
Enhancing Readability of Scanned Picture Books

Chang Hu
Computer Science Department

Human-Computer Interaction Lab

University of Maryland

College Park MD 20742 USA

changhu@cs.umd.edu

ABSTRACT

I describe a system that enhances the readability of scanned

picture books. Motivated by our website of children’s books in

the International Children's Digital Library, the system separates

textual from visual content which decreases the size of the image

files (since their quality can be lower) while increasing the quality

of the text by displaying it as computer-generated text instead of

an image. This text-background separation combines image

processing and human validation in an efficient manner and

results in a system that not only is more readable, but also

accessible, searchable, and translatable.

Categories and Subject Descriptors

H5.2 [Information interfaces and presentation]: User Interfaces.

- Graphical user interfaces.

General Terms

Design, Human Factors.

Keywords

Children’s books, Accessibility, Online access, Readability,

Digital Libraries.

1. INTRODUCTION
The International Children's Digital Library (ICDL) is an online

digital library that offers free scanned children's books [1]. It

includes over 2,500 books in 41 languages. It has been visited by

over two million unique users from 166 different countries in the

past five years. The book pages in the ICDL collection are

scanned images of their physical counterparts. They are shown in

users' web browsers as images. While the scanned books provide

users worldwide with an abundance of children’s books, the pages

suffer from readability problems. There are several reasons for

this. The text in the scanned pages is often too small to read on

the small screens that many visitors use. The images, until

recently, were scaled dynamically by the browser to fit in the

browser window without scrolling – but it turns out that most

browsers use a fast, but very poor quality image scaling algorithm

(Figure 1). The ICDL website allows users to zoom into images,

but this solution is problematic from a usability perspective since

users must scroll in two dimensions. And from a task perspective,

the readers must choose between seeing the full page of the

picture book, which is valuable in itself, and zooming in far

enough to make the text readable.

These problems apply to all digital libraries where scanned pages

are displayed – but they are particularly significant for pages with

images or other visual displays that are designed to be seen in

concert with the text. Thus, these issues are particularly important

for the ICDL, which has a large collection of picture books.

For scanned pages, the human reader has different needs

regarding the resolution of the text and pictures. From a reader’s

perspective, lower resolution and aliasing artifacts are less

problematic for pictures and background images. On the other

hand, textual content in images becomes difficult to read with

even the slightest aliasing, which can occur at a relatively high

resolution. To enhance the overall reading experience while still

preserving the context, our solution is to separate text and

background on the pages, so that they do not have to be displayed

at the same resolutions. The text-background separation also

offers the potential to add other major features such as content

search, read-aloud for increased accessibility and translation.

I built an interface called ClearText [3] which takes advantage of

this separation, presented as a simple web-based interface for

presenting books with these two layers. Standard DHTML with

CSS is used to display the text-free image with HTML-rendered

text on top of that image (Figure 2). I also built another interface,

PopoutText, which simply renders a high-resolution version of the

textual part of a scanned page on top of its original position on

demand. PopoutText uses some of the same underlying

technology I developed for ClearText, but is simpler (and less

powerful) as it doesn’t separate the textual and image layers. Our

user study [3] showed that both ClearText and PopoutText are

significantly better than the original interface in terms of both

readability and preservation of author’s creative intent. In fact,

the two interfaces are close to physical books on these criteria.

In order to separate the textual and image layers, there are two key

problems: 1) locating and transcribing the text so it can be

Figure 1. This shows: (left) the effect of browser scaling of

images; and (right) pre-computing an image of exactly the

right size that fits the browser window.

displayed as computer text on top of the scanned image, and 2)

removing the text from the scanned image so the new text can be

displayed clearly.

The most obvious solution to the first problem is to use Optical

Character Recognition (OCR) which is the industry standard

approach and works well in many settings [2]. However, it is

difficult to apply OCR directly to picture books in the ICDL due

to language, background and layout issues. First of all, OCR

systems usually assume one or a small number of working

languages, and the working languages are mostly Latin-based [10-

15]. The ICDL has books in 41 languages, in which 33% are

written in non-Latin character sets. Its second and third largest

languages, Persian and Mongolian, are not Latin-based. Using

one OCR system per language is both inefficient and very

expensive, and using one OCR system for many languages

decreases accuracy significantly.

Aside from language issues, most OCR systems assume that pages

have a simple white background, whereas many picture books

have background illustrations behind the text. Another common

assumption of OCR is a simple layout with traditional fonts,

which is often not true for books with more artistic

representations. For example, many books have a large graphic

letter at the beginning of a chapter which is usually not handled

by OCR software.

I avoid these challenges with OCR by using human volunteers to

transcribe the books. Because our books tend to be short without

huge amounts of text, and because I have many volunteers, this

approach is feasible. Or, if I had longer, more textual books, I

more likely would have explored the use of a combined OCR /

human approach where OCR does a first pass, and humans correct

the results like the Distribute Proofreaders project [7].

However, for locating the text, and ensuring that it has been

removed properly, I do use a semi-automatic system that

combines an automated first pass with human correction step – a

process sometimes referred to as Distributed Human

Computation.

To solve the second problem (removing text from the image), I

use an image processing technique called inpainting [9] that

mends the texture of a region by imitating the texture of the

neighboring region recursively. Overall, our approach obtains

language-independent text-background separation on scanned

pages with complex pictorial backgrounds.

2. RELATED WORK
Our user study [3] showed that book pages with text rendered at

different scales are closer to physical books in terms of readability

and preservation of creative content. They are also superior in

readability than plain scanned images of the same book pages.

As for computer-generated text, it has also been reported in [4]

that readers prefer anti-aliased text to bitmap fonts at the same

point size.

Commercial systems for Latin-based languages abound.

However, multilingual OCR, layout analysis and text location on

complex backgrounds remain to be open problems. Kangugo et

al. [16] has given a comparative evaluation on OCR systems in

different languages, which showed that OCR accuracy for some

common languages is not satisfactory. A survey of layout analysis

algorithms has been given by Mao et al. [17]. Most application

domains mentioned are documents with simple layout, e.g.

technical reports, journals and book pages. Jung et al. [18] wrote

a survey on text detection and location, in which complex

backgrounds are one of the main factors calling for more

investigation.

Figure 2. Reader interfaces.

(Top) ClearText. (Bottom) PopoutText

Figure 3. Percentage of books in different languages

In practice, OCR is widely used with mass digitization for large

online digital libraries [2], where little human intervention is

involved. However, those mass digitization projects either require

human intervention afterwards [7] or do not correct OCR errors

[8]. None of these projects try to preserve layout and formatting

information.

I also looked at what commercial and open source OCR software

claim to offer. With maximum accuracy under 85%, most of the

open source OCR software solutions are not accurate enough to

use. The only exception, Tessearact (accuracy > 95%) [5], is still

inferior to its commercial counterparts. Commercial OCR

software usually claim a much higher accuracy, but I believe they

are not applicable due to the unsolved research problems of

language, layout and background. The ICDL also has books in

uncommon languages such as Khmer and Rarotongan that none of

the available commercial OCR systems support (Figure 3).

Motivated by the ESP game [6] and the Distributed Proofreaders

program [7] in Project Gutenberg, I am trying to compensate for

the insufficiency of an entirely automated approach by including

some human effort from volunteers. Unlike the ESP game which

relies solely on human users, I am taking a semi-automatic

approach with multiple iterations. A similar effort to combine

automatic processing and human validation is SAPHARI [20].

Our approach is also similar to the Distributed Proofreaders

program in that a semi-automatic process is used to transcribe

scanned book pages. In Project Gutenberg, scanned pages first

undergo an OCR process to obtain relatively accurate

transcriptions. Then, human volunteers in the Distributed

Proofreaders program proofread OCR results through an online

user interface. However, that solution would not be adequate for

our problem because it does not collect any information except for

the raw text. For our purposes, I also need to preserve the artistic

representation through text layout and pictorial background. Our

work is also closely related to the semi-automatic adaptive OCR

of Rawat et al. [19], although I focus on mainly picture books

with complex page background, and I have a very different

interface design.

3. SYSTEM DESIGN
The goal for text-background separation is to remove all the text

pixels from the page and fill in the missing pixels in a way that

follows the texture and structure of the surrounding background.

The text-background separation system consists of four parts: text

location, transcription, inpainting and rendering. Text location

combines automatic image processing algorithms with human

validation to find the text blocks, and then locates the text pixels

in a page (Steps 1-3, Figure 4). The system then provides an

interface for volunteers to transcribe the pages with necessary

layout formatting (Step 4). With text pixel locations, pictures in

the background can be mended using inpainting [8] (Step 5). At

the end, the system renders the transcribed text with a more

readable and more efficient representation (Step 6). I now look at

the main components of the algorithms involved here more

closely.

3.1 Text Location
The first step is to determine which pixels in the image scan

correspond to text. Text location is a binary-value function

()
()





=
otherwise

textisyxPif

false

true
yxf

,
,

 (1)

where ()yxP , is the pixel at position ()yx, . In other words, text

location takes every pixel in the image, and then classifies it as

text or non-text.

A semi-automatic iterative text location algorithm that I designed

is then used. For each page containing textual content, automatic

image processing techniques are initially applied to the whole

Figure 4. Major steps of processing

page to perform text location. Text pixels then form text blocks

which undergo human validation. If a block is manually

corrected, the text location process is repeated on the block to get

a more accurate result. It is much faster for humans to validate

text blocks than working on the pixel-level. Automatic algorithms

also work very accurately within one text block since most

complex backgrounds are outside of the block.

Our algorithm uses the image processing techniques of color

thresholding, connected component analysis and morphological

transformation. This algorithm is based on two assumptions: 1)

Text is darker than the background; and 2) within a page, the font

is homogeneous. For most pages, these assumptions are true.

For pages that don’t meet these assumptions, the human validators

will have to correct it.

Under the first assumption, color thresholding separates dark

pixels from the rest of the background (Fig.10-2). Color

thresholding is a binary-value function

() ()() ()() ()()
000 ,,,, byxBgyxGryxRyxf <∧<∧<= (2)

where () ()yxGyxR ,,, and ()yxB , are the red, green and blue

values of the pixel at position ()yx, , and that
00, gr and

0b are

predefined thresholds for the corresponding color values. The

output of color thresholding is a binary image, where dark pixels

in the original image are white and others are black.

A connected component analysis is then performed to remove

connected components too small or too large compared to known

fonts (Fig.10-3). A connected component is a collection of

foreground pixels that are adjacent to each other. In our

application, foreground pixel are white and background pixels are

black. Two pixels are adjacent if and only if they share the same

edge. Under this definition, a pixel can be adjacent to a maximum

of four pixels (4-connection). A connected component is

considered text only if it is not significantly wider and not taller

than a word.

After the connected component analysis, most text pixels are

preserved while most non-text pixels are removed. The regions of

text pixels (i.e. letters) are then dilated to form text blocks

(Fig.10-4). Dilation [22] is a mathematical morphological

operator that enlarges boundaries of regions of foreground pixels.

When the letters are dilated, the level of enlargement can be

defined so that neighboring letters become connected, and then

each block of text is represented by one connected component.

Color thresholding alone can roughly locate text pixels, but the

two steps that follow are still necessary. Connected component

analysis can remove most false-positive background pixels. Text

blocks give users a quick way to identify errors, and provide a

more restricted area for more accurate re-processing.

The dark text and homogeneous font assumptions are the basis of

the above algorithm. Although there are some examples in our

collection where the two assumptions do not hold, errors can be

quickly corrected by users with the validation/transcription

interface. Automatic re-processing will proceed henceforth with

the corrected text blocks. Initial parameters for the algorithms,

i.e. font and line spacing are predefined. Through our

experiments, one set of global parameters gives correct results

Figure 9. Dilation (from [23])

Image ColorThredsholding(Image imgIn, Double t) { foreach (Pixel pix in imgIn) { if ((pix.R < t) && (pix.G < t) && (pix.B < t)) { pix.Color = Color.White; } else { pix.Color = Color.Black; } } return imgIn; }
Figure 6. Color thresholding algorithm

Image LocateText(Image imgIn, out Array<Rectangle> textBlocks) { Image imgThed = ColorThredsholding(imgIn, PARAM_THRESHOLD); Image imgCleaned = CleanConnectedComponents(imgThed, PARAM_MIN_WORD_SIZE, PARAM_MAX_WORD_SIZE); Image imgTextBlocks = Dilate(imgCleaned, PARAM_BLOCK_DILATE_SIZE); Array<Rectangle> textBlocks = GetTextBlocks(imgTextBlocks); return imgThed; }
Figure 5. Text location algorithm

Image CleanConnectedComponents(Image imgIn, Size minSize, Size maxSize) { Array<ConnectedComponent> components = GetConnectedComponents(imgIn); foreach (ConnectedComponent c in components) { if ((c.Width > maxSize.Width) || (c.Height > maxSize.Height) || (c.Width < minSize.Width) || (c.Height < minSize.Height)) { foreach (Pixel pix in c.Pixels) { pix.Color = Color.Black; } } } return imgIn; }
Figure 7. Connected component analysis algorithm

 Image Dilate(Image imgIn, Double dilateRadius) { Image imgOut = imgIn; foreach (Pixel pixOut in imgOut) { if (pixOut.Color == Color.White) continue; forach (Pixel pixIn in imgIn) { if (pixIn.Color == Color.Black) continue; if ((Abs(pixOut.X - pixIn.X) < dilateRadius) || (Abs(pixOut.Y - pixIn.Y) < dilateRadius)) { pixOut.Color = Color.White; } } } return imgOut; }
Figure 8. Dilation algorithm

with automatic text location on 58 out of the 75 pages processed.

3.2 Validation/Transcription Interface
A web-based interface enables humans to validate the

automatically generated text blocks and to transcribe pages. I

decided to use the same interface for validation and transcription

since these two tasks are closely related, and could be completed

in parallel. For most simple cases, human validation is redundant

and can be done very quickly. The interface shows books that

have not been validated or transcribed. Upon loading a book, the

thumbnails of every page in the book are shown. Users can click

on a thumbnail to perform verification in a page view (Figure 12).

In the page view which is used to verify and transcribe the page

(Figure 13), the automatically generated text blocks are shown on

the interface as semi-transparent blocks on top of the scanned

image of the page. When users click on a block, the interface

zooms in to a detail view with the text block. A user input text

field is overlaid on top of the original text. A panel with a

textbox and font/layout controls appears to the right hand side of

the page to allow with the human transcriber to specify font and

layout information. The layout information includes direction,

alignment, font, color, decoration, light height, and adjustment.

Using this panel, users can tune those parameters until the

rendered transcription is aligned with the underlying textual

content of the page. This step isn’t necessary, but if this

information is provided, then I can render the text in a way that

corresponds more closely to the original visual presentation. An

incorrect text block can be removed, and new blocks can be

created by dragging out an area with the mouse on the page.

Users can save their work on each page and return to it later, or

Figure 10. Steps of automatic image processing (left-to-right, top-to-bottom).

(1) Input image; (2) Color thresholding; (3) Connected component analysis;

(4) Dilation; (5) Text block formation; (6) Result.

finalize a page by submitting it to the database. The same

interface can also be used for translating books. Instead of

transcribing, users enter translated text into the textbox. Although

overlaying the user’s text onto the original is not necessary in this

case, it is still helpful for font/layout alignment. Text block

validation remains the same in the case of translation.

3.3 Inpainting
After a page is transcribed, the original text needs to be removed

by spreading the background texture over text pixels. This

process is called inpainting. Inpainting means “the modification

of images in a way that is undetectable for an observer who does

not know the original image is” [9]. Starting from the boundary

of the region to fill, inpainting recursively replaces text pixels on

the boundary with neighboring texture, shrinking the region and

shortening the boundary on each step.

The inpainting algorithm in our system is a type of geometric

inpainting, which is dependent only on the geometry of the

original image. It first calculates level lines on which the intensity

of pixels is similar, then fills each empty pixel based on its level-

line neighbors by keeping the level line continuous.

Continuation is preserved by solving the third-order partial

differential equation

 D3I (D┴I, D┴I, D┴I) = 0 (3)

where D3I is the third-order gradient of the original I, and D┴I is

the 90º rotation of the gradient of I, or the direction of the level

line.

As shown in Figure 11, the input to the inpainting algorithm is the

original image and the location of text pixels. The output is an

image that contains only the background and no text.

3.4 Text Rendering
As mentioned, the interface to ClearText is designed to improve

readability [3], embodying the idea that the human reader has

different needs for the resolution of the text and pictures. In

ClearText, transcriptions obtained from the

validation/transcription interface are used to re-render the text into

a resizable text box on top of the inpainted background. The text

box has a semi-transparent background to ensure that the text

won’t be obscured, even if it runs onto an area of the illustration

with a busy background. The text box is located at the position of

the original text blocks, while the text is rendered onto it with as

close to the original layout, font and formatting as possible.

ClearText makes it possible for the users to resize the text without

resizing the background, preserving the context while enhancing

the readability of the text.

I also designed another interface, PopoutText, for an evaluative

comparison which has turned out to be interesting in its own right.

PopoutText selectively magnifies the portion of the image that

contains the text blocks when the mouse is clicked on those text

blocks. The magnified portion is opaque so its background is

occluded. Since the text is still displayed in its original form, no

infilling is needed. PopoutText is interesting because it better

preserves the artistic intent of the book author and illustrator –

since it uses the original image. However, it is limited because it

does not work well for pages that are full of text, and it has no

support for the added features of translation, read-aloud or search.

On the other hand, it is technically much simpler as it only needs

the text bounds detection that our algorithms offer, and does not

need transcription or inpainting.

4. IMPLEMENTATION
I implemented ClearText and PopoutText with the just-mentioned

algorithms as follows.

The automatic text location algorithm is implemented using the

existing Image Processing Toolbox in Matlab®. Since the text

location algorithm is relatively simple, it is not a bottleneck and I

would expect very little difference in efficiency between an

implementation written in Matlab® versus one written in another

programming language (i.e. C/C++).

The inpainting algorithm is implemented in C++ based on the

Figure 12. Thumbnail view of

transcription/verification interface
Figure 11. Effect of inpainting

code shared by Bertalmío and described by his team [9], The

numerical solution of Eq.(X) has been implemented using an

explicit, forward time, finite differences scheme with the

monotonized central difference slope limiter of Van Leer .

The validation/transcription interface was implemented using a

mixture of Java and JavaScript, consistent with the rest of ICDL

interface. The book reader interface is implemented using

standard DHTML with CSS to display the text-free image, with

HTML-rendered text on top of that image. Those

implementations have been tested on multiple browsers including

Internet Explorer, Mozilla Firefox and Opera.

The reading interfaces have been deployed internally for user

studies. A modified version of the reading interfaces has also

been tested on the children’s laptop provided by the One Laptop

Per Child Foundation [21]. The ClearText system will be

deployed to the main ICDL web site soon.

Figure 13. Transcription/Verification Interface.

(top-left) blocks overview; (top-right) blocks editing view;

(bottom-left) editing view close up; (bottom-right) font/layout panel close up.

5. CONCLUSION
I described a system that enhances the readability of scanned

books by decoupling the text and visual background of the page.

Decoupling is obtained through a semi-automatic image

processing approach using image processing for a first pass and

humans to correct the results. This approach is crucial because at

this point, generating the new interfaces with an entirely

automated process is impossible because image processing

techniques simply cannot do the task at sufficient quality.

The combined computer/human approach enabled us create two

book reader interfaces, ClearText and PopoutText, which are

designed for an enhanced reading experience. ClearText makes it

possible for the users to resize the text without resizing the

background, whereas PopoutText selectively magnifies the image

portion that contains the text blocks.

With a combination of simple computational and manual

processing, this system is able to yield an enhanced reading

experience, which no purely automated system has achieved

before. I will continue to try and improve the automated part of

the system which will allow us to decrease the human effort

required to correct the inevitable mistakes. However, while a

semiautomatic system will become more efficient as more of the

manual tasks are be replaced by reliable computational

equivalents, for any semi-automatic system, there will always be a

tradeoff between developers’ efforts spent on automation, and

users’ efforts spent on manual tasks.

It would also be a very interesting future direction to design a text

block validation/transcription interface to motivate massive online

users, similar to the ESP Game. This approach could enhance the

scalability of the system, so that it becomes a better fit for mass

digitization.

6. ACKNOWLEDGMENTS
The author would like to thank Dr. Marcelo Bertalmío for sharing

his implementation of his inpainting algorithms. I would also like

to thank Alexander J. Quinn, Anne Rose and Takeshi Arisaka and

my advisor Benjamin B. Bederson for their advice.

7. REFERENCES
[1] ICDL facts page,

http://www.childrenslibrary.org/about/fastfacts.shtml as of

Dec 2007.

[2] Coyle, K. Mass Digitization of Books. In Journal of

Academic Librarianship, v32 n6 p641-645 Nov 2006

[3] Quinn, A., Hu, C., Bederson B., Rose, A. and Arisaka T.,

Reading Scanned Books in Web Browsers, in CHI 2008 (in

press)

[4] Boyarski, D., Neuwirth, C., Forzlizzi, J., and Regli, S. H. A

Study of Fonts Designed For Screen Display. In Proc. CHI

2002, ACM Press (2002), 87-94.

[5] Google Tesseract, http://code.google.com/p/tesseract-ocr/

[6] Ahn, L. v. 2006. Games with a Purpose. Computer 39, 6

(Jun. 2006), 92-94.

[7] Distributed proofreaders, http://www.pgdp.net/c/

[8] Google Book Search, http://books.google.com/

[9] Bertalmin, M. Strong-Continuation, Contrast-Invariant

Inpainting With a Third-Order Optimal PDE. In Image

Processing, IEEE Transactions on, v15 n7 1057-1938.

[10] MODI, Microsoft Office Document Imaging,

http://office.microsoft.com/en-

us/help/HP030763951033.aspx

[11] OmniPage, http://www.nuance.com/omnipage/languages/

[12] Readiris, http://www.irislink.com/c2-479-

189/features.aspx#rec

[13] ABBYY reader,

http://www.abbyy.com/finereader8/?param=44919#nowhere

[14] Ocrad, http://www.gnu.org/software/ocrad/ocrad.html

[15] GOCR, http://jocr.sourceforge.net/

[16] Kanungo, T., Resnik, P., Mao, S., Kim, D., and Zheng, Q.

2005. The Bible and multilingual optical character

recognition. Commun. ACM 48, 6 (Jun. 2005), 124-130.

[17] Mao, S., Rosenfeld, A., and Kanungo T. Document structure

analysis algorithms: a literature survey, in Proc. SPIE 5010,

197-207.

[18] Jung, K., Kim, K., Jain, A K. Text information extraction in

images and video: a survey, in Pattern Recognition, 2004

Volume 37, Issue 5, (May 2004), 977-997.

[19] Rawat, S., Kumar, K.S.S., Meshesha, M., Sikdar, I.D.,

Balasubramanian, A., and Jawahar, C. V., A Semi-automatic

Adaptive OCR for Digital Libraries. Lecture Notes in

Computer Science 3872/2006, 13-24.

[20] Suh, B. and Bederson, B. B. 2007. Semi-automatic photo

annotation strategies using event based clustering and

clothing based person recognition. Interact. Comput. 19, 4

(Jul. 2007), 524-544.

[21] OLPC Project, http://laptop.org/

[22] Gonzalez, R. and Woods, R. Digital Image Processing,

Addison-Wesley Publishing Company, 1992, pp 518 - 519,

549.

[23] Morphology – Dilation,

http://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm

