an increase in network
flow in order to potentially reduce wait times.

Semantic caching for mobile devices has been researched
with regards to spatial applications [4, 15, 25]. Similar to our
work, Ren and Dunham [15] looked into applying semantic
caching techniques to store location queries for areas that
may have wide areas of overlap in order to answer future
queries locally as opposed to always making server calls.
They looked at predicting future queries based on the user’s
current location, direction and velocity derived from past
locations, while we look at a comparable problem of caching
and predicting window queries. Sun and Zhou [25] created a
system for semantic caching of location queries by iteratively
decomposing the map into cells which they term Peano cells
which are able to answer queries at different zoom levels
based on the combination of lower level Peano cells. These
different levels of caching allow for zooming to be contained
in the cache, but not panning without predictive caching
or prefetching. Based on the level of the decomposition,
the proposed grid structure may require a large amount of
space to be allocated to the cache for each of the Peano
cells. Amini et al. [4] developed Caché which groups a set
of location queries in order to issue one large request to the
server. By issuing one large request, the user is granted
stronger location privacy in that their exact location is not
continuously sent to the server and offline accessibility is

improved by downloading and storing and a larger area on
the client. This work primarily considers point queries while
we focus on window queries.

6. DIRECTIONS FOR FUTURE WORK
Future work includes improving SAC’s prediction algo-

rithm so that as the number of predictions increases the
cache hit rate and the coverage percentages increase as well.
Possible improvements for the prediction algorithm include
taking into account the user’s current location and what the
user’s past actions were at this location. For example, in a
general case a user may be more likely to zoom in over a
land mass or to pan over an ocean. Greater improvements
to the prediction algorithm may come from more specific
prediction based on a current grid cell or collection of grid
cells. For example, user A may live in Orlando, FL so that
s/he often zooms into grid cells that contain Orlando while
as user B from Miami, USA may zoom into some grid cells
that contain Orlando since it is relatively close to Miami
from a world perspective, but at a close enough zoom level
may pan to the south in order to reach Miami. In addition
to historical prediction, prediction can be modified to give
weighting to recent queries, i.e. given the user has panned to
the left 5 times in a row the chance that s/he will continue
in this direction is increased.

Additional future work involves caching the results of other
operations which can be the subject of subsequent zooming
and panning operations. This is especially relevant for near-
est neighbor (e.g., [17, 21, 24]), shortest path (e.g., [22, 23]),
and spatial join (e.g., [9]) queries.
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