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Compressed Volume Rendering
using Deep Learning

Somay Jain, Wesley Griffin, Afzal Godil, Jeffrey W. Bullard, Judith Terrill and Amitabh Varshney

Abstract—Scientific simulations often generate a large amount of multivariate time varying volumetric data. Visualizing these volumes
is absolutely essential for understanding the underlying scientific processes which generate this data. In this paper, we present a
method to obtain a data-driven compact representation of the given volumes using a deep convolutional autoencoder network. We
show that the autoencoder learns high level hierarchical features, giving insights about the the distribution of the underlying data.
Moreover, the compact representation has surprisingly low storage requirements which enables it to fit on the Graphical Processing
Unit (GPU) memory. The compact representation for a given time step is efficiently decompressed using GPUs to achieve interactive
speeds for rendering and navigating large time varying datasets. Finally, the compact representation can also be used to transmit very
large volumes over bandwidth sensitive networks. We show that our proposed compact representation takes only 7% of the original
memory and reconstructs the original volume with minimal error.

Index Terms—Convolutional autoencoder neural network, Volume rendering
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1 INTRODUCTION

Scientific simulations often carried out using supercom-
puters generate a large amount of volumetric data, which
spans hundreds of time steps, each having millions of voxels
containing large scalar and vector fields. Such multivariate
time varying datasets can take several gigabytes or even
terabytes of space. The ability to visualize this immense
amount of information is absolutely essential to interpret,
analyze and gain insights about the underlying scientific
processes which generate this data.

Sharing and visualization of immense datasets are key to
facilitating new scientific discoveries. However, commodity
systems available to many researchers around the world
typically have insufficient memory and graphics hardware
to handle and visualize such large datasets. Though direct
volume rendering techniques are good for visualizing small
datasets, they cannot feasibly process very large datasets
generated using supercomputers. These obstacles could be
overcome by developing a compressed representation of
the data and the ability to visualize directly from that
compressed representation.

Recent advances in deep learning have proved to be
very useful in areas like computer vision [1], computational
linguistics [2] and audio processing [3] with the goal of
learning the underlying data distribution [4], [5]. Though
the use of deep learning in computer graphics is still limited,
the ability to capture the underlying distribution of the
given volume has been used for efficient interactive volume
rendering [6], [7], [8].

• S. Jain is with the Department of Computer Science, University of
Maryland, College Park, MD 20742.
E-mail: somay@cs.umd.edu

• A. Varshney is with the University of Maryland Institute for Advanced
Computer Studies, College Park, MD 20742.
E-mail: varshney@umiacs.umd.edu

• W. Griffin, A. Godil, J. Bullard and J. Terrill are with National Institute
of Standards and Technology, Gaithersburg, MD 20899.
E-mail: {wesley.griffin, afzal.godil, jeffrey.bullard}@nist.gov

Time varying volumes often contain implicit structures
in the data which repeat in space and time. In this work,
we propose a novel method to perform compressed vol-
ume rendering of multivariate time varying volumes. We
use a convolutional autoencoder neural network to learn
hierarchical features which capture the implicit repeating
structures present in the data. A compressed representation
of the data is generated using these high level features.
During volume rendering, a lossy reconstruction of the
original data is obtained by a non linear combination of the
compressed representation and the learned features.

The main contributions of this paper are as follows -

1) We devise a method to learn a data-driven lossy
compressed representation of time-varying multi-
variate volumes. The lossy representation is suffi-
cient for data exploration tasks like volume render-
ing.

2) We show that our model learns high level hierar-
chical features, giving insights about the underlying
data distribution.

3) We provide a real time GPU-based method to de-
compress the compressed representation on the fly.

4) We propose that the above compression technique
can be used to transfer and store very large scientific
datasets generated by systems with high computa-
tional capacity.

The remainder of the paper is organized as follows:
We review the related work in section 2. In section 3, we
describe our method in detail, including preprocessing the
data, learning the compressed representation and real time
rendering. Results and analysis on various multi-variate
time varying datasets are described in section 4. Finally, we
conclude and discuss future work in section 5.
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2 RELATED WORK

Recent years have witnessed a very rapid increase in com-
putational power, with availability of faster processors and
cheaper storage. However, because of a similar technolog-
ical development in supercomputers, there is a disparity
between the size of generated data and the size of data
which can be efficiently processed and visualized on a com-
modity system. In response to this disparity, several tech-
niques have been proposed for performing direct volume
rendering from compressed data. Most of these techniques
approximate the original data as a weighted linear com-
bination of elementary bases signals. The bases are either
analytically determined from pre-defined models, or they
are learned individually for a given dataset. Rodrguez et al.
[9] summarize a range of GPU-based compressed volume
rendering techniques.

Dunne et al. [10] used Discrete Fourier Transform (DFT)
to compress the dataset in the Fourier domain, represented
by sine and cosine signals. Though DFT renders directly in
the compression domain, it is restricted to rendering a pro-
jection in the direction perpendicular to the slice and does
not allow the use of transfer functions, shading models and
perspective projections. Moreover, the DFT representation is
unable to localize spatial structures.

Muraki et al. [11] introduced Discrete Wavelet Transform
(DWT), which transforms the data into frequency domain
while maintaining the spatial domain. DWT processes the
data using low-pass and high-pass filters. The low-pass
filters provide a coarse approximation while the high-pass
filters provide a detailed approximation of the volume.
Westermann et al. [12] showed that DWT is especially good
for block-based multi resolution rendering. Guthe et al.
[13] used a hierarchical wavelet representation to render
large datasets at interactive speeds. DFT and DWT rely on
analytically compressing the data using pre-defined models,
regardless of the structures within the data. Hence, they are
not able to capture global patterns which occur especially in
time varying datasets.

Several approaches are able to learn the bases needed
for compression individually for each dataset. Fout et al. [6]
use the linear Karhunen-Loeve Transform (KLT) to remove
redundancies in the data by estimating the covariances and
eigenvectors. KLT is closely related to Principal Component
Analysis (PCA), which projects the input data in a lower
dimensional subspace using a linear combination of uncor-
related bases. The disadvantage with KLT is that it does not
have fast forward and inverse transforms.

Kolda et al. [7] describe Tensor Approximation (TA)
as approximating a multi-dimensional input dataset (i.e., a
tensor) as a sum of rank-one tensors or as a product of a core
tensor and matrices for each dimension (Tucker decompo-
sition). These are higher order generalizations of the Singu-
lar Value Decomposition (SVD) and Principal Component
Analysis (PCA). Suter et al. [8] show that TA based methods
capture repeating structures in the data better than wavelet
transforms, thus being more suitable for interactive large
volume visualization.

Deep learning models have proven to be very useful
for learning the underlying distribution of the data [4], [5].
There also has been work on understanding the expressive

Fig. 1: Our proposed framework first preprocess the data
and trains the autoencoder network to learn a high-level
compressed representation as an offline process. It then
uses the compressed representation and trained decoder
network to generate the subsampled data on the fly, which
is visualized using ray casting.

Fig. 2: Preprocessing the data: Normalizing and arranging
the data for each time step as multivariate slices

power of deep learning models [14] [15]. Cohen et al. [15]
look at it from the perspective of tensor decomposition.
They show that a shallow neural network corresponds to
a rank-one tensor decomposition, whereas a deep neural
network corresponds to a Hierarchical Tucker decomposi-
tion. Thus, a deep neural network is a hierarchical rep-
resentation of the tensor decomposition and has a richer
representational capacity than Tensor Approximation (TA).
Moreover, deep convolutional autoencoder networks are
known to learn features invariant to translations, rotations
and deformations [16]. Decomposing the data as a hierar-
chical combination of robust features allows us to store a
compact representation of the data.

3 APPROACH

The proposed framework describes a method for render-
ing time varying multivariate volumes from learned com-
pressed representation as summarized in Figure 1. We first
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Fig. 3: Schematic representation of the autoencoder network trained using backpropogation.

preprocess the data into multivariate slices along the z-
axis and then train a stacked convolutional autoencoder
network to capture the high level features in the data. After
training, the autoencoder network is split into encoding
and decoding networks. The output layer of the encoding
network gives a compressed representation of the data,
which is computed as a nonlinear combination of input
data and hierarchical features learned by the network. The
decoder network takes this compressed representation and
generates a lossy reconstruction of the input data. The vol-
ume renderer uses the decoder network to decompress the
volume corresponding to a time step on the fly as needed.

3.1 Preprocessing data
The given volume can be represented as a multidimensional
array of size X×Y×Z×K×T , where X ,Y ,Z are the dimensions
of the volume, K is the dimension of the multivariate field
represented by each voxel and T is the number of time steps
of the time-varying volume. Figure 2 gives an overview of
the preprocessing step. We first normalize the data between
0 and 1 for each multivariate dimension across all time steps.
We then arrange the data as multivariate slices along the z-
axis. This is done so that the multivariate field acts as a
channel to the autoencoder network.

3.2 Autoencoder Architecture
Our proposed stacked convolutional autoencoder architec-
ture consists of convolutional, activation, max-pooling and
upsampling layers. Figure 3 shows a schematic represen-
tation of the autoencoder. The architecture is composed
of an encoder network, which converts the input into a
compressed representation, and a decoder network, which
reconstructs the input with minimal error. The encoder and
decoder network are jointly trained using backpropogation.
Once trained, the encoder and decoder networks are sep-
arated and used for compressing and decompressing the
data, respectively.

3.2.1 Convolutional Layers
The convolutional layer consists of trainable filters (or ker-
nels) Wp,q which are convolved with the input volume U
of size x × y × p to generate a volume V of size x × y × q,
where x and y correspond to the spatial dimensions, p and
q represent the number of channels (or feature maps) in U
and V respectively. The i-th channel Vi of the output volume
is calculated as

Vi =

p∑
j=1

Wj,q ∗Uj + bi (1)

where bi represents the trainable bias associated with the
channel Vi . The size of filters is kept constant 3 × 3 in this
work. While the receptive field captured by these filters is
small, multiple convolution layers are stacked one after the
other to capture a larger receptive field with fewer trainable
parameters [17]. Two convolution layers with 3 × 3 filters
has an effective receptive field of 5× 5 and three such layers
have an effective receptive field of 7 × 7.

3.2.2 Activation Layers
The activation layers apply a nonlinear activation function
f to all elements vi of the convolutional layer output V . We
use Rectified Linear Units (ReLUs) to propagate only the
positive inputs to the next layer for all convolutional layers
except the output layer:

f (vi ) = max(0,vi ) (2)

We apply the sigmoid activation function to the output
convolutional layer of the autoencoder network to obtain
the output between 0 and 1.

f (vi ) =
1

1 + e−vi
(3)

3.2.3 Max-pooling Layers
Max-pooling layers apply a max filter to non-overlapping
sub-regions of the input so as to downsample the input and
reduce the number of parameters in subsequent layers of the
encoder network. These layers do not contain any trainable
parameters.

3.2.4 Upsampling Layers
Upsampling layers simply expands the spatial dimensions
x and y of the input volume U of size x × y × p by sx and sy
respectively to generate a volume V of size (sxx) × (syy) × p.
These layers do not contain any trainable parameters and
are used in the decoder network to reconstruct the volume
of the original size.

3.2.5 Training
Table 1 shows the layer architecture of the autoencoder
network. The network is trained with multivariate slices
from all time steps, obtained after the preprocessing step
as outlined in section 3.1. The output of the network is
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Layer Input
Channels

Output
Channels Stride Filter Size

Convolutional 1 64 1 3x3
Convolutional 64 64 1 3x3
Max Pooling 64 64 2 2x2

Convolutional 64 64 1 3x3
Convolutional 64 32 1 3x3
Max Pooling 32 32 2 2x2

Convolutional 32 16 1 3x3
Convolutional 16 8 1 3x3
Max Pooling 8 8 2 2x2

ConvolutionalE 8 4 1 3x3
Convolutional 4 8 1 3x3
Convolutional 8 16 1 3x3
Convolutional 16 32 1 3x3
Up Sampling 32 32 2 2x2
Convolutional 32 64 1 3x3
Convolutional 64 64 1 3x3
Up Sampling 64 64 2 2x2
Convolutional 64 64 1 3x3
Convolutional 64 64 1 3x3
Up Sampling 64 64 2 2x2

ConvolutionalD 64 1 1 3x3

TABLE 1: The architecture of our proposed convolutional
autoencoder. The output of the ConvolutionalE layer gives
the compressed representation of the input slice. Output of
ConvolutionalD layer gives the reconstructed slice.

Fig. 4: Decompression at a specific resolution from the
learned compressed representation and trained decoder net-
work.

a reconstruction of the input slice. We minimize the cross
entropy between the input slice and the reconstructed slice
using the ADADELTA solver [18] with a momentum of 0.95.
We train the network by randomly sampling slices from the
input data, until the mean squared error between the input
volume and the reconstructed volume stops to decrease.
The number of iterations required during training depends
on the complexity of the dataset and the desired quality of
reconstruction.

3.3 Decompression

Once the autoencoder network is trained, the compressed
representation for each multivariate slice and the decoder
network are retained. Decompressing a slice at original res-
olution is done by feeding the compressed slice through the
decoder network. This involves a series of basic convolution,
max and upsampling operations. The process of decompres-
sion is done per slice on the fly whenever required so that
it only requires additional memory corresponding to one
reconstructed slice at full resolution, as outlined in Figure 4.

Our proposed architecture enforces that the learned rep-
resentation is small enough to reside on the memory and the
decoder network is simple, consisting of basic operations
which can be carried out on the GPU. This enables in-

teractive rendering of very large time-varying multivariate
volumes.

3.4 Volume rendering
While rendering, the volume for the required time step is
decompressed with the GPU, using the decoder network on
the fly. A coarser volume is first obtained by decompressing
subsampled slices along the z-axis. The coarser volume is
continuously refined by decompressing the remaining slices
while the coarser volume is being rendered. Decompression
is performed until a finer volume is obtained, after which
rendering is done directly from the finer volume. This is
done to facilitate real time switching between time steps
while exploring the time varying volume.

We use the ray casting algorithm [19] for visualizing the
volume. For each pixel in the output image, we cast a ray
into the volume along the viewing direction. The color for
the target pixel is computed by compositing the colors of
the sampled points along the ray. The mapping from voxel
intensity to color and opacity is given by the user defined
transfer function.

Fig. 5: User interface for specifying the transfer function
used in volume rendering.

Figure 5 shows the user interface for specifying the
transfer function. The x-axis represents the intensity of the
voxel scaled between 0 to 255 and y-axis represents the
opacity. Users can edit the transfer function by adding,
removing, or moving the control points. Users can also
assign a unique color and opacity to each control point.
The color and opacity are linearly interpolated between
adjacent control points. Changes in the transfer function are
dynamically reflected in volume rendering in real time.

4 RESULTS

4.1 Implementation
We implement our deep learning compression and de-
compression networks using the Keras framework [20].
The GPU-based rendering from compressed representation
is implemented using cuDNN [21], OpenGL and CUDA.
Training the autoencoder network is done as an offline
process on a system with Intel Xeon 2.6 GHz CPU and a
NVIDIA Tesla K80 GPU. Volume rendering is run on a Intel
Xeon 2.1 GHz CPU with a NVIDIA GTX 1080 GPU.

4.2 Datasets
The datasets were generated on the Texas Advanced Com-
puting Center computer, Stampede, through an NSF XSEDE
grant [22]. The size of the time varying multivariate datasets
used are outlined in Table 2.

The datasets in Table 2 all are representations of
micrometer-sized Ca3SiO5 particles suspended in water to
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(a) Dataset1: Rendering from
uncompressed volume

(b) Dataset1: Rendering from wavelets
compressed representation

(c) Dataset1: Rendering from learned
compressed representation

(d) Dataset2: Rendering from
uncompressed volume

(e) Dataset2: Rendering from wavelets
compressed representation

(f) Dataset2: Rendering from learned
compressed representation

(g) Transfer function used for Dataset1 (h) Transfer function used for Dataset2

Fig. 6: Comparison of volume rendering of Ca3SiO5 concentration from Dataset 1 and 2 at an intermediate time step. The
compressed representations (sub-figures b, c, e and f) take 7 % of the total memory. It can be seen that rendering from
our learnt representation (sub-figures c and f) is very similar to the uncompressed volume (sub-figures a and d), whereas
rendering from wavelets compressed representation (sub-figures b and e) results in a very coarse reconstruction. (g, h)
show the transfer function used.

Name Dimensions of
the volume

Elements
per voxel

No of
timesteps Size

Dataset1 52 x 52 x 37 39 88 2.56GB
Dataset2 100 x 100 x 100 39 20 5.81GB
Dataset3 100 x 100 x 100 39 196 56.95GB

TABLE 2: Description of the datasets used

initiate dissolution and precipitation reactions. Ca3SiO5 is
the majority mineral component of portland cement, and its
reaction in water governs the early-time heat release, setting,
and strength development in concrete. Therefore, Ca3SiO5
is often used as a convenient proxy in experimental and
computational investigations of portland cement hydration.

The dataset labeled “Dataset1” in Table 2 is a collection of
nine micrometer-sized particles of Ca3SiO5 affixed to a tung-
sten needle, which were subsequently submerged in water
to initiate hydration reactions. The system was constructed
from X-ray microtomography scans of an actual system.
The hydration behavior of this system and comparisons to
computer simulations have been reported recently [23], [24].
Datasets 2 and 3 were created by randomly parking Ca3SiO5

particles to a volume fraction of 0.38, which is typical of the
solid volume fraction in concrete binders. The particle size
distribution is unimodal with a range of [0.125 µm, 75 µm]
and a mode of 22 µm, which is typical of portland cement
powder. The shapes were reproduced by spherical harmonic
modeling of X-ray microtomography scans of thousands of
particles of a reference cement [25].

4.3 Quality of Reconstruction
Figure 6 shows rendering of Ca3SiO5 concentration from
Dataset 2 at an intermediate timestep. It shows the com-
parison between rendering from the wavelets compressed
representation and our autoencoder learnt representation.
Both representations use 7 % of the total memory of the
dataset. It can be seen that rendering from the wavelets com-
pressed representation gives a very coarse reconstruction of
the original volume, with a lot of visual artifacts. On the
other hand, rendering from our learnt representation gives
a very close approximation of the original volume with no
visible artifacts.

The quantitative quality of the reconstructed volume is
measured using the mean squared error (MSE) between the
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Model Dataset1 Dataset2
MSE PSNR MSE PSNR

Daubechies1 Wavelet 0.0026 25.850 0.0454 13.432
Daubechies2 Wavelet 0.0017 27.695 0.0360 14.430
Daubechies3 Wavelet 0.0016 27.958 0.0338 14.707

Discrete Mayer Wavelet 0.0015 28.239 0.0320 14.943
Biorthogonal 9/3 Wavelet 0.0024 26.197 0.0219 16.588

CNN Autoencoder 0.000061 42.125 0.0049 23.098

TABLE 3: Mean Squared Error (MSE) and Peak Signal to
Noise Ratio (PSNR) of reconstruction from 7 % data (14.28:1
compression ratio) for various models

Fig. 7: Visualization of filters learnt in the first three layers of
the autoencoder network. Small images represent the input
which maximizes the output of the visualized filter, depict-
ing the features captured by the filter. It can be seen that
the features are hierarchical and their complexity increases
with depth of the layer. The first layer learns basic features,
which are combined to form textures in the second layer,
which combine to form complex patterns in the third layer.
Best viewed while zoomed in.

original and the reconstructed value. Another metric used is
the Peak Signal to Noise Ratio (PSNR), which is calculated
as

PSNR = 10 loд10

(
(MAXI )2
MSE

)
where MAXI is the maximum possible intensity of the voxels
present in the volume.

Table 3 show a quantitative comparison of reconstruc-
tion between our proposed approach and wavelet based
approaches. The compression ratio of the compressed rep-
resentation is 14.28:1. Our proposed approach gives much
higher quality of reconstruction with very low storage re-
quirements.

4.4 Analysis of Learned Filters

Our proposed approach learns a hierarchical representation
of the structures present in the volume. To interpret the
representation learned by our convolutional autoencoder
network, we visualize the convolution filters at each layer
using regularized gradient ascent [26]. We start with a ran-
dom input and iteratively modify it by taking an ascent step
in the direction of the gradient of the filter. This generates
an input which maximizes the output of the filter we wish
to visualize.

Figure 7 shows the visualization of filters from selected
filters of the first three layers of the autoencoder network.
Each small image corresponds to the visualization of one
filter of the network. The features learned are hierarchical
and their complexity increases with the depth of the layers.
The first layer of the network learns basic features. These
basic features are then combined to form simple textures in
the second layer, which eventually combine to form complex
structures and patterns in the third layer. The high level
features captured by the deeper layers also give an insight
about the underlying distribution of the data.

5 CONCLUSION

Scientific simulations carried out on systems with high
computational capacity often generate large amount of
multivariate time varying volumetric data. Visualizing this
immense amount of data in real time on commodity sys-
tems is a huge challenge. In this work, we apply a deep
learning based approach to capture hierarchical features in
the data and use them as learned bases to form a compact
representation of the input data. The compact representation
has surprisingly low storage requirements and a recon-
struction of the original data is obtained from the compact
representation with very low reconstruction error. We show
that the quality of compression outperforms the classical
wavelets based compression methods. While rendering, we
store the compact representation for all time steps on the
GPU memory and reconstruct the original data on the fly as
needed. This facilitates real time rendering and exploration
of the time varying dataset.

In the future, one could investigate in learning similar
models using high performance distributed computing, so
that the model could be learned while the simulation is
running.
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