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Abstract

Detection and tracking of articulated objects such as hu-
mans is an important task in computer vision. While sig-
nificant advancement has been made on this problem re-
cently, many limitations remain due to the complexity in
handling many of the constraints present in the problem. In
this paper, we present a system that incorporates a variety
of “new” constraints in a unified multi-view framework to
automatically detect and track articulated objects in possi-
bly crowded scenes. These constraints include the occlusion
of one part by another and the high correlation between the
appearance of certain parts (the two arms, for instance).
The graphical structure (non-tree) obtained is optimized in
a nonparametric belief propagation framework. Efficient
methods are presented in order to reduce the complexity of
the problem.

1. Introduction

Detection and tracking of articulated objects such as hu-
mans in crowded scenes is an important, albeit unsolved
problem in computer vision. The problem is hard because
of occlusions, a high dimensional problem space and high
variability in the appearance of humans due to body shape
and clothing. Most prior work has focussed solely on
tracking, where the initialization is given[3, 17]. Recently,
there has been a focus on automatic detection of body pose
that could then be used to initialize/re-initialize tracking
systems[5, 10, 18].

There are a wide range of approaches to human pose es-
timation. Much of the work model the human body as a tree
structure. Here, each part is represented by a node in the tree
and there is an edge joining the parts between which there
are kinematic relations. The edges impose constraints on
the possible locations of different parts. These constraints
may be applied either in 2D [4, 13] or 3D [19]. Felzen-
szwalb et. al. [5] presented a deterministic linear time al-
gorithm using dynamic programming to solve for the best
pose configuration in such tree structures. Other optimiza-
tion approaches like Data Driven Belief Propagation [6] and

Markov Chain Monte Carlo algorithm [10] have also been
used to estimate the probability distributions of the loca-
tions of body parts.

However, there are limitations to a tree structure. Kine-
matic relations between parts that are not connected to each
other cannot be represented. Furthermore, occlusion of one
part by another cannot be modeled nor can the constraint
due to the high correlation between the appearance of cer-
tain parts (e.g. the two hands)[12]. There has been some
recent work to overcome these limitations. Lan et. al [9]
use factor graphs to add constraints like the balance of a
body while walking; Ren et. al [14] use Integer Quadratic
Programming (IQP) to add pairwise constraints such as sim-
ilarity in the appearance of left and right body-parts.

Ioffe et. al [7] proposed using a mixture of trees to han-
dle occlusions. The mixture includes all possible trees re-
sulting from removing nodes from the base tree under dif-
ferent occlusion scenarios. However, modeling the condi-
tionals between non-connected parts is very difficult; it does
not provide very strong constraints, leading to false part lo-
calizations. At the same time, the problem space becomes
very large due to the need to optimize over the entire en-
semble of trees.

The problem can be simplified by assuming that one can
segment the person, say using background subtraction [2, 9,
11]. While this reduces the search space significantly, these
approaches generally do not handle self-occlusion or people
occluding one another.

A complementary approach [1, 16] is to learn pose con-
figurations from training images and sequences. Like all
appearance based techniques, they have difficulty general-
izing to new views or unconventional poses.

In this paper, a multiple camera based approach for es-
timating the 3D pose of humans in a crowded scene is pre-
sented. The system incorporates a variety of constraints, in-
cluding the occlusion of one part by another and appearance
consistency across parts, in a unified framework. Inclusion
of these constraints, however, breaks the tree structure of
the graphical model. Consequently, the optimization be-
comes quite complex, and particle-based belief propagation
is utilized to optimize over the space of possible body con-
figurations and appearances. Messages encoding different



Figure 1. The object model used for human beings. The solid
lines represent edges in setE1 and dashed lines represent edges in
setE2. We have not shown occlusion edges in the above graph.
Every part is connected to all other parts by occlusion constraint
edge.

constraints are passed between parts not directly connected
in a tree structure. Several constructs are also introducedto
efficiently prune the search and locate parts.

The paper is organized as follows. In section2 we dis-
cuss our human body model followed by a discussion on
how to pass information between the parts in section3. Sec-
tion 4 provides a description of visibility analysis and like-
lihood computations. We provide a system overview and
extend it to tracking poses in sections5 and6 respectively.
Finally, results are presented in section7 before concluding
in section8.

2. Modeling the Human Body and Problem
Formulation

Our 3D human body model (Figure1) consists ofn = 10
body parts (head, torso, left upper arm etc.). Each body part
(except the torso which is modeled as a cuboid) is modeled
as a cylinder and is represented by a node in a graph. This
represents a random vectorΦi = (li, ψi), whereli andψi

represent the location and appearance parameters of parti
respectively. The location of each part,li, is further param-
eterized byli = (lsi , l

e
i ) wherelsi is the 3D position of the

starting point of the limb andlei is the 3D position of the
ending point of the limb.

The nodes of the graph are connected by three types
of edges. The first enforces kinematic constraints be-
tween parts. To obtain a tree model, like those typically
used in the literature, one would only connect parts using
edges of this kind. The second type of edge represents
appearance constraints which are introduced by the sym-
metry of left and right body part appearances. The third

type of edge represents occlusion constraints across parts
that can occlude each other. The model is represented by
θ = (E1, E2, E3, c

1, c2, c3), where the set of edgesE1, E2

andE3 indicates which parts are connected by edges of the
first, second and third type respectively;c1, c2 andc3 are
the connection parameters for these edges.

We need to find the probability distribution of the
pose configuration of a human body, given byL ≡
(Φ1,Φ2........Φn). In anM camera setup, ifIj denotes the
image from thejth camera, thenP (I1....IM |L) is the like-
lihood of observing the set of images given the 3D locations
and appearances of the body parts. The distribution ofP (L)
is the prior over the possible configurations. The goal is to
maximize the posterior distribution,P (L|I1....IM ), which
measures the probability of a particular configuration of the
human body givenM views and the object model. Using
Bayes’ rule,

P (L|I1....IM ) ∝ P (I1....IM |L)P (L) (1)

Assuming that the location and appearance priors are in-
dependent of each other, the prior distributionP (L) is

P (L) = P (l1.....ln)P (ψ1.....ψn) (2)

The prior distribution over the object part locations and
appearances are modeled by two separate Markov random
fields with edge setsE1 andE2. The joint distribution for
the tree-structured prior defined byE1 can be expressed as:

P (l1, l2...ln) =

∏
(vi,vj)∈E1

P (li, lj)∏
vi∈V p(li)deg(vi)−1

(3)

whereV is the set of nodes in the graph anddeg(vi) is the
degree of vertex,vi, in the tree,G = (V,E1) (subgraph
consisting of edges inE1 only). A similar expression can
be written forP (ψ1, ψ2....., ψn). Since any absolute loca-
tion or appearance is not preferred over another, the terms
representing the priors for single part locations can be ne-
glected. Furthermore, as in most prior work[9, 18], poten-
tial functions rather than distributions are used to avoid nor-
malization computations. Then, one obtains:

P (l1, l2......ln) ∝
∏

(vi,vj)∈E1

ϕij(li, lj) (4)

P (ψ1, ψ2....., ψn) ∝
∏

(vi,vj)∈E2

φij(ψi, ψj) (5)

whereϕij andφij are the potential functions over the
clique.

For articulated objects, pair of parts are connected by
flexible joints. Ideally, the distance between the ending-
point of the first part and the starting point of the second
connected part in 3D should be zero. Thus, the clique po-
tential for a pair of parts, connected by edges inE1, can be
modeled as:



ϕij(li, lj) = N(d(li, lj), 0, σ1
ij) (6)

whered(li, lj) denotes the euclidean distance between
the pointslei andlsj .

For appearance constraints, letD(ψi, ψj) denote the dis-
tance between two appearance vectors. Ideally, the distance
should be zero, assuming left and right body parts have sim-
ilar appearance. The appearance potential,φij , is modeled
as:

φij(ψi, ψj) = N(D(ψi, ψj), 0, σ2
ij) (7)

Section4.2discusses how part appearances are modeled
and how the distance ,D(ψi, ψj), is computed.

The computation of the likelihoodP (I1....IM |L) is
tricky due to the consideration of occlusion. The imaging
of every camera is modeled as conditionally independent
processes. Similarly, the observation of different parts is
assumed to be conditionally independent. This allows us to
decompose the likelihood as:

P (I1....IM |L) ∝
n∏

i=1

M∏
j=1

Pi(Ij |l1...ln, ψi) (8)

Note that, due to the possibility of occlusion, the likeli-
hood of each part depends not only on the position of the
part, but also on the positions of other parts. While one may
be able to use the likelihood in this form in tracking appli-
cations, using it for automatic “detection” is prohibitively
expensive. To overcome this, we could introduce a new set
of binary ‘visibility’ variablesv

j
i (li), that refer to the visi-

bility of a part i at locationli from cameraj. While these
visibility variables would be dependent upon the position of
all other parts, the likelihood for parti would be indepen-
dent of the location of other parts if its visibility were given.
Then, one could write the likelihood,P (I1....IM |L), as:

n∏
i=1

M∏
j=1

∑
v

j

i
∈{T,F}

Pi(Ij |li, v
j
i (li))P (vj

i (li)|l1....li−1, li+1....ln)

(9)
The termPi(Ij |li, v

j
i (li) = TRUE) represents the like-

lihood of observing the image from camera j given that the
part is visible from this camera whilePi(Ij |li, v

j
i (li) =

FALSE) represents the likelihood of observing the image
given that the part is occluded from the camera. However,
parts may be partially visible in which casev

j
i (li) is neither

true nor false. To approximate this,v
j
i (li) is defined as the

visibility of a random point on the skeleton of the part. In
Section 4.1, we will discuss how to compute the visibility
variables and in section4.3, we will discuss in more detail
how to compute the likelihoods.

3. Particle Based Belief Propagation

In the previous section, a graphical model for human
body parts was developed. In order to solve for the best
configuration in such a graphical model, the framework pro-
posed in [18] can be utilized. Essentially, the system op-
timizes for the posterior of each part and the interactions
between different parts are handled via messages in a non-
parametric belief propagation framework. A variant of the
PAMPAS algorithm is used for non-parametric belief prop-
agation [8]. The framework provides a natural approach for
enforcing constraints across parts, including those of occlu-
sion and appearance matching.

There are, essentially, three kinds of unknowns that need
to be estimated simultaneously: the location of each part,
the appearance of each part and the visibility variables. The
probability densities of part location and appearance are
represented via monte carlo particles while visibility vari-
ables can be computed from probabilistic occlusion maps.

The following messages are used to pass information to
a part:

• The locations of neighboring connected body parts (eg.
location of lower left leg and torso particles is passed
to upper left leg). These location are used to apply
kinematic constraints.

• The appearance of the corresponding symmetric part
(eg. appearance of right upper leg is passed to the left
upper leg).

• The visibility information from other parts that may
occlude this part (eg. upper left leg receives the oc-
clusion map from all other parts in order to update its
likelihood distribution)

At iterationr, a messagemij from nodei to j along an
edge inE1 or E2 may be represented as:

mr
ij(Φj) =

∫
ϕij(li, lj)φij(ψi, ψj)Pi(I1....IM |L)

∏
k∈E1\j

mr−1
ki (Φi)

∏
o∈E2\j

mr−1
oi (Φi)dli

wherevi = (v1
i , ..., vM

i ). Note thatϕij(li, lj) = 1 for mes-
sages along edges inE2 andφij(ψi, ψj) = 1 for messages
along edges inE1. Messages alongE3 alter the visibility
variables:

mr
ij(vj) =

∫
Occl(li)Pi(I1....IM |L)

∏
k∈E1\j

mr−1
ki (Φi)

∏
o∈E2\j

mr−1
oi (Φi)dli



whereOccl(li) defines the occluding characteristics of part
li and affects the visibility parameters of partj.

Then, the posterior distribution of a body-partPosr(Φi)
can be computed as:

Posr(Φi) ∝ Pi(I1....IM |L)∏
k∈E1\j

mr
ki(Φi)

∏
o∈E2\j

mr
oi(Φi) (10)

To initialize the system, uniform appearance priors and
full visibility of each part is used; that is, it is assumed that
all parts are fully visible. At any iteration, the posteriordis-
tribution of each part is approximated by a set of particles
which are sampled using importance sampling. The set of
these particles is used to generate the messages to be passed
along appropriate edges in order to enforce inter-part rela-
tionships. Updating the parameters for the different parts
in turn, the method eventually leads to a stable parameter
estimation after several iterations. The particle-based belief
propagation is especially effective since the probabilitydis-
tributions are typically not gaussian in nature, especially in
the initial iterations, and hence using any parametric model
would lead to a loss of information.

4. Computing Priors and Likelihoods

4.1. Computing Part Visibility

We discuss how to computeP (vj
i (li)|l1..li−1, li+1, ..ln),

which represents the probability of visibility of a random
point of the skeleton of parti in view j, given the pdf’s of
locations of partsl1 . . . ln. If the exact positions of parts
in 3D were known, computingP (vj

i (li)|l1..li−1, li+1, ..ln)
would be straightforward. However, only the posterior
distributions of the locations of the parts after the previ-
ous iteration are known. To compute the probability, no-
tice that a part is not occluded if and only if it is not oc-
cluded by any of the parts, allowing us to utilize an in-
dependence relation between the occlusion from different
parts. Thus, the probability of visibility of a parti in view
j, P (vj

i (li)|l1..li−1, li+1..ln) represented byPv
j
i , can be

broken down into product of probability of visibilities from
different parts as:

Pv
j
i =

∏
k=1,2..i−1,i+1...n

P (vj
ik(li)|l1..li−1, li+1..ln)

=
∏

k=1,2..i−1,i+1...n

P (vj
ik(li)|lk) (11)

The above equation requires us to compute
P (vj

ik(li)|lk), which represents the probability that a
parti is not occluded by a partk.

To compute this probability efficiently, “occlusion maps”
are introduced. An occlusion map of a partk, O

j
k(x, y, z),

stores the probability that a 3D point(x, y, z) will be oc-
cluded by partk in view j (Figure2 illustrates an occlusion
map of a sphere). The occlusion map of a body part depends
on the shape and location of the part. The occlusion maps
have to be updated at every iteration because the probability
distribution of location of each part changes after each iter-
ation. For updating the occlusion map of partk, the region
of occlusion1 for each particle ofk is computed. The update
is made using the following equation:

O
r+1,j
k (x, y, z) =

nocc

n
(12)

wherer is the iteration number,nocc is the number of
particles that support the fact that a point(x, y, z) will be
occluded by partk in view j, andn is the total number of
particles used for computing the message. Intuitively, the
probability that a 3D point(x, y, z) is occluded by partk is
proportional to the number of particles of partk that occlude
the point.

To provide smoother updates to the occlusion maps and
handle errors in approximating the probability calculations,
it is useful to update the occlusion maps incrementally:

O
r+1,j
k (x, y, z) = (1 − β)Or,j

k (x, y, z) + β(
nocc

n
) (13)

whereβ determines the rate of change of the occlusion
maps (β = 0.2 was used in our experiments).

Using the occlusion map of partk for view j, the prob-
ability of visibility of a point objecti at location, li =
(x, y, z) in view j, can be computed as:

P (vj
ik(li)|lk) = 1 − O

j
k(x, y, z) (14)

In order to address the finite size of the part,P (vj
i (li)|lk)

is approximated by averaging the different visibility proba-
bilities along the part skeleton.

4.2. Part Appearance

The appearance of a part is modeled by computing its
color as a function of height. A single color model fails to
capture the color variation along the part axis. A histogram
would be too expensive to compute for all the hypothesis
and is thus not used. Thus, the appearance of a part can
be represented by a vector that containsn1 different color
vectors along the part. The euclidean distance is used to
compute the distance between two appearance vectors.

4.3. Image Likelihoods

Each body part is modeled as a cylinder. Under ortho-
graphic projection, the image of a cylinder will consist of
parallel lines for two occluding contours of the part, except
the two circular surfaces at the joints which are normally not

1The region of occlusion is the 3D region that will be occludedby the
part



Figure 2. The occlusion map created by a sphere. The cone behind
the sphere is the region of occlusion in 3D. The probability of
visibility is decreased for every 3D point lying within the cone.
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Figure 3. The filter used for finding image likelihoods for paral-
lel lines. w represents the projected width of the body part and
h represents the height of the part. The grey portion represents
the part of image that will not be considered in computing the re-
sponse. The white, black and grey portions have weights 1,-1 and
0 respectively.

detectable. The response of a filter shown in Figure3 is used
to find such parallel lines. The filter gives high response for
parallel lines separated by distancew and is robust to mod-
erate deviation from the parallel line assumption.

An exponential dependence of the likelihood on the filter
response is employed, so the likelihood of the image given
that the object-part is visible from the camera is:

Pi(Ij |li, v
j
i (li) = TRUE) ∝ e(1−resp(lj

i
)) (15)

wherel
j
i is the location where parti will be projected

in imagej. More complicated models and filters can also
be used[15]. Computation ofPi(Ij |li, v

j
i (li) = FALSE)

represents the case when the part is occluded. It can also be
treated as computing the likelihood of observing a random
pattern at locationlji with no preference given to one pattern
over another2. Therefore, the likelihood can be assigned a

2 although this is not entirely true since the observation is correlated to

fixed constant in this case.

5. Efficiency Considerations and System
Overview

We discuss some additional features used to make the
system fast and fully automatic.

Our method requires the computation of the posterior
distribution for each part in the graphical model. The
computation of such a distribution, however, can be pro-
hibitively expensive since it requires search over a large
configuration space. In order to perform this search effi-
ciently, two methods were studied. In the first, the space
is first pruned via priors, while in the second method, it is
pruned via likelihoods. In the first method, the high likeli-
hood parameters of previous parts and anthropometric data
are used to prune the search region for a part in 3D. For ex-
ample, after finding the probability distribution of the upper
arm, one can prune the search area in 3D for the lower arm.

However, the process is too expensive since there are
many cases in which the search space cannot be sufficiently
constrained (the search space becomes especially large for
the four end limbs, for instance). For such cases, likelihood-
based search in 2D is used, which finds the possible limbs
in each 2D image using the responses of the filter. First,
a search region in 2D is determined based on the positions
of the previous parts. Then, regions that give a high filter
response are identified in each image. These high likeli-
hood part hypotheses in 2D are then matched across views
using epipolar constraints. Searching along epipolar lines
for the starting and ending points, the instances where the
response of the filter is above some threshold in both the im-
ages are back-projected to compute the 3D position of these
high likelihood body parts. The posteriors for these part lo-
cations are then computed by integrating the likelihood with
the priors. Both the search methods have been used in our
implementation: the likelihood-based approach for the four
end-limbs and the prior-based approach for other parts.

One can also use “helpers” to obtain a rough localiza-
tion of certain parts and to initialize the search process. The
most discriminative of these parts is perhaps the face, which
may be detected using a face detector (we use a popular one
based on [20]). We apply epipolar constraints and matching
across views in order to obtain a few helpers in 3D that are
used to initiate search in certain high probability regions.
Using these “helpers” allows the system to run automati-
cally and efficiently.

The cameras are placed in a wide-baseline configuration
to reduce occlusions. The system is able to find parts even
if they are visible in only one view and yields a good proba-
bility distribution of part location even when the part is not
visible in other views. This is due to the inclusion of visi-
bility constraints in the likelihood calculations.

The system flow is shown in Figure4. The helpers are

the apperance of the part that occludes this part.
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Figure 4. System Flowchart

first detected using independent detectors. Then, at each
iteration, the first step is to find the torso and then search for
the other connected parts in turn. The two search methods
described above are used to search for each part. Once the
posterior distribution of all the parts is estimated at the end
of an iteration, messages are passed that update the visibility
variables and apply the appearance constraints across parts.
The process is iterated until the variance of most of the parts
falls below a given threshold.

6. Extension to Tracking in Videos

During tracking, additional temporal consistency con-
straints can be utilized for more accurate and efficient in-
ference. A simple way to incorporate temporal consistency
constraints is to utilize the locations and appearances of dif-
ferent parts at timet−1 in order to create priors for locations
and appearances of parts at timet. One can incorporate such
constraints in a belief propagation framework by adding the
potentialsωt−1,t(Φ

t
i,Φ

t−1
i ). The belief propagation equa-

tions then change to:

mr
ij(Φ

t
j) =

∫
ϕij(l

t
i , l

t
j)φij(ψ

t
i , ψ

t
j)

Pi(I1....IM |Lt)ωt−1,t(Φ
t
i,Φ

t−1
i )∏

k∈E1\j

mr−1
ki (Φt

i)
∏

o∈E2\j

mr−1
oi (Φt

i)

Posr(Φt
i) ∝ Pi(I1....IM |Lt)ωt−1,t(Φ

t
i,Φ

t−1
i )∏

k∈E1\j

mr
ki(Φ

t
i)

∏
o∈E2\j

mr
oi(Φ

t
i)

ωt−1,t(Φ
t
i,Φ

t−1
i ) can be modeled as product of two

gaussians given by

ωt−1,t(Φ
t
i,Φ

t−1
i ) = N(d(lti , l

t−1
i ), 0, σ1

ij)

∗N(D(ψt
i , ψ

t−1
i ), 0, σ2

ij)

The equations above impose the constraint that one does
not expect major changes in location and appearance of a

(a) The Image with likeli-
hood peaks marked

(b) The Image Likelihood

Figure 5. The parallel line feature is very weak as too many paral-
lel lines occur in nature. There is a need of prior based search for
fast and accurate detection of body-parts.

part between two consecutive frames. Also, instead of us-
ing full visibility to initialize the belief propagation itera-
tions, we use the occlusion maps estimated from the pre-
vious frames. Imposition of such constraints speeds up the
inference substantially in tracking applications while also
providing temporal consistency.

7. Experimental Results and Evaluation

The anthropometric data for different people was ac-
quired using hand-labeled images. This anthropometric
data includes ratios of heights and widths of different body-
parts. This data is used for pruning the search area for each
body-part. The angular constraints used on body parts were
based on the possible movement of the parts. For exam-
ple, the maximum possible motion between upper arm and
lower arm was kept at 150 degrees (assuming the same vol-
ume in 3d cannot be occupied by 2 parts). In order to re-
duce false negatives, the constraints obtained from the hand-
labeled images were further relaxed.

We tested the effectiveness of our likelihood model when
the parts are visible. Figure5 shows the computed likeli-
hood of the torso in the image. The result demonstrates the
need to prune the search areas based on priors.

Several experiments were performed to demonstrate the
importance of the “new” constraints incorporated in our
system. The importance of modeling occlusion is demon-
strated in Figure6. In this example, the right upper arm
is occluded in view 2 and the right leg is occluded in view
1. Figure6(a) shows the results of the algorithm in view
1, when occlusion information is not passed and only kine-
matic constraints are used to find the pose parameters. This
would be same as using the algorithm in [18], but using our
likelihood model. The results show that when we do not use
occlusion information the right leg is totally missed by the
algorithm due to confusion with another location. Figures6
(b) and (c) show the results of the algorithm with all the
constraints and occlusion reasoning. When occlusion infor-



(a) (b)
Figure 7. (a) The lower right hand is missed when appearance con-
straints are not used. b) Appearance consistency with the other
hand helps in peaking the posterior at correct location.

mation is passed between the body-parts, the left leg creates
a region of occlusion which causes an increase in the likeli-
hood of the right leg being present at its actual location.

In an another experiment, the algorithm was tested with-
out using appearance constraints while occlusion informa-
tion and kinematic constraints were still used. It can be seen
from Figure7(a) that the lower right arm was missed due to
conflicting likelihoods. However, when the appearance con-
straints are added, correct detection of the lower left arm
guides the search for lower right arm as the appearance of
the two are expected to be similar [Figure7(b))].

The algorithm was also evaluated when multiple people
are present and very close to each other. In such cases, it
would be very difficult to first segment one person from
the image and hence conventional approaches fail. Fig-
ure 8(a) and (b) show the performance of the algorithm in
such cases.

Additional results are shown in Figure8 (c-d); Fig-
ure 8(d) is a frame from a commonly used sequence from
Brown University [18] .

A few frames of a tracking sequence are shown in Fig-
ure9 (see accompanying videos).

8. Conclusion

We describe an algorithm for estimating the 3D pose of
articulated structures such as humans. Probabilistic distri-
bution of various parts are used to compute region of oc-
clusions and compute the probability of visibility of each
object part given its location. Unlike previous approaches,
where the image likelihoods are computed using the as-
sumption that each part is visible in the image, we com-
pute the image likelihood considering the visibility of parts
in different views. We also consider the high correlation
between the appearance of left-right part pairs and use it
to better localize the part locations. Experimental results
demonstrate the importance and effectiveness of incorporat-
ing these additional constraints in real scenes with multiple
people.

(a)

(b)

(c)

(d)

Figure 8. (a) and (b)Results from a multiple people sequence
where background subtraction cannot be used. (c) An uncon-
ventional pose (d)Results from a commonly used sequence from
Brown University.
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