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Abstract. This paper presents an introduction to the problem of temporal graph 
data management in the form of a survey of relevant techniques from database 
management and graph processing. Social network analytics, which focuses on 
finding interesting facts over static graphs, has gathered much attention lately. 
However, there hasn’t been much work on analysis of temporal or evolving 
graphs. We believe that efficient techniques to store and query temporal graphs 
are essential in order to build tools for such analytical tasks. We present 
previous work done in the areas of temporal relational databases, geospatial 
databases, graph data management and models of network evolution etc. Also, 
we present a glimpse of our ongoing work to perform efficient Snapshot 
Retrieval on Historical Graphs.  
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1 Introduction 

In recent years, there has been a sharp surge in the availability of information network 
data. Ranging from the digital footprint of online social networks (e.g. Facebook, 
LinkedIn, Orkut), social media (e.g. Youtube, Flickr, Blogs) to biological networks 
(e.g. Protein-Protein interaction) and financial transactional networks, large 
information graphs are ubiquitous. Analysts, sociologists, computer scientists and 
others are interested in exploring the nature of relationships, patterns, occurrence of 
communities etc. to understand certain types of behavior or predict events amongst 
many other objectives. Appropriately, many tools and libraries have been developed 
to conduct social network analysis (e.g. NodeXL[31], SNAP[32], Blueprints[8]) on 
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graph datasets. However, most of the work in Social Network Analysis till date has 
focused on examination of static network snapshots. While there has been some 
recent work in dynamic network visualization [16], demonstrating some interesting 
scenarios on time evolving networks, we are unaware of any tools that handle 
dynamic graphs at a reasonable scale. In a recent work, Ahn et al. [2] present an 
exhaustive taxonomy of temporal visualization tasks. Ren et al. [28] analyze evolution 
of shortest paths between a pair of vertices over a set of snapshots from the history. 
Our goal is to explore possibilities to build a graph data management system that can 
efficiently and scalably support these types of dynamic network analysis tasks over 
large volumes of data in real-time.  

In this paper, we focus on prior work in several connected areas. First, we talk 
about the work on graph evolution to understand the nature of change in networks. 
We then talk about related work in temporal relational databases and spatial databases 
and their applicability in performing basic snapshot retrieval on temporal graphs. We 
then talk about existing graph data stores and graph query languages. Finally, we talk 
briefly about our ongoing work in efficient snapshot retrieval on temporal graph 
datasets. 

 

 

Figure 1. Evolution of communities in a network 
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2 Evolution of Networks 

There has been an increasing interest in dynamic network analysis over the last 
decade, fueled by the increasing availability of large volumes of temporally annotated 
network data. Many works have focused on designing analytical models that capture 
how a network evolves, with a primary focus on social networks and the Web. 
Barabasi [5] showed that the topology of web follows a growth that can be explained 
using a power law over degree distribution. Certain nodes in the network act as hubs 
and there is a heavily tailed degree distribution. This phenomenon, known as “scale-
free networks” was recently extended by Leskovec and others [20] with discovery of 
properties of real networks like decrease in diameter, densification over time and the 
Forest Fire Model which explains a sharp transition between sparse graphs and graphs 
that are densifying. Work by Kumar and others [17] tells us that a real network is 
composed of a) singletons, who do not participate in the network, b) isolated 
communities, which overwhelmingly display star structure, c) a giant component, 
anchored by a well-connected core region that persists even in the absence of stars. A 
complete study of related work in this area is beyond the scope of this work. Overall, 
the self-similarity and scale-free properties give us an interesting insight into the 
temporal change in real networks. 

There is also much work on understanding how communities evolve, identifying 
key individuals, and locating hidden groups, in dynamic networks. Berger-Wolf et al. 
[6, 37], Tang et al. [35] and Greene et al. [13] address the problem of community 
evolution in dynamic networks. McCulloh and Carley [23] present techniques for 
social change detection. Asur et al. [4] present a framework for characterizing the 
complex behavioral patterns of individuals and communities over time. 

3 Temporal and Spatial Databases 

There is a vast body of literature on temporal relational databases, starting with the 
early work in the 80’s on developing temporal data models and temporal query 
languages. We won’t attempt to present a exhaustive survey of that work, but instead 
refer the reader to several surveys and books on this topic [9, 33, 26, 36, 11, 33, 29]. 
The most basic concepts that a relational temporal database is based upon are valid 
time and transaction time, considered orthogonal to each other. Valid time denotes the 
time period during which a fact is true with respect to the real world. Transaction time 
is the time when a fact is stored in the database. A valid-time temporal database 
permits correction of a previously incorrectly stored fact [33], unlike transaction-time 
databases where an inquiry into the past may yield the previously known, perhaps 
incorrect version of a fact.  
 From a querying perspective, both valid-time and transaction-time databases 
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can be treated as simply collections of intervals [29], however indexing structures that 
assume transaction times can often be simpler since they don’t need to support 
arbitrary inserts or deletes into the index. Salzberg and Tsotras [29] present a 
comprehensive survey of indexing structures for temporal databases. They also 
present a classification of different queries that one may ask over a temporal database. 
Under their notation, our focus in this survey is on the valid timeslice query, where 
the goal is to retrieve all the entities and their attribute values that are valid as of a 
specific time point. 

An optimal solution to answering snapshot retrieval queries is based on an 
external interval tree, presented by Arge and Vitter [3]. Their proposed index 
structure uses optimal space on disk, and supports updates in optimal (logarithmic) 
time. Segment trees [7] can also be used to solve this problem, but may store some 
intervals in a duplicated manner and hence use more space. Tsotras and Kangelaris 
[39] present snapshot index, an I/O optimal solution to the problem for transaction-
time databases. Salzberg and Tsotras [29] also discuss two extreme approaches to 
supporting snapshot retrieval queries, called Copy and Log approaches. In the Copy 
approach, a snapshot of the database is stored at each transaction state, the primary 
benefit being fast retrieval times; however the space requirements make this approach 
infeasible in practice. The other extreme approach is the Log approach, where only 
and all the changes are recorded to the database, annotated by time. While this 
approach is space-optimal and supports O(1)-time updates (for transaction-time 
databases), answering a query may require scanning the entire list of changes and 
takes prohibitive amount of time. A mix of those two approaches, called Copy+Log, 
where a subset of the snapshots is explicitly stored, is often a better idea. 

While these approaches serve can be used for the problem of snapshot retrieval in 
temporal data, they are insufficient and inflexible for an efficient and general-purpose 
solution to temporal graph data stores. First, they do not efficiently support multipoint 
queries that are expected to be very commonly used in evolutionary analysis and need 
to be optimized by avoiding duplicate reads and repeated processing of the events. 
Second, to cater to the needs of a variety of different applications, such an index 
structure needs to be highly tunable, and to allow trading off different resources and 
user requirements (including memory, disk usage, and query latencies). Ideally one 
would also like to control the distribution of average snapshot retrieval times over the 
history, i.e., to be able to reduce the retrieval times for more recent snapshots at the 
expense of increasing it for the older snapshots (while keeping the utilization of the 
other resources the same), or vice-versa. For achieving low latencies, the chosen 
index structure should support flexible pre-fetching of portions of the index into 
memory and should avoid processing any events that are not needed by the query 
(e.g., if only the network structure is needed, then we should not have to process any 
events pertaining to the node or edge attributes). Finally, we would like the index 
structure to be able to support different persistent storage options, ranging from a hard 
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disk to the cloud; most of the previously proposed index structures are optimized 
primarily for disks. 

4 Graph Data Management 

There has been resurgence of interest in general-purpose graph data management 
systems in both academia and industry. Several commercial and open-source graph 
management systems are being actively developed (e.g., Neo4j2, GBase3, Pregel [16]). 
Blueprints [8] is a set of interfaces which links graph stores like Neo4j with graph 
algorithm APIs like JUNG (Java Universal Network/Graph Framework)4 to operate 
upon the underlying graph data. There is much ongoing work on efficient techniques 
for answering various types of queries over graphs and on building indexing 
structures for the same. However, there do not exist any graph data management 
system that focuses on optimizing snapshot retrieval queries over historical graph 
traces, and on supporting rich temporal analysis of large networks. 
 
 There is also prior work on temporal RDF data and temporal XML Data. 
Motik [24] presents a logic-based approach to representing valid time in RDF and 
OWL. Several works (e.g., [27, 38]) have considered the problems of subgraph 
pattern matching or SPARQL query evaluation over temporally annotated RDF data. 
There is also much work on version management in XML data stores. Most scientific 
datasets are semistructured in nature and can be effectively represented in XML 
format [10]. Lam and Wong [19] use complete deltas, which can be traversed in either 
direction of time for efficient retrieval. Other systems store the current version as a 
snapshot and the historical versions as deltas from the current version [22]. For such a 
system, the deltas only need to be unidirectional. Ghandeharizadeh et al. [12] provide 
a formalism on deltas, which includes a delta arithmetic. All these approaches assume 
unique node identifiers to merge deltas with deltas or snapshots. Buneman et al. [10] 
propose merging all the versions of the database into one single hierarchical data 
structure for efficient retrieval. However, none of that prior work focuses on snapshot 
retrieval in general graph databases, or proposes techniques that can flexibly exploit 
the memory-resident information. 
 

                                                             
2 http://www.neo4j.org 
3 http://www.graphbase.net 
4 http://jung.sourceforge.net 
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5 Introduction to HGDB 

Historical Graph Database (HGDB) is the part of ongoing work at University of 
Maryland that is aimed at creating a database optimized for retrieving Historical 
Snapshots and performing analytical tasks on temporal networks [15]. The core ideas 
behind this system are to store the historical trace of the network on disk in a space 
efficient manner, and to load the required graphs on-demand in memory in a compact, 
non-redundant manner. 

Figure 2 shows a high level overview of our system and its key components. At a 
high level, there are multiple ways that a user or an application may interact with a 
historical graph database. Given the wide variety of network analysis or visualization 
tasks that are commonly executed against an information network, we expect a large 
fraction of these interactions will be through a programmatic API where the user or 
the application programmer writes her own code to operate on the graph. Such 
interactions result in what we call snapshot queries being executed against the 
database system. Executing such queries is the primary focus of this system. In 
ongoing work, we are also working on developing a high-level declarative query 
language (similar to TSQL [24]) and query processing techniques to execute such 
queries against our database. As a concrete example, an analyst who may have 
designed a new network evolution model and wants to see how it fits the observed 
data, may want to retrieve a set of historical snapshots and process them using the 
programmatic API. On the other hand, a declarative query language may better fit the 
needs of a user interested in searching for a temporal pattern (e.g., find nodes that had 
the fastest growth in the number of neighbors since joining the network). 

The most basic model of a graph over a period of time is as a collection of graph 
snapshots, one corresponding to each time instance (we assume discrete time). Each 
such graph snapshot contains a set of nodes and a set of edges. The nodes and edges 
are assigned unique ids at the time of their creation, which are not reassigned after 
deletion of the components (a deletion followed by a reinsertion results in assignment 
of a new id). A node or an edge may be associated with a list of attribute-value pairs; 
the list of attribute names is not fixed a priori and new attributes may be added at any 
time. Additionally an edge contains the information about whether it is a directed 
edge or an undirected edge. 

We define an event as the record of an atomic activity in the network. An event 
could pertain to either the creation or deletion of an edge or node, or change in an 
attribute value of a node or an edge. Alternatively, an event can express the 
occurrence of a transient edge or node, which is valid only for that time instance 
instead of an interval (e.g., a “message” from a node to another node). Being atomic 
refers to the fact that the activity cannot be logically broken down further into smaller 
events. Hence, an event always corresponds to a single timepoint. So, the valid time 
interval of an edge, [ts,te], is expressed by two different events, edge addition and 
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deletion events at ts and te respectively. All events are recorded in the direction of 
evolving time, i.e., going ahead in time. A list of chronologically organized events is 
called an eventlist. 

 
There are two key data structure components of our system. 
 1. GraphPool is an in-memory data structure that can store multiple graphs 
together in a compact way by overlaying the graphs on top of each other. At any time, 
the GraphPool contains: (1) the current graph that reflects the current state of the 
network, (2) the historical snapshots, retrieved from the past using the commands 
above and possibly modified by an application program, and (3) materialized graphs, 
which are graphs that correspond interior or leaf nodes in the DeltaGraph, but may not 
correspond to any valid graph snapshot. GraphPool exploits redundancy amongst the 
different graph snapshots that need to be retrieved, and considerably reduces the 
memory requirements for historical queries. More specifically, memory footprint of 
the system is given by: |Gc + G1 + … + Gn| ≈ |Gc ∪ G1 ∪ G2 … ∪ Gn|+z, where Gc is 
the current graph, G1 … Gn are retrieved snapshots, and z is the small extra overhead 
of maintaining the overlaid structure. 
 2. DeltaGraph is a disk-resident index structure that stores the historical 
network data using a hierarchical index structure over deltas and leaf-level eventlists 
(called leaf-eventlists). To execute a snapshot retrieval query, a set of appropriate 
deltas and leaf-eventlists are fetched and the resulting graph snapshot is overlaid on 
the existing set of graphs in the GraphPool. The structure of the DeltaGraph itself, 
called DeltaGraph skeleton, is maintained as a weighted graph in memory (it contains 
statistics about the deltas and eventlists, but not the actual data). The skeleton is used 
during query planning to choose the optimal set of deltas and eventlists for a given 
query.  
 The data structures are managed and maintained by several system 
components. HistoryManager deals with the construction of the DeltaGraph, plans 
how to execute a singlepoint or multipoint snapshot query, and reads the required 
deltas and eventlists from the disk. GraphManager is responsible for managing the 
GraphPool data structure, including the overlaying of deltas and eventlists, bit 
assignment, and post-query clean up. Finally, the QueryManager manages the 
interface with the user or the application program, and extracts a snapshot query to be 
executed against the DeltaGraph. 

Using DeltaGraph index, snapshot retrieval involves finding the correct and 
optimal set of deltas and events (through eventlists) to be read from the disk and be 
loaded into the GraphPool (in memory). Once, the required snapshot or the graph is in 
GraphPool, it may be used for the desired computational objective, e.g. executing 
PageRank or determining shortest paths. 
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6 Conclusion 

In this paper, we discussed the problem of managing historical or temporal 
information of large networks. While there has been considerable work in temporal 
relational data management and graph data management respectively, the area of 
temporal graph management still lies unaddressed to a large extent. It is clear that 
temporal social network analytics on any scale of a reasonable size would require an 

Figure 2. System Architecture for our proposed Historical Graph Data        
Management System 
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underlying system for efficiently managing such data. We also presented an outline of 
our ongoing work on snapshot retrieval on historical graphs. 
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