Abstract

We present BanditLOLS, an algorithm for learning to make joint predictions from bandit feedback. The learner repeatedly predicts a sequence of actions, corresponding to either a structured output or control behavior, and observes feedback for that single output and no others. To address this limited feedback, we design a structured cost-estimation strategy for predicting the costs of some unobserved structures. We demonstrate the practical importance of this strategy: without it, performance degrades dramatically over time due to high variance. Furthermore, we empirically compare a number of different exploration methods (ε-greedy, Boltzmann sampling, and Thompson sampling) and show the efficacy of the proposed algorithm. Our approach yields improved performance on three natural language processing tasks.

1 INTRODUCTION

The challenge of making a collection of predictions simultaneously and consistently arises in a variety of settings, most notably structured prediction (e.g., image segmentation, machine translation) and control (e.g., self-driving cars). For problems like these, it is often possible to build an initial, baseline system learned from a small amount of fully supervised data (parallel translations or driving demonstrations). Unfortunately, the performance of such a system is often limited to: the domain it was built on, the loss function it was optimized for, the small hypothesis class chosen (because of small amounts of data), an upper bound of performance based on the quality of the training data or demonstrator.

Our goal is to develop an algorithm that can take such a baseline system, and improve its performance over time based on interactions with the world. Because this improvement is through natural interactions, it is guaranteed to be in the right domain, and guaranteed to match real-world rewards. This also means the system will naturally improve over time, beyond the performance of the initial data. In particular, we assume a very weak form of bandit feedback: the system learns a policy that makes a joint prediction (segmentation, translation or trajectory) and receives a small amount of feedback about the quality of its prediction. Such bandit feedback is very limited: the system never gets to observe the “correct” output. This means that it faces a fundamental exploration/exploitation trade-off, where the learning problem requires balancing reward maximization based on the knowledge already acquired (exploitation) with attempting new behavior to further increase knowledge (exploration).

We describe BanditLOLS, an approach for improving joint predictors from bandit feedback. BanditLOLS is an extension of the recently-proposed LOLS algorithm (Chang et al., 2015) for addressing the structured contextual bandit learning problem (§2). BanditLOLS extends LOLS algorithm in two crucial ways. First, during an exploration phase, BanditLOLS employs a doubly-robust strategy of estimating costs of unobserved outcomes in order to reduce variance (§3.1). In order to accomplish this, we learn a separate regressor for predicting unknown costs, which requires some additional feedback for estimation. Experimentally, we found this to be crucial (§4): without it, the bandit feedback often led to decreased rather than increased accuracy. Second, BanditLOLS employs alternative forms of exploration, based on the predictions and uncertainties of the underlying policy (§3.2). We demonstrate the efficacy of these developments on several challenging natural language processing applications (§4). The experimental setup we consider is the online learning setting: what is the loss of the deployed system that faces (simulated) users as it balances exploration and exploitation. Our implementation will be made freely available.
ways. In the structured prediction setting, the setting we address is the structured contextual bandit framework introduced by Chang et al. (2015); in the control setting, it is closely related to the heuristic used by AlphaGo (Silver et al., 2016) in which imitation learning is used to initialize a good policy for playing Go, after which reinforcement learning is used to improve that policy. We jointly address both the structured prediction case and the control case by casting structured prediction as a learning to search problem (Daumé III et al., 2009), a view that has had great success recently in neural network sequence-to-sequence models (Bengio et al., 2015; Wiseman and Rush, 2016).

2 BACKGROUND

We operate in the learning to search framework, a style of solving joint prediction problems that subsumes both structured prediction and control. This family includes a number of specific algorithms including LaSO (Daumé III and Marcu, 2005; Xu et al., 2007; Wiseman and Rush, 2016), Searn (Daumé III et al., 2009), DAGger (Ross et al., 2010; Bengio et al., 2015), Aggrevate (Ross and Bagnell, 2014), LOLS (Chang et al., 2015), and others (Doppa et al., 2014). These approaches all decompose a joint prediction task into a sequence of smaller prediction tasks, which are tied by features and/or internal state.

Because these approaches decompose a joint prediction task into making a sequence of predictions, it becomes natural to leverage terminology and techniques from reinforcement learning. Learning to search approaches solve the fully supervised structured prediction problem by decomposing the production of the structured output in terms of an explicit search space (observations and actions); and learning hypotheses that control a policy that takes actions in this space. For example, in a neural machine translation setting (Bahdanau et al., 2014), in each step, the predictor observes the input sentence, the previously predicted word, and its own internal state; from this, it predicts the next word. In practice, this policy is typically implemented as a multi-class classifier, where it chooses an action (class) given an observation (features). After the prediction is complete, the world reveals a joint loss over the entire set of predictions.

The key learning challenge is the chicken-and-egg problem regarding measuring the quality of a policy’s individual decisions. A good individual decision is one that, together with all the other individual decisions (past and future) made by that policy, yields a low joint loss. Different learning to search algorithms largely vary in terms of how they address this chicken-and-egg problem, typically through forms of iteration. This problem is shared in full reinforcement learning; however, unlike full reinforcement learning, learning to search approaches assume access to a reference policy that guides behavior at training time, significantly reducing (or sometimes entirely eliminating) the exploration/exploitation trade-off. This reference policy has historically been assumed to be optimal, in which case it is called an oracle policy.

A common strategy for solving this chicken-and-egg problem is to consider a form of “one-step deviations.” In particular, some policy is used to generate the prefix of a prediction (a “roll-in”), from which all possible actions are considered (one-step deviations), and the joint prediction is completed according to a rollout policy (see Figure 1). This allows one to address the credit assignment problem (by holding everything fixed except the one-step deviation). Chang et al. (2015) theoretically and experimentally analyze several choices of roll-in and roll-out policies, many of which subsume existing algorithms. They advocate an online learning strategy, in which the current learned policy is used for roll-in. If the reference policy is known to be optimal, they advocate using the reference policy for roll-out (matching the Aggrevate algorithm); if not, they advocate using a mixture of the

1 Although the decomposition is into a sequence of predictions, such approaches are not limited to “left-to-right” style prediction tasks. The standard way to approach broader classes of problems is to take a well known inference algorithm like belief propagation, linearize its behavior, and train predictors based on that linearization (Ross et al., 2010; Stoyanov et al., 2011).

2 Occasionally the term “dynamic oracle” is used to refer to an “oracle”; we avoid this term because it is giving an unnecessary new name to an old concept.
Input: Dataset \(\{x_i, y_i\}_{i=1}^{N}\) drawn from \(D\) and \(\beta \geq 0\): a mixture parameter for roll-out.

1. Initialize a policy \(\pi_0\).
2. for all examples/episodes \(i = 1 \ldots N\) do
 3. Generate a reference policy \(\pi^\text{ref}\).
 4. Initialize \(\Gamma = \emptyset\).
 5. for \(t = 0 \ldots T - 1\) do
 6. Roll-in by executing \(\pi^\text{in}_t = \hat{\pi}_t\) for \(t\) steps and reach \(s_t\).
 7. for all \(a \in A(s_t)\) do
 8. Let \(\pi^\text{out}_t = \pi^\text{ref}\) with probability \(\beta\), otherwise \(\hat{\pi}_t\).
 9. Evaluate cost \(c_{i,t}(a)\) by rolling-out with \(\pi^\text{out}_t\) for \(T - t - 1\) steps and observing the final loss.
 end
 10. Generate a feature vector \(\Phi(x_i, s_t)\).
 11. Set \(\Gamma = \Gamma \cup \{c_{i,t}, \Phi(x_i, s_t)\}\).
 12. end
 13. \(\hat{\pi}_{i+1} \leftarrow \text{Train}(\hat{\pi}_i, \Gamma)\) (Update).
 end
14. return the average policy across \(\hat{\pi}_0, \hat{\pi}_1, \ldots \hat{\pi}_N\)

Algorithm 1: Locally Optimal Learning to Search

LOLS assumes access to a cost-sensitive classification algorithm. A cost-sensitive classifier predicts a label \(\hat{y}\) given an example \(x\), and receives a loss \(c_x(\hat{y})\), where \(c_x\) is a vector containing the cost for each possible label. For each decision point \(t \in [0, T)\), LOLS executes \(\pi^\text{in}_t\) for \(t\) rounds reaching a state \(s_t\). A cost-sensitive multiclass example is generated using the features \(\Phi(x_i, s_t)\). Classes in the multiclass example correspond to available actions in state \(s_t\). The cost \(c(a)\) assigned to action \(a\) is the difference in loss, \(\ell\), between taking action \(a\) and the best action.

\[
c(a) = \ell(y_e(a), y_t) - \min_{a'} \ell(y_e(a'), y_t)
\]

(1)

where \(e(a)\) is the end state reached with rollout by \(\pi^\text{out}\) after taking action \(a\) in state \(s_t\). LOLS collects the \(T\) examples from the different roll-out points and feeds the set of examples \(\Gamma\) into an online cost-sensitive multiclass learner, thereby updating the learned policy from \(\hat{\pi}_t\) to \(\hat{\pi}_{t+1}\).

LOLS enjoys a compelling regret bound (see Theorem 3 and Corollary 1 of (Chang et al., 2015)), which ensures that if the underlying cost-sensitive learner is no-regret, then: (a) if the reference policy is optimal and in the hypothesis class, and \(\beta = 1\), then the learned policy will have low regret with respect to the optimal policy; (b) if the reference policy is optimal and not in the hypothesis class, and \(0 < \beta < 1\), then the learned policy will have low regret with respect to its own one-step deviations, a form of local optimality; (c) if the reference policy is very suboptimal, then the learned policy is guaranteed to improve on the reference.

3 BANDIT LOLS

One key property of LOLS, and many other learning to search algorithms, is that they assume that one can make many predictions on the same example/episode. In particular, if the trajectory length is \(T\) and the number of actions at each step is \(A\), LOLS will evaluate the cost of \(AT\) different trajectories. In a bandit setting, we can evaluate precisely one. Figure 2 shows an overview for how BANDITLOLS works for POS tagging. A pre-trained tagging model provides an initial policy \(\pi\), which faces a user. The user views predicted tags and provides, for instance, the total hamming loss in the output. This is used to update the policy.

Figure 2: BANDITLOLS for learning a POS tagging model: a pre-trained tagging model provides an initial policy \(\pi\), which faces a user. The user views predicted tags and provides, for instance, the total hamming loss in the output. This is used to update the policy.
Chang et al. (2015) describe a variant of LOLS that requires only one evaluation, which they refer to as “Structured Contextual Bandit Learning.” This approach modifies LOLS (Algorithm 1) in three ways:

1. Instead of evaluating deviations at all T time steps, a single time step t is chosen uniformly at random.
2. Instead of evaluating all A actions at t, only one action, a, is chosen. ϵ-greedy exploration is employed: with $1 - \epsilon$ probability, the current policy is followed (exploitation), and with ϵ probability an action a is chosen uniformly at random.
3. Upon exploration, the cost vector $c_{i,t}(a')$ is set to 0 for all $a' \neq a$ and set to $K = |A(s_t)|$ times the observed loss for that trajectory (the K factor is compensation for importance sampling).

Although Chang et al. (2015) are able to obtain a regret bound for this bandit algorithm, we found that, in practice, it is ineffective. In fact, the bandit feedback often serves to make the predictions worse, not better, over time (see § 4)! Below we describe the two key issues with the algorithm, and at the end present an improved algorithm, BANDITLOLS, which is effective in practice. The first issue is that in modification (3) above, the cost vector estimate remains unbiased, but has incredibly high variance (§ 3.1). The second issue is that in modification (2) above, an ϵ-greedy strategy is insufficient to explore the space well, and more nuanced exploration strategies are necessary (§ 3.2).

3.1 Doubly-Robust Variance Reduction

To better understand the variance reduction issue, consider the part of speech tagging example from Figure 1. Suppose the deviation occurs at time step 3, as in that figure, and that during roll-in, the first two words are tagged correctly by the roll-in policy. There are 45 possible actions (each possible part of speech) to take from the deviation state, of which three are shown; each action (under uniform exploration) will be taken with probability $1/45$. If the first is taken, a loss of one will be observed, if the second, a loss of zero, and if the third, a loss of two. When a fair coin is flipped, perhaps the third choice is selected, which will induce a cost vector of $\vec{c} = (0, 0, 90, 0, \ldots)$. Clearly, in expectation over this random choice, we have $E_a[c] = (1, 0, 2, \ldots)$, implying unbiasedness, but the variance is clearly very large: $O((Kc_{\text{max}})^2)$.

This problem is exacerbated by the fact that LOLS, like other learning to search algorithms, typically defines the cost of an action a to be the difference between the cost of a and the minimum cost (see Eq. 1). This is desirable because when the policy is predicting greedily, it should choose the action that adds the least cost; it should not need to account for already-incurred cost. For example, suppose the first two words in Figure 1 were tagged incorrectly. This would add a loss of 2 to any of the estimated costs, but could be very difficult to fit because this loss was based on past actions, not the current action.

To address this challenge, we adopt a strategy similar to the doubly-robust estimation used in the vanilla (non-structured) contextual bandit setting (Dudik et al., 2011). In particular, we estimate the cost function for each action using the predicted trajectories and use this estimate in place of the actual cost for the unobserved actions.

Algorithm 2 shows how this works. We assume access to a action-cost regressor, ρ. To estimate the cost of an un-taken action a' at a deviation, we simulate the execution of a', followed by the execution of the current policy through the end. The cost of that entire trajectory is estimated by summing ρ over all states along the path. For example, in the part of speech tagging example above, we learn 45 regressors: one for each part of speech. The cost of a roll-out is estimated as the sum of these regressors over the entire predicted sequence.

This modification fixes both of the problems mentioned above. First, this is able to provide a cost estimate...
for all actions. Second, because ρ is deterministic, it will give the same cost to the common prefix of all trajectories, thus solving the credit assignment issue.

The remaining question is: how to estimate these regressors. Currently, this comes at an additional cost to the user: we must observe per-action feedback\(^3\). In particular, when the user views a predicted output (e.g., part of speech sequence), we ask for a binary signal for each word whether the predicted part of speech was right or wrong. Thus, for a sentence of length \(T\), we generate \(T\) training examples for every time step \(1 \leq t \leq T\). Each training example has the form: \((a_t, c_t)\), where \(a_t\) is the predicted action at time \(t\), and \(c_t\) is a binary cost, either 1 if the predicted action was correct, or zero otherwise. This amounts to a user “crossing out” errors, which hopefully incurs low overhead in many application settings. Using these \(T\) training examples, we can effectively train the 45 regression functions for estimating the cost of unobserved actions. Such regression estimators have provably low variance whenever the regression function is a good estimate of the true cost (an analysis is provided for the contextual bandit case in Dudik et al. (2011)).

3.2 Improved Exploration Strategies

In addition to the \(\epsilon\)-greedy exploration algorithm, we consider the following exploration strategies:

3.2.1 Boltzmann (Softmax) Exploration

Although \(\epsilon\)-greedy exploration is an effective and popular method for balancing the exploration / exploitation trade-off, exploration is performed by choosing an action equally among all the available actions. This means that it is as likely to choose the worst-appearing action as it is to choose the next-to-best action. In tasks where there is a wide distinction between the different actions, this could be unsatisfactory.

Boltzmann exploration targets this problem by varying the action probabilities as a graded function of estimated value. The greedy action is still given the highest selection probability, but all the others are ranked and weighted according to their cost estimates; action \(a\) is chosen with probability proportional to

\[
\text{exp}\left[\frac{1}{\text{temp}} c(a)\right],
\]

where “temp” is a positive parameter called the temperature, and \(c(a)\) is the current predicted cost of taking action \(a\). High temperatures cause the actions to be all (nearly) equiprobable. Low temperatures cause a greater difference in selection probability for actions that differ in their value estimates. In the limit as temp \(\to 0\), softmax action selection becomes the same as greedy action selection.

3.2.2 Thompson Sampling

Thompson Sampling has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to other exploration strategies. Recent theoretical advances have also shown the effectiveness of this exploration approach (Agrawal and Goyal, 2013; Komiyama et al., 2015).

The general structure of Thompson sampling involves the following elements: a set \(\Theta\) of parameters \(\mu\); a prior distribution \(P(\mu)\) on these parameters; past observations \(D\) consisting of observed contexts and rewards; a likelihood function \(P(r|\theta, \mu)\), which gives the probability of reward given a context \(\theta\) and a parameter \(\mu\); In each round, Thompson Sampling selects an action according to its posterior probability of having the best parameter \(\mu\). This is achieved by taking a sample of parameter for each action, using the posterior distributions, and selecting that action that produces the best sample.

We use Gaussian likelihood function and Gaussian prior for the Thompson Sampling algorithm, which is a common choice in practice. In addition, we make a linear payoff assumption similar to Agrawal and Goyal (2013), where we assume that there is an unknown underlying parameter \(\mu_\theta \in \mathbb{R}^d\) such that the expected cost for each action \(a\), given the state \(s_t\) and context \(x_t\) is \(\Phi(x_t, s_t)^T \mu_\theta\).

3.3 Putting it All Together

The complete BANDITLOLS algorithm is shown in Algorithm 3, working roughly as follows. On each example it chooses whether to explore or exploit. This choice matters only for \(\epsilon\)-greedy; all the other exploration methods always explore. Upon exploitation, it simply predicts according to the current policy. Otherwise, it picks a timestep uniformly at random, rolls-in to that time step using the learned policy, and allows the explorer to choose a one-step deviation. It then generates a rollout to compute the cost of the chosen deviation. All other costs are estimated using the doubly robust regressors \(\rho\). The underlying policy is updated according to a cost-sensitive classification update based on this full cost vector.

4 EXPERIMENTAL RESULTS

In this section, we show that BANDITLOLS is able to improve upon a suboptimal reference policy under bandit feedback setting, where only a loss for a single predicted structure is observed. We conducted experiments using three exploration algorithms: \(\epsilon\)-greedy, softmax (Boltzmann) exploration, and Thompson
Input: Examples \(\{x_i\}_{i=1}^N \), reference policy \(\pi^{\text{ref}} \), exploration algorithm \(\text{explorer} \), and \(\beta \geq 0 \); a mixture parameter for roll-out.

1. Initialize a policy \(\pi_0 \) and set \(I = \emptyset \).
2. Initialize cost estimator \(\rho \).
3. for all \(i \in \{1, 2, \ldots, N\} \) (loop over each instance) do
 4. Observe the example \(x_i \);
 5. set \(n_i = |I| \);
 6. if \(\text{explore(\text{explorer})} \) then
 7. Pick random time \(t \in \{0, 1, \ldots, T-1\} \);
 8. Roll-in by executing \(\pi^\text{in}_i = \hat{\pi}_{n_i} \) for \(t \) rounds to compute the roll-in trajectory \(\tau \) and reach \(s_t \);
 9. \(a_t = \text{choose action(\text{explorer}, s_t)} \);
 10. Let \(\pi^\text{out}_t = \pi^{\text{ref}} \) with probability \(\beta \), else \(\hat{\pi}_{n_i} \);
 11. Roll-out with \(\pi^\text{out} \) for \(T-t-1 \) steps and observe total cost \(e(a_t) \);
 12. train cost estimator \(\rho \) from observed trajectory;
 13. Estimate cost vector: \(\hat{c} = \text{estimate cost}(s_t, \tau, \rho, A(s_t), \pi^\text{out}, a_t, e(a_t)) \);
 14. Generate a feature vector \(\Phi(x_i, s_t) \);
 15. \(\hat{\pi}_{i+1} \leftarrow \text{Train}(\hat{\pi}_{n_i}, \hat{c}, \Phi(x_i, s_t)) \) (Update);
 16. Augment \(I = I \cup \{\hat{\pi}_{i+1}\} \);
 7. else
 8. Follow the trajectory of a policy \(\pi \) drawn randomly from \(I \) to an end state \(e \), predict the corresponding structured output \(y_{te} \).
 9. end
4.2 Tasks, Policy Classes and Data Sets

We experiment with the following three tasks. For each, we briefly define the problem, describe the policy class that we use for solving that problem in a learning to search framework (we adopt a similar setting to that of (Chang et al., 2016), who describe the policies in more detail), and describe the data sets that we use.

Part-Of-Speech Tagging is a sequence labeling task (see Figure 3, top), in which one assigns a part of speech tag (from a set of 45 possible tags defined by the Penn Treebank tagset (Marcus et al., 1993)) to each word in an input sequence. We treat this as a sequence labeling problem, and decompose the prediction into a greedy left-to-right policy. We use standard features: words and their affixes in a window around the current word, together with the predicted tags for the most recent words. To simulate a domain adaptation setting, we train a reference policy on the TweetNLP dataset (Owoputi et al., 2013), which achieves good accuracy in domain, but does poorly out of domain. We simulate bandit feedback over the entire Penn Treebank Wall Street Journal (sections 02–21 and 23), comprising 42k sentences and about one million words. (Adapting from tweets to WSJ is non-standard; we do it here because we need a large dataset on which to simulate bandit feedback.) The measure of performance is average per-word accuracy (one minus Hamming loss).

Noun Phrase Chunking is a sequence segmentation task, in which sentences are divided into base noun phrases (see Figure 3, middle). We solve this problem using a sequence span identification predictor based on Begin-In-Out encoding, following Ratinov and Roth (2009), though applied to chunking rather than named-entity recognition. We used the CoNLL-2000 dataset\(^4\) for training and testing. We used the smaller test split (2,012 sentences) for training a reference policy, and used the training split (8,500 sentences) for online evaluation. Performance was measured.

\(^4\)http://www.cnts.ua.ac.be/conll2000/chunking/
POS

NNP , CD NNS JJ , MD VB DT NN IN DT JJ NN

NP Chunking

He reckons the current account deficit will narrow to only # 1.8 billion in September.

Parsing

Root Flying planes can be dangerous

Table 1: Total progressive accuracies for the different algorithms on the three natural language processing tasks. LOLS uniformly decreases performance over the Reference baseline. BANDITLOLS, which integrates cost regressors, uniformly improves, often quite dramatically. The overall effect of the exploration mechanism is small, but in all cases Boltzmann exploration statistically significantly better than the other options at the p < 0.05 level (because the same size is so large).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Exploration</th>
<th>POS Accuracy</th>
<th>Dependency UAS</th>
<th>Chunking F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>-</td>
<td>47.24</td>
<td>44.15</td>
<td>74.73</td>
</tr>
<tr>
<td>LOLS</td>
<td>ε-greedy</td>
<td>2.29</td>
<td>18.55</td>
<td>31.76</td>
</tr>
<tr>
<td>BANDITLOLS</td>
<td>ε-greedy</td>
<td>86.55</td>
<td>56.04</td>
<td>90.03</td>
</tr>
<tr>
<td>Boltzmann</td>
<td></td>
<td>89.62</td>
<td>57.20</td>
<td>90.91</td>
</tr>
<tr>
<td>Thompson</td>
<td></td>
<td>89.37</td>
<td>56.60</td>
<td>90.06</td>
</tr>
</tbody>
</table>

4.3 Effect of Variance Reduction

Table 1 shows the progressive validation accuracies for all three tasks for a variety of algorithmic settings. To understand the effect of variance, it is enough to compare the performance of the Reference policy (the policy learned from the out of domain data) with that of LOLS. In all of these cases, running LOLS substantially decreases performance. Accuracy drops by 45% for POS tagging, 26% for dependency parsing and 43% for noun phrase chunking. In fact, for POS tagging, the LOLS accuracy falls below the accuracy one would get for random guessing (which is approximately 14% on this dataset for always guessing NNP)!

When the underlying algorithm changes from LOLS to BANDITLOLS, the overall accuracies go up significantly. Part of speech tagging accuracy increases from 47% to 86%; dependency parsing accuracy from 44% to 57%; and chunking F-score from 74% to 90%. These numbers naturally fall below state of the art for fully supervised learning on these data sets, precisely because these results are based only on bandit feedback.

4.4 Effect of Epsilon

Figure 4 shows the effect of the choice of ε for ε-greedy exploration in BANDITLOLS. Overall, best results are achieved with remarkably high epsilon, which is possibly counter-intuitive. The reason this happens is because BANDITLOLS only explores on one out of T time steps, of which there are approximately 30 in each of these experiments (the sentence lengths). This means that even with ε = 1, we only take a random action roughly 3.3% of the time. It is therefore not surprising that large ε is the most effective strategy. Overall, although the differences are small, the best choice of ε across these different tasks is ≈ 0.6.
4.5 Effect of Exploration Strategy

Returning to Table 1, we can consider the effect of different exploration mechanisms: \(\epsilon \)-greedy, Boltzmann (or softmax) exploration, and Thompson sampling. Overall, Boltzmann exploration was the most effective strategy, gaining about 3\% accuracy in POS tagging, just over 1\% in dependency parsing, and just shy of 1\% in noun phrase chunking. Although the latter two effects are small, they are statistically significant, which is measurable due to the fact that the evaluation sets are very large. In general, Thompson sampling is also effective, though worse than Boltzmann exploration.

5 DISCUSSION

Learning from partial feedback has generated a vast amount of work in the literature, dating back to the seminal introduction of multiarmed bandits by (Robbins, 1985). However, the vast number of papers on this topic do not consider joint prediction tasks; see Auer et al. (2002); Auer (2003); Langford and Zhang (2008); Srinivas et al. (2009); Li et al. (2010); Beygelzimer et al. (2010); Dudik et al. (2011); Chapelle and Li (2011); Valko et al. (2013) and references inter alia. The system observes (bandit) feedback for every decision it makes. Other forms of contextual bandits on structured problems have been considered recently. For example, (Krishnamurthy et al., 2015) studied a variant of the contextual bandit problem, where on each round, the learner plays a sequence of actions, receives a score for each individual action, and obtains a final reward that is a linear combination to those scores. This setting has applications to network routing, crowd-sourcing, personalized search, and many other domains, but differs from our setting in that we do not assume a linear (or other) connection between individual actions and the overall loss.

The most similar work to ours is that of (Sokolov et al., 2016a) and (Sokolov et al., 2016b). They propose a policy gradient-like method for optimizing log-linear models under bandit feedback. Although the approach works in practice, the gradient updates used appear to be biased, potentially leading to an algorithm that is inconsistent. They evaluated their approach most impressively to the problem of domain adaptation of a machine translation system, in which they show that their approach is able to learn solely from bandit-style feedback, though the sample complexity is fairly large.

In this paper, we presented a computationally efficient algorithm for structured contextual bandits, BANDIT-LOLS, by combining: locally optimal learning to search (to control the structure of exploration) and doubly robust cost estimation (to control the variance of the cost estimation). This provides the first practically applicable learning to search algorithm for learning from bandit feedback. Unfortunately, this comes at a cost to the user: they must make more fine-grained judgments of correctness than in a true bandit setting. In particular, they must mark each decision as correct or incorrect (notably, in the case of incorrect decisions, they do not provide a correction). It is an open question whether this feedback can be removed without incurring a substantially larger sample complexity. A second large open question is whether the time step at which to deviate can be chosen more intelligently, along the lines of selective sampling (Shi et al., 2015), using active learning techniques.
References

John Langford, Lihong Li, and Alex Strehl. Vowpal wabbit online learning project, 2007.

