
1

The Design and Implementation of ViPER

David Mihalcik and David Doermann

Institute for Advanced Computer Studies

University of Maryland, College Park

(davidm@umiacs.umd.edu)

A video sequence may contain any number of persons, objects and

activities. ViPER-GT is a tool for annotating a video with detailed

spatial and temporal information about its contents. This paper is

for people who wish to extend it for their own needs, or curious

users who wish to understand some of its design choices. It

presents information about ViPER-GT’s predecessors (and

antecedents), information about its design and implementation and

some use cases.

2

Table of Contents

1. Introduction ...5

2. Related Work..6

2.1. Video Annotation Data Models .. 6

2.2. Video Annotation Systems .. 7

2.3. Closed-Loop Video Performance Analysis Systems.. 10

3. XGTF: The ViPER Data Model ... 10

4. User Interaction Design ... 12

4.1. Introduction to ViPER-GT’s User Interface.. 12

4.2. Modality ... 12

4.3. The Video Canvas... 14

4.3.1. Design ...14

4.3.2. Implementation...14

4.4. The Score.. 15

4.4.1. Design ...15

4.4.2. Implementation...16

4.5. The Spreadsheet.. 16

4.5.1. Design ...16

4.5.2. Implementation...17

4.6. The Schema Editor ... 17

4.6.1. Design ...17

4.6.2. Implementation...18

4.7. The Remote Toolbar .. 18

4.7.1. Design ...18

3

4.7.2. Implementation...19

4.8. Notes about Miscellaneous User Functions .. 19

4.8.1. Handling Media Source File Selection ...19

4.8.2. Managing Undo and Redo ...20

4.8.3. Adding Scripts ..20

4.8.4. Handling Files ..20

4.8.5. Interpolation and Propagation ...21

5. Use Cases ... 21

5.1. Text Detection ... 21

5.2. Person Tracking.. 22

5.3. Event Detection on the Tarmac.. 23

6. Extending ViPER-GT .. 25

6.1. The ViPER File Format, XGTF ... 25

6.1.1. The FILE Information Descriptor ...25

6.2. Accessing the Data through the ViPER API .. 25

6.2.1. Creating an Instance of ViperData ..26

6.2.2. Reading from and Saving from XGTF ...26

6.2.3. Transactions..27

6.3. Adding New Data Types .. 27

6.4. Adding New Interaction Methods: Wizards and Widgets ... 28

6.4.1. An Example: Labeled Text Zones...28

6.4.1.1. The Zone Editor Panel ...29

6.4.1.2. Adding Color to the Types ..29

6.4.1.3. Displaying Connections...30

4

7. Future Work... 30

8. Appendix: The Limn3 Application Loader... 31

8.1. System Management .. 32

8.1.1. Bootstrapping ...32

8.1.2. The Triplestore ...34

8.1.3. Declaring a Bean ..34

8.1.4. Declaring a Menu Item or Group ..34

9. Appendix: Glossary .. 36

10. Bibliography... 37

5

1. Introduction

Video understanding algorithms attempt to extract information automatically—allowing a

machine to annotate a video quickly, a task often prohibitively time consuming for humans. To

evaluate a video analysis algorithm, or compare a set of algorithms, it is necessary to define a

performance evaluation methodology. As many books and papers describe different evaluation

methods, we decided to develop a general framework for to support many types of evaluation. A

central idea common in information extraction evaluation is a comparison between the extracted

data and some ideal version of ‘Truth’. [7]

In some subfields of computer vision, like document processing, it is possible to generate

test data automatically from the source. Metadata is rarely constructed alongside videos, leaving

annotation and metadata to be added later. In order to ensure researchers may repeat and verify

evaluations, it is important to distribute trustworthy ground truth metadata. Metadata browsers

and editors allow qualitative verification of the ground truth. ViPER-GT is a tool for creating and

editing video metadata.
1

The major design goal of the ‘ViPER Ground Truth Authoring System’ is a general-

purpose and unbiased annotation system that supports creating data useful for evaluation. Video

information extraction is a large field, from medium-level vision tasks, like object detection, to

high-level media understanding, like event analysis. The annotation tool can be configured for

supporting such diverse tasks as text detection, faces identification, detecting personal

interactions, finding object exchanges or labeling terrorist activities. The goal of ‘General-

Purpose Annotation’ really means general enough to cover all considered uses. The first use

cases for the ViPER Toolkit came directly from ongoing research in LAMP. This included a text

detection and extraction system, face detection and identification based on landmark points, and

a rule based event detection system. This paper goes through the major aspects of ViPER-GT’s

design and implementation, using these use cases and goals as considerations and examples.

The goal of creating a general-purpose annotation system led ViPER-GT to avoid case-

specific optimization and computer vision assistance. These are two of the most requested

features. Case specific optimization is possible through plug-ins and scripts. Similarly, machine

vision can be added as extensions. For more information, see the Extending ViPER-GT section.

With these goals in mind, the original authors of ViPER-GT, Felix Suhenko and Charles

Lin, developed a complete annotation system. Written for Java 1.1, then 1.2, it supported loading

1
ViPER-PE, a companion program to ViPER-GT, performs comparison and performance

evaluation of video metadata. It is a command line tool; its complex configuration system seems

to have prevented its adoption as a standard tool by the community.

6

sequences of images and a large number of the features described in this paper. However, it was

implemented without a solid separation of components, and extending it to support new data

types, views and modes of interaction proved difficult. ViPER-GT 4.0 is a complete change in

architecture, adding a unified data model and support for such features as Undo, loading multiple

videos, and support for scripts and plug-ins.

2. Related Work

The ViPER project does not exist in a vacuum. Whenever possible, it looks to the

existence of standards in the field and other tools for support. This could mean adding import

and export filters, or simply incorporating features expected in annotation systems. This section

examines some tools that offer video annotation functionality that is similar, or less similar, to

ViPER-GT.

2.1. Video Annotation Data Models

The ViPER toolkit uses a simple data format, XGTF, to describe video content, described

in the appropriate section below. Some systems present even more simplified, and usually task

specific, data models, such as KLV. Others provide more general data models, such as the

various available OWL media description ontologies. Orthogonal to data model is file storage

and arrangement, which may stored in separate, data oriented files, like RDF+XML, or time-

oriented in a data stream with the video, like MPEG-7.

The simpler, domain specific approaches have their benefits. KLV (Key/Length/Value) is

easy to parse, and its closed world of committee-defined annotations make complete

implementations within the grasp of

most developers. ViPER, whose

primary users participate in Video

TREC and ARDA’s VACE program,

could benefit from such machinery

in its definitions. However, ViPER is

almost as simple, and its extensibility

allows different groups to design

their own extensions to agreed-upon

schemata. KLV provides a similar

mechanism: systems that do not

recognize a key simply pass over the

value. Since each file contains its

schema, XGTF provides allows

systems to display and edit

unrecognized keys that have known

types. [5]

Figure 0: Multimodal annotation with Anvil. Here, the

interface is used to mark up gestures.

7

The W3’s OWL standard provides a standard for Description Logics that is useful for

generic data storage and reasoning. Unlike most Description Logic formats, OWL unifies the A-

Box, which contains class definitions, and the T-Box, which contains instances. For information

extraction evaluation, the elements of the A-Box, such as possible event and object types, are

usually fixed. In event detection evaluation, the specific type of event being found is important,

not the general event class that was detected; the DL inference features of OWL are not essential.

Recently, some progress has been made in evaluation based on multi-class or hierarchical set

counting. These methods define correctness as how the collection of sets the item is found with

within, per its hierarchy. Since it is more accepted, and provides all the features required, OWL

should eventually replace the XGTF, possibly through an XGTF ontology. [15]

MPEG-7 provides a third path, including both a schema language and a comprehensive

committee-defined set of default schemata. The schema language is an extension to the W3’s

XML schema definition language. This means any valid XML document may be interpreted as

an MPEG-7 document. J. Hunter has been doing some work to convert MPEG-7 data into OWL;

this may give MPEG-7 the logical grounding required to make general-purpose annotation

possible. For now, MPEG-7 tools will continue to support fixed schemata, with full schema

support still far off. [1, 2]

2.2. Video Annotation Systems

Anvil presents one of the most complete video annotation user interfaces. Anvil is useful

for event and other time-oriented annotations; its original purpose was to add gesture annotations

to output from the speech-annotation toolkit Praat. With its focused development goals, the

software provides a tight design to an active user base. It includes its own scripting language,

which uses sockets to support generic extensions. A third party plug-in provides spatial

annotation. Anvil has a well-developed music score visualization, which presents mixed time

series data elegantly. In addition, it supports audio annotation, mostly to edit existing Praat files.

[6, 16]

PhotoStuff is a proof-of-concept

system for annotating still images off the

web. It is very generic and produces valid

OWL data. Unfortunately, it does not

present a very effective annotation

interface. To annotate an image, the user

draws shapes on the image then attaches

the shapes to OWL resources. The system

generates a custom form for describing

the resource, using its declared class

information from the ontology. [8]

Figure 0: MacVisSTA is a multimodal

annotation tool for Mac OS X

8

VideoAnnEx, IBM Research’s tool for annotating shots and segments of video, provides

annotation of video with MPEG-7 and free text.

It has tools for automatically segmenting video,

picking key frames, region annotation of key

frames, and annotation learning, which uses

content analysis to predict shot keywords from

existing keywords in the video. Although a

closed-source windows application, it is one of

the few free video annotation applications to use

MPEG-7 and automatic, content-based

annotation assistance. [9]

Heavily influenced by Anvil, NOMOS, a

tool out of Stanford, uses a generic ontology

like PhotoStuff and a timeline interface like

Anvil. It is still new, but has a more advanced integration of OWL’s description logic than

PhotoStuff. It supports multimodal annotation with a score view, but it is relatively new and still

far from achieving Anvil’s user experience. [10]

Vannotea supports collaborative editing of video metadata. It provides similar annotation

power to VideoAnnEx, but it has a more user-centered interface that displays more of the video

at once and more information about it. [11]

VisSTA, developed by Francis Quek and others at UIC, Wright State and VT, provides

access multiple, synchronized video streams. Like Anvil, its focus is on multimodal annotation

of human communication; here, the focus is on meeting data filmed from multiple viewpoints.

The recent editions of the software are available for Mac OS X, called MacVisSTA. It is open

source and could prove a useful code base for any number of video annotation and browsing

systems. [12]

Figure 0: Ricoh MovieTool

9

Ricoh’s Movie Tool is a hierarchical scene description editor based on MPEG-7. A

movie can be divided into labeled titles, chapters, scenes and shots. It is unavailable online, and

development seems to have ceased. VideoAnnEx could adopt its simple interface to MPEG-7.

[13]

ViPER-GT is the only video tool to focus on spatial annotation. While some provide

points or bounding boxes, or, in the case of PhotoStuff, arbitrary polygons, ViPER-GT is alone

in its attempt to provide advanced marking up of spatial data on every frame. This can be an

error-prone and time-consuming task; the other tools are missing features equivalent to ‘Display

with Respect To,’ ‘Display When Valid,’ item locking, and interpolation.

Several of the tools provide better event editing than ViPER-GT. In addition, ViPER-GT

does not support audio annotation; in fact, the audio stream is not decoded. In general, older and

more specialized toolkits offer the most mature and complete set of timesaving tools, while the

newer or more general annotation software presents information in a disorganized manner that

often makes simple annotation difficult.

Toolkit License /

Availability

Language Platform Supported

Media

File Format Spatial?

ViPER-GT GPL Java Java MPEG-1,2,

JMF,

QuickTime

Custom XML Yes

Anvil Educational C Cross-

Platform

AVI/MOV Custom 3
rd

 Party

PhotoStuff MPL Java Java Still Images OWL Yes

VideoAnnEx Educational C Windows Win Media MPEG-7 (free

text)

On

keyframes

NOMOS Freeware Java Java JMF OWL Not yet

Vannotea Unavailable MPEG-1,2;

still images

RDF

(Annotea)

Limited

MacVisSTA GPL Objective-

C

Mac OS X QuickTime ? Limited

Ricoh

MovieTool

Unavailable MPEG MPEG-7,

(scene

annotation)

?

Figure 1: Comparison of Annotation Tools

10

2.3. Closed-Loop Video Performance Analysis Systems

It has generally fallen out of fashion to present closed-loop media annotation and

evaluation systems. Conferences like VideoTREC enforce separate evaluation, while the rise of

interoperable standards, like MPEG, OWL and even simple XML, make such systems less

necessary. Though a few closed-loop systems still exist for specialized vision research projects,

there do not appear to be any undergoing current development. Even Informedia seems stagnant.

[18] The ViPER toolkit presents a data format, XGTF, that, while not standard, is easily

adaptable to existing standards, to avoid lock-in. However, these systems often offered better

browsing and data maintenance features, as well as providing a uniform way of executing a set

of tests and comparing different algorithms or parameters, but these features are better left to

specialized software.

3. XGTF: The ViPER Data Model

The ViPER data model, which is stored

in XGTF files, is essentially a temporally

qualified relational model. An XGTF file

consists of a set of ‘Descriptors’, objects

temporally qualified for a specified media file,

and the schema that describes them. Each

Descriptor has a set of ‘Attributes’, which take

on concrete data or links to other descriptors.

These correspond to rows (Descriptors) and

columns (Attributes) in an SQL database.

Usually, a Descriptor describes a unique object

or event, with its Attributes describing aspects

of it.

The schema describes a variety of

constraints on the Descriptors and their

Attributes. Each Descriptors class can be specified as ‘Object’ (no restrictions), ‘Content’ (only

one at a time), or ‘File’ (only one per file). For example, a user could define a ‘Person’ Object

Descriptor class, a ‘Cut’ Content Descriptor class, and an ‘Author Information’ File Descriptor

class. Each Attribute definition includes the data type, such as String, Bounding Box or

Enumeration. Additionally, the schema labels Attributes either static (one value per instance) or

dynamic (temporally qualified) and specifies a default value.

Data types included with the initial system include a String type, numeric types,

Relations and several spatial types

(Bounding Boxes, Points, etc.). The

current selection of field types reflects the

ViPER toolkit’s main use: evaluating

algorithms for detection, recognition and

Figure 1: ViPER Data Model

Figure 1: Example Descriptor Instance

11

tracking. Later additions came upon user request: an Enumeration type, an Omega shape for

quickly annotating the head and shoulder of people in a video, and a Text Line type, which adds

offsets for word breaks to the included Oriented Box type. While each additional shape could

have been expressed using the base viper data set, some domain knowledge allows a more

appropriate tool. For example, a String or Integer could easily replace the Enumeration, but the

Enumeration allows for better display in the timeline and a pull-down in the spreadsheet view.

 The relational model is familiar to most developers, simple to parse and store, and maps

simply to most standard evaluation metrics. It is easy to explain, unlike MPEG-7, which requires

several 300-page documents.
2
 Most importantly, it is usually a simple task to write a script to

extract any relevant data description languages. The ViPER toolkit web page links to XSLT

scripts to extract all data from Informedia II files and from the 2000 Video TREC MPEG-7

subset, and the ViPER-Full distribution includes several short Perl scripts that convert from task-

specific annotation into ViPER, and back again.

The ViPER API provides programmatic access to ViPER data files. There is currently

only a Java implementation. It presents a DOM-inspired view of the data, with support for

querying based on time and content, transactional editing and change event notification. For

more information, refer to the Extending ViPER-GT section below, or the generated JavaDoc

and example applications listed on the ViPER toolkit web page. [19]

2
 Most current MPEG-7 tools put many interesting annotations into ‘Free Text’ data blocks.

12

4. User Interaction Design
4.1. Introduction to ViPER-GT’s User Interface

 Video annotation is often a repetitive, stressful task with little cognitive involvement. To

reduce repetition and increase engagement, the data model should have a complete and

consistent visual representation, and, where possible, be directly editable. Additionally, ViPER-

GT supports such standard user interface features as unlimited undo and automatic saving.

ViPER-GT presents the user with powerful controls customizable to most tasks and generic

enough to be immediately usable. This includes views and data management principles that let

the user focus on the data that is relevant to his or her goals.

The interface presents three main

panels, with several supporting panels.

The Video Canvas contains the currently

selected video frame and any spatial

annotations. The Score presents a

timeline summary of the annotation,

while also providing basic time-oriented

editing abilities for describing events or

scenes. The Spreadsheet presents a data-

oriented view, allowing access to non-

spatial data. The Remote Toolbar is for

controlling video playback. Secondary

panels include the Undo History, the

Schema Editor and the Media File

Editor. These panels are small, or hidden

and only used at certain key times

(building the schema, adding media

files, correcting complicated mistakes).

4.2. Modality

The user interface presents a unified interaction model; each view is a separate JavaBean,

but they act in unison. Each view reflects the current the user state, including what objects the

user is currently interacting with, selected objects, any items that are marked as ‘locked’, etc; the

mediator maintains the user’s mode, and each view remains aligned with the user’s intension by

following the mode state. For example, each view displays selected items prominently, hides

hidden items and makes animates changes to data. To accomplish this, they each plug into the

same model bean that synchronizes user interaction, the ViperViewMediator. The Mediator bean

has methods to access all of these modes; this makes the class quite complex. Keeping these in

the Mediator keeps each view from having to know about each other.

 It is easy to overwhelm the user with information. In a long video, the views may fill up

with irrelevant descriptor information, hiding relevant data and slowing the interface. Data is

Figure 1: Editing in ViPER-GT. The Video

Canvas is on the top left, the Spreadsheet on the

top right, the Remote is in the middle and the

Score is at the bottom.

13

often correlated spatially and across frames, so the interface should support techniques that allow

redundant information to be entered quickly or only once. Making sure that modalities act across

components increases their benefit and makes it much easier for the user to manage state, hiding

the data that should be hidden and linking the data across frames that should be linked by the

interpolation manager.

The most important element of user state

is the current user selection. Closely related is

the hover item, which acts as an estimate of the

item the user is thinking about selecting. In

addition, individual data items take on a variety

of modes, including preferences for

interpolation, propagation, visibility, lock state,

if they represent a key segment of the video, or

if all interpolation and display calculations

should take the value as the reference point.

These different modalities use a generic Selection interface available from the Mediator

bean. For example, to set the user selection, a view accesses the Mediator’s getUserSelection

method; to hide, lock, or display and unlock a value, a view accesses the Hidden/Locked/Visible

tri-state selection via the Mediator’s getHidden method. On the Selection interface, the method

isSelected allows each component to determine if their data items are in the given mode.

Alternatively, the getPrimarySelection and getAllSelected list the selected elements. Specfic

modes implement additional fields, like Hider’s getHiding methods.

ViPER-GT’s user selection mode has two orthogonal values: the time selection and the

data element selection. The user can only select a single time value. Functionality that would

normally use a range selection must use other features; the ‘Time Marker’ function or the

‘Display When Valid’ flag, described in the Score section below, both provide means of

selecting or labeling multiple points or ranges of time. The data selection may contain an

attribute instance, a descriptor instance or a descriptor class. Multiple selections are partially

supported, but most of the views only operate on the last item added to the selection.

The Propagate mode indicates which data elements should be copied when the user

changes frames. This should interact well with the Display with Respect To mode – meaning,

values will propagate in the transformed space, not in the original video space.

While the Mediator addresses the internal means of handling modality, it is does nothing

to make sure the user is always quite aware of their mode. It would be bad to have the user think

items were gone when they are hidden, or the interface is unresponsive when items are locked or

broken when an item is set as ‘Display with Respect To.’ Each modality should have the ability

to modify, display and reset their items’ state, making the features more discoverable and usable.

Each view must not only play by the rules of each mode, they must actively support them when

possible, allowing the user to edit the mode set as is logical. The Mediator provides is no

programmatic enforcement of the lock set, and each view must check this before modifying data.

Figure 1: Editing spatial annotations with

the Video Canvas

14

This has led to a few bugs introduced when locked data is still editable by a new UI addition,

such as a plug-in or a new hotkey binding. Similarly, for ‘Display with Respect To,’ the

Interpolator object must know about every spatial data type to compute the required transforms.

The design description of each view describes how each component handles the different modes,

and the thinking behind them.

4.3. The Video Canvas
4.3.1. Design

The Video Canvas displays spatial annotations on the current video frame. It supports

zooming and ‘Display with Respect To’, a playback mode that keeps a selected item fixed while

moving the display around it. In addition, it supports live editing; for example, a user can drag a

box to follow a person walking through a scene. The goal of this view is to display the video and

any annotations in a method oriented to editing and adding new items.

Zooming and panning can be accessed with the scroll-wheel; dragging the mouse results

in a pan action, while spinning the scroll wheel zooms. The left mouse button is used for

selection and editing, while the right button is reserved for invoking context-sensitive menus. A

single left-click selects an item, if it is far away from the current selection (or if no item is

selected), and ctrl-click cycles through possible selections. The interface stores a View History,

acting like the Undo History, so the user can go back to a previous selection and view. Piccolo

allows continuous zooming, so the view history only stores views that are static for more than

two seconds.

To add data, the user must first select an empty Attribute in the spreadsheet (an Attribute

with a NULL value), then draw the spatial data item. Each item has a different drawing

technique: points are placed with single clicks, circles draw with a drag from the center to the

edge, and so on. Information about how to draw each shape can be found in the User’s Manual.

Where possible, shape editing follows similar conventions to existing drawing applications, like

PowerPoint and Illustrator. [19]

4.3.2. Implementation

The Video Canvas presents information from the ViPER API and the Mediator’s mode to

the user using a Piccolo canvas and a set of video decoders through the DataPlayer object. The

major part of the framework is in the edu.umd.cfar.lamp.viper.gui.canvas package, but

specialized Piccolo nodes and listeners are in packages by data type.

Piccolo, a Zoomable User Interface toolkit developed by Ben Bederson at the HCIL at

UMD, comes from a long line of zoomable toolkits. [17] It offers two main features: a data

structure framework for manipulating two-dimensional data, the Piccolo scene-graph, and a

visualization and editing framework using Java’s Graphics2D (or Window’s GDI+) framework.

Each data type has an associated subclass of PNode, and the Viper Data Piccolo Layer

(ViperDataPLayer) loads and attaches them as required.

15

Video decoders that support accurate random access, especially for MPEG-1 and MPEG-

2, are hard to find. After giving up on a heavily modified version an existing open source

MPEG-1 decoder, Jonathann Schneier, an undergraduate at the University, wrote one from

scratch. When VACE settled on MPEG-2 for their second round of evaluation, ViPER-GT

incorporated a version of VirtualDub’s MPEG-2 frame-accurate decoder modified to support

Java. Both the pure Java and VirtualDub decoders support serialization and deserialization of the

index, a requirement for reasonable start times. Unified access to these decoders, and several

others, is found in the ‘edu.umd.cfar.lamp.viper.gui.players’ package with the DataPlayer’s

getPlayer static method. This method tries each decoder in an order determined by the file

extension, failing through to the decoder that finally displays the item, or the ‘NotFoundPlayer.’

Piccolo determines display order not by a explicit Z-value, but instead by an in-order

traversal in the scene graph, where later elements are rendered above the previous elements. To

make sure the appropriate elements are visible, the ViperDataPLayer has separate sub-layers for

the video, the locked data, the unselected data, and the selected data. The viper data layer object

listens for changes to the mode and data, and modifies each layer independently to avoid too

much work. The renderers for each spatial data type are loaded in the system.n3 file using

Limn3’s OWL preference manager.

Adding ‘Display with Respect To’ support was not difficult. Piccolo can support arbitrary

affine transformation (e.g. keep this box level, or keep this box square). The Video Canvas adds

a translation matrix to keep the centroid of the DWRT box fixed in the view. This is

implemented by adding a Piccolo view transform to the ViperDataPLayer, which is updated as

the frame or data changes. Unfortunately, it causes a race condition during live editing, so the

DWRT shape is locked during playback for direct (mouse-on-canvas) editing. Propagate is still

supported, however.

4.4. The Score
4.4.1. Design

The Score displays an

overview of the annotations

and, if enabled, an overview of

the video itself with the

optional filmstrip line. HCIL’s

‘LifeLines’ project heavily

influenced the design. Similar

widgets are found in most of

the applications mentioned in

Related Work, OntoLog,

Macromedia’s Flash editor and Apple’s Final Cut software. These programs all display time

series data, with each line representing another aspect of the data. The Score also allows the user

to directly manipulate the data, and add bookmarks for navigation and interpolation support.

Figure 1: The Remote and Score

16

The Score displays data as a tree with at most four layers: the optional filmstrip, a

summary of each Descriptor class, a line displaying each Descriptor’s valid region and where

auto-interpolate is active, and optional lines for each attribute. At the left, the labels include the

descriptor name and id, as well as a pair of buttons. These are the tree expand/contract icon and

the ‘Display When Valid’ button. Clicking ‘Display When Valid’ restricts playback to when any

Descriptor is valid (for filmstrip), any Descriptor of the selected type is valid (for the Descriptor

class), that Descriptor is valid (for the Descriptor instances) or where the Attribute is non-null

(for Attribute lines).

Currently, only the Descriptor valid line is editable. The user may drag the endpoints,

which changes the valid region. The end points snap to any marks that are set. Holding shift

ignored the snap regions.

The play head is a special mark, displayed in red and with a triangle icon rather than the

normal black marks with circular, lettered icons. Dragging the playhead immediately changes the

frame but releasing it while the mouse is not inside the Score resets the mark to its previous

position (before the user started dragging). Dragging the playhead also pauses playback while the

user is dragging the mark. To add a new bookmark, the user clicks the ‘Mark’ button. Each

bookmark has a pop-up menu that includes such items as ‘Move To’ and ‘Delete’.

A future version should support arbitrary arrangement of Descriptor instance lines

through a dynamic query interface, which would better support event annotation. In addition, the

current interface can be cluttered for long sequences, or if there are many ephemeral items. A

method for hiding/shrinking lines, or packing multiple lines into a single horizontal region,

would help the user manage information.

4.4.2. Implementation

The Chronicle widget, which is the basis for the Score, is stored in a separate source

folder with a different license (LGPL) than the rest of the project, to encourage generality and

third-party adoption. It is divided into a data model and a display package. The basic data model

is a ChronicleDataModel, which contains TimeLine objects. Each TimeLine object has a valid

range, a title, and a list of child TimeLines, with each TimeLine acting as a node in a graph. The

display of each line is determined with the TimeLineDisplayFactory, which converts from

TimeLine to display PNode, such as lines-with-dots and rounded-rectangles.

The Chronicle package includes a few default data implementations, including a Tree

graph, which ViPER-GT subclasses. The tree model includes the expand/contract emblems. The

current implementation often chokes on longer videos, since this may involve the display of tens

of thousands of PNodes.

4.5. The Spreadsheet
4.5.1. Design

17

The Spreadsheet View displays the metadata associated with the current frame in an

excel-like table view, with a sheet for each Descriptor

class, a row for each Descriptor instance and a column

for each Attribute. An extra column is used for

displaying the Descriptors that are in the Propagate

mode. Another column displays the current value of the

validity bit for each Descriptor. Descriptors labeled

invalid on the selected frame may be hidden with a

menu option (View » Hide Invalid Descriptors).

Selecting a value, in the Score or Video Canvas, scrolls

to display that value in the Spreadsheet. Each header

shows a Show/Locked/Hidden tri-state toggle, allowing

the user to lock or hide attribute types or descriptor

types. Each column is also sortable, and the columns

may be rearranged or removed. Since they are

constrainted to be limited in number or time, all CONTENT descriptors and all FILE descriptors

are combined on to single sheets. In addition, FILE instances cannot be marked as invalid or

contain dynamic data, so they do not need the V (Valid) or P (Propagate) columns.

4.5.2. Implementation

The Spreadsheet uses an extended JTable object that has a more intelligent event listener

and a few helper methods for sorting columns and cell/row selection. The panel which contains

the TabbedPane is implemented in the class TablePanel in the edu.umd.cfar.lamp.viper.gui.table

package.

To implement editing, each Attribute type implements its own TableCellEditor. To be

more helpful, each implementation performs data checking and appropriately inform the user

when bad data is being entered, either by displaying a red cell or text, or, more often, simply

ignoring bad data with a beep and flash.

4.6. The Schema Editor
4.6.1. Design

One of the most important features

added in the ViPER-GT 4.0 redesign is the

ability to edit the schema. The Schema Editor

uses a two-pane structure/ details view, with

the user adding and removing descriptor and

attributes in the structure editing tree view.

Descriptor classes and Attribute definitions

are displayed in the left-hand pane, while the

details of the selected node are displayed on

the right. Buttons modify the structure, while

Figure 1: The Spreadsheet view on

Mac OS X

Figure 1: The Schema Editor

18

the details are in a directly-editable properties sheet.

The Add Descriptor button does just that, while the Add Attribute adds an Attribute to the

currently selected Descriptor class, or the Descriptor class of the currently selected Attribute

definition. The Remove button removes the currently selected item, either Descriptor or

Attribute. These buttons work on live data and support undo. Deleting a Descriptor class

removes all instances of that Descriptor class, and changing its name affects all instances of it.

The properties sheet supports Descriptors, the default Attribute constraints and extended

Attribute definitions. That is, changing the attribute type to ‘Enumeration’ adds another property,

‘Acceptable Values’, where the user enters a list of values for the enumeration. Similarly, a ‘Text

Line’ data type has a ‘Value Link’ field, which connects the Text Line shape object to a String

valued Attribute in the same Descriptor class.

Much of the schema editor functionality should be added to the other views. For example,

changing the name of a Descriptor class should be an option when right-clicking the tabs in the

Spreadsheet view. Also, a ‘+’ button next to the tabs in the spreadsheet view should add a new

Descriptor class. This would be much more discoverable than expecting the user to find the

Schema Editor tucked away in the Windows menu.

4.6.2. Implementation

The configuration editor is designed to reach a good equilibrium of usability and ease of

implementation. While a UML-type editor would be preferable, a tree/details view editor

achieves much of the necessary functionality. When a good open-source UML editor for Java

appears, ViPER-GT 5.0 can integrate it. For now, the interface supports two main items, the tree

view in a JTree with a ViperTreeModel data model, and the details pane using a PropertiesPanel

from the Limn3 accessories package.

The PropertiesPanel can use standard JavaBeans properties, but here we pass it a

delegate object, an AttrConfigExtensions bean, so that properties can be added or removed on

the fly. This is what lets the panel expand when the user changes the data type to Enumeration or

Text Line.

4.7. The Remote Toolbar
4.7.1. Design

The Remote Toolbar is a small but important component of the interface. It controls the

currently selected frame, and allows the user to play or pause the video. In addition, it supports

setting the ‘Loop’ option, which restarts the video when the end is reached, and has buttons for

advancing to the end or start of the next or previous section and controlling speed of playback.

Since playback is integral and controlling it so fundamental, the Remote functionality is exposed

as a set of hotkeys.

19

The Remote features a ‘Play’ button prominently, and information about the current time

code or frame number and playback speed. When playing, the Play button becomes a Pause

button. The speed is specified in a numeric spinner, and can either be modified directly or with

the ‘Accelerate’ and ‘Decelerate’ buttons. While playback is paused, these buttons act as frame

steppers. Holding ‘Shift’ increases the power of the buttons: accelerating or decelerating by

greater amounts, or stepping by five frames. The ‘Chapter Advance’ and ‘Chapter Retreat’

buttons go back or forward to the next valid region of the current ‘Display when Valid’ item.

Each button displays only an icon, but the tool tip displays the descriptive name, followed by the

hotkey in parentheses. Buttons appropriately deactivate when pressing them will not change the

state of playback.

4.7.2. Implementation

The Remote uses a Java Timer to control playback, ticking thirty times a second,

checking to make sure a frame is not currently being decoded, and, if not, starting a decode of

the frame that should be decoded at the current time. This results in a good approximation of

real-time playback, with frames dropped as the interface cannot keep up, but not doing any extra

work decoding frames that won’t be displayed at all. The interface is exposed as a simple Java

toolbar, using standard Swing elements.

4.8. Notes about Miscellaneous User Functions
4.8.1. Handling Media Source File Selection

When starting a new ViPER-GT session, the user can either first define a schema or open

a media file. The most obvious way to add a file is the ‘Media’ menu’s ‘Add Media File’ option.

Another method is the ‘+’ button on the Media Selection Toolbar. This is the only enabled button

available when the interface loads, and located at the top-left of the interface. Next to the ‘Add

Media’ button are the disabled ‘Replace’ and ‘Remove’ media buttons and the empty ‘Media

Selection’ menu. With a media file loaded, the media selection window displays the URI of the

currently selected file. For most uses of the program, this is all the functionality needed for

managing media. However, it becomes more complex as files are distributed to different users

and a ViPER data file describes many source media files.

The link to the media in the data is specified as a URI. This means that the ViPER-GT

expects to find the video in a specific folder on the user’s disk. However, it is rare that it will be

the same folder when the file is passed off to another user. When a data file is first loaded, and

the media file is unable to be located, ViPER-GT begins searching for the file on the hard disk.

This can take some time, and may return the wrong file that has the same name, or no file if the

media file has a different name. The user is given an option to manually select the media file, as

the search process continues in the background. To correct a mistaken choice, or to explicitly

change what file is loaded for some other reason, the ‘Replace Media’ button, represented with

an equivalency symbol, allows a user to replace the currently loaded file without modifying the

metadata.

20

However, handling large numbers of files can become unwieldy with only a single combo

box. The ‘Media Files’ window provides a list of the files described in the current metadata file,

and lets the user delete multiple files at once. More importantly, it lets the user delete unselected

media files, so the user does not have to load unwanted videos before removing them. It also lets

the user sort by their FILE metadata or their local file name, which can be handy for finding the

source of problems while editing a file created on another computer.

4.8.2. Managing Undo and Redo

Another feature new in ViPER-GT version 4 is Undo support. The actual implementation

uses the event transaction support in the ViPER metadata API. However, simply storing undo

objects forever will result in memory issues. To manage this, the undo history only keeps a fixed

number of items, or as many as required to make it to the last save point. This policy is fixed; the

user cannot explicitly remove items from the history. However, the user can see a list of the

event queue, allowing quick switching between versions of metadata with a double-click on the

event of choice.

To support internationalization, the undo events each have an associated URI; the Limn3

loader binds the text description to the Undo item. These descriptions can include information

about the event. Since many actions, such as the Interpolate command, can cause a large number

of updates to the data structure, and because they are often equivalent to user actions, each

recorded transaction generates a single undo event. User loaded scripts must be careful to define

their own undo description bindings.

4.8.3. Adding Scripts

Given ViPER-GT’s goal of being general purpose, to support advanced or case-specific

annotation, the end user must be able to add case specific editing features. Editing the Limn3

configuration gives the skilled Java developer many options for the configuration of the program,

but does not support casual scripting. Limn3 supports generic scripting with Groovy, a dynamic

scripting language that compiles to Java byte code.

This works well, and allows the user to add functionality without learning Limn3’s API,

but still requires understanding of ViPER-GT’s implementation. ViPER-GT extends Limn3’s

scripting to support a very specific type of scripting: performing an arbitrary transformation on

the annotation data. A user can link to any program that takes a ViPER data file on the input

stream and writes replacement ViPER data on the output. This allows users to integrate their own

machine vision routines into ViPER-GT, or modify the data file to conform to their needs. The

extended Script bean loads any executable file in the ~/.viper/scripts directory as a possible

transformation command.

4.8.4. Handling Files

Saving metadata to a file is available with a standard hotkey (Ctrl+S), or through the File

menu. The file name is displayed in the title bar; brackets indicate a save is needed (on Mac OS

21

X, the ‘Unsaved Changes’ dot is supported with the MRJ Adapter). In the File menu, the import

and export options address the problems introduced when ViPER upgraded to a new data format.

They also let a user combine multiple files or save pieces of data by media file or frame range.

As important as explicit saving is auto-save, a feature that helps users who save rarely. A

timer in the background saves the data to a separate, emergency file once every minute or after

ten Undo events are created. When the user restarts the application after a crash, a dialog appears

asking if the user wishes to reload the found temporary file.

4.8.5. Interpolation and Propagation

Since ViPER-GT supports editing large files, and objects of often move in smooth paths,

interpolation functionality greatly enhances the ability of users to mark up long sequences.

ViPER-GT version 3 supported explicit interpolation through a Range Slider, connecting all

objects selected for Propagation between the start and end frame with the linear interpolation of

their attributes. Version 4 replaced the range slider with the Mark objects in the Score view. This

allows multipoint interpolation, and right-click menus on items allows for per-attribute

interpolation. However, the interpolation must be explicitly re-invoked to make corrections.

The Interpolation dialog allows the user to select mode of interpolation, allowing the

changes to modify only the selected attribute in the selected range. Most importantly, it allows

the user to quickly re-run previous Interpolate commands.

5. Use Cases

While designing the fourth version of ViPER-GT, three use cases were used as examples:

a text use case, an object tracking use case, and an event detection case. Each one exercises a

different aspect of ViPER’s capabilities. The Text Detection case is very specific, and, for the

most part, frame oriented. The Object Detection case involves tracking objects across occlusion

and over time. The Event Detection case does not use spatial data much, instead demonstrating

ViPER-GT’s strengths, and weaknesses, at marking up event data in video.

5.1. Text Detection

Text detection is a problem of finding text, characters overlaid on the video or in the

scene, in a noisy environment. At the most granular, a text detector finds frames or video clips

that contain text, while at the finest it detects pixels which belong to characters. For the purposes

of this use case, we are going to assume that the goal of the text detection is to feed OCR

software. Current OCR software usually expects its input to be grayscale text documents, with

the text already rectified. Our text detection evaluation will we will test for the location of words

and characters in the document, or for the actual OCR results. ViPER-GT’s role in the evaluation

is marking up the location of text in the video; this will be used as the target data for the

evaluation of different Text Detection heuristics.

22

The text may be evaluated at the block, line, word or character level. Since text in video

is rarely more than a few lines long, it would be prudent to evaluate at the line level. This may

result in improper matches, as current text detection often use simple models for text which often

combine lines or split them at spaces, since split or combined characters are often useless to

OCR. With enough time and money to spend on annotation, character evaluation will give the

best results.

To better support differentiation of the algorithms, the ground truth is rated by quality

from 0, illegible, to 5, well defined and clear. It is difficult to define what an OCR algorithm will

find legible, so running multiple evaluations accepting [5], [4-5], ... [0-5] as input will give a

reasonable curve displaying how a system breaks down. Comparisons between programs at any

one level of text quality would not be prudent. The value of any legible strings will be recorded;

illegible strings are given a null value. This also allows goal-based evaluation, comparing the

ground truth strings to actual OCR output.

In addition to specifying content and legibility, it is necessary to divide text on objects in

the scene from text in overlay graphics, like pop-up text on CNN. This classification is

subjective; text in animations may be considered graphic, and animations may appear over a

scene. This can be accomplished with an Enumeration that can take the values SCENE or

GRAPHIC.

A user first defines the schema; the schema editor’s import button can load the agreed

upon template schema. The ‘Load Directory as File’ option allows the user to work with a

sequence of key frame JPEGs as if they were a single video. The New Descriptor (Ctrl+N) and

Next Attribute (ctrl-}) hotkeys allow the user to create a descriptor and cycle through its

attributes quickly. This use case emphasizes ViPER-GT’s per-frame editing, including the ability

to create and display descriptors with spatial and non-spatial elements.

5.2. Person Tracking

A variety of systems require person tracking, from location monitoring to video

summarization. For our purposes, this use case focuses on surveillance situations. This includes

both tracking people as they move around and tracking individuals in groups, at different times,

different angles or in different lighting conditions. Annotation of these tracks must happen on the

frame level; even with support from multiframe tools, this can be a very time-consuming task.

ViPER makes it attempts to make the annotation of a single person in the video take as close to

real time as possible.

As discussed above, there will be one descriptor for each person that a human editor can

recognize as the same person in the video. Unfortunately, identification is not guaranteed, as

even humans cannot tell when two people facing away from the camera are the same person.

The most difficult part is selecting a visual representation for a person. Possibilities

include:

23

• bounding box around all visible parts

• bounding boxes around torso, head, arms, and legs

• centroid

• three ellipses (head, torso, legs)

• other methods not covered by the included attribute data types

One possibility, and the one we have chosen in the past, is to place a box around the torso

and another around all visible extremities. This allows the area between the torso to be regarded

as important and the rest of the area to be regarded as good to have, but not required. This use

case selects the Torso + Extremity Box.

This use case emphasizes ViPER-GT’s handling spatial data over time. An expert user

should take advantage of the Interpolate, Display When Valid and Display with Respect To

features.

5.3. Event Detection on the Tarmac

LAMP developed software to detect events from a surveillance camera trained on an

airport runway. Events found on this sequence include groups debarking from planes, refueling

planes, taking luggage out of aircraft, and, occasionally, people walking out of the standard path.

The interesting events range from the arrival of planes to finding people walking astray. While it

might be useful to mark up the tracks of the people (too small to identify) and aircraft, the video

sequences are long (hours) and the tracking results not of interest except to infer the events.

There are two possibilities for marking up events in ViPER-GT: a generic Event

descriptor type, and specifying a different Descriptor type for each event type. For this use case,

an Event Descriptor is defined with a Type Enumeration attribute and several Relation Attributes

named ‘Participant 1’, ‘Participant 2’, ‘Vehicle’ and ‘Object’.

This use case focuses on non-spatial data over extended periods of time, exercising the

Score view and the tools ability to reliably access large media files.

25

6. Extending ViPER-GT
6.1. The ViPER File Format, XGTF

A ViPER data XML file contains two major sections, for schema and data. The schema

section contains a list of <config> elements, each describing a Descriptor class and its Attributes.

The data section is divided by source media file, with each <sourcefile> element containing a list

of <descriptor> elements. In the older plain text format, there was just one data section, with a

one-to-one mapping from markup file to media file; the source file element allows one markup

file to describe any number of videos. This represents one of the main reasons for developing a

new file format for version 4; the unified XML file is easier to distribute, and its explicit links to

the source media make it easier to work with, despite changes in the file name. However, it

makes life harder when the media file is moved or renamed, as the existence of a link will lead

users to expect the system to just work. For a detailed description, refer to The Guide to

Authoring Ground Truth with ViPER-GT. [19]

6.1.1. The FILE Information Descriptor

It is recommended that all ground truth contain a FILE Information Descriptor. ViPER-

GT automatically adds one when a media file loads. This Descriptor includes number of frames,

frame rate, image size, and other information essential for evaluation or display in the absence of

the source media file.

Attribute Name
Attribute

Type
Meaning

NUMFRAMES Integer
Total number of frames the video file (or collection of

images) contains.

SOURCEFILES String
A list of (number, filename) pairs. The number is the

frame offset; the file is the media source name.

SOURCEDIR Enumeration
Type of the media file, either SEQUENCE for a video or

FRAMES for a set of frames (e.g. a .info file).

H-FRAME-

SIZE
Integer Horizontal width of video, in pixels.

V-FRAME-

SIZE
Integer

Vertical height of video, in pixels.

Specifics of the XML Format

6.2. Accessing the Data through the ViPER API

The ViPER API offers a set of Java interfaces and classes for manipulating data in the

ViPER XML format. It offers a hierarchical view of the data, allowing manipulation of the

configuration and the instance data. The main package of interest is viper.api, which contains the

ViperData and supporting interfaces. The implementation is found in the viper.api.impl package,

with current Attribute data types in viper.api.datatypes. This section assumes an understanding of

the ViPER data model, described above and in the ViPER-GT manual.

26

6.2.1. Creating an Instance of ViperData

Here is a simple Java example of accessing ViPER data:

ViperData data = new ViperDataImpl();
Config fileInfo = data.createConfig(Config.FILE, "Information");
fileInfo.createAttrConfig("Framerate", "fvalue", false,
 new Integer(29.997), null);
Sourcefile f1 = data.createSourcefile("sample.mpg");
Descriptor first = f1.createDescriptor(fileInfo);
first.getAttribute("Framerate").setAttrValue (new Integer(25));
System.out.println ("Framerate is: " +
 first.getAttribute("Framerate").getAttrValue());

The above code creates a new instance of a ViperData object. The second line creates the

configuration for a File descriptor with the name “Information.” As described above, a

Descriptor with this name and type is important for evaluation. It then adds a single “fvalue”, or

Float, Attribute to the Descriptor, and then creates an instance of it. Note that a Descriptor must

be attached to a media source file, although that file may have no name (pass the creation method

null).

As you can see, to access the attribute value, you first have to get an attribute data object,

instead of acting directly on the descriptor via setAttributeValue and getAttributeValue methods.

The attribute objects may save on lookup, but helper methods may save on code. It should be

noted that Attributes for dynamic values have a different set of access methods:

getValueAtInstant and setValueAtSpan. Also, there are methods to iterate over the non-null

values in an interval. Accessing a dynamic attribute with the static methods, or the static

attributes with the dynamic methods, will raise an IllegalStateException.

6.2.2. Reading from and Saving from XGTF

Here is a sample of code that reads ViPER data from an XGTF file:

FileInputStream inFile = new FileInputStream ("example.xgtf");
Element documentEl = DocumentBuilderFactory.newInstance()
 .newDocumentBuilder()
 .parse(inFile)
 .getDocumentElement();
inFile.close();
ViperData data = ViperParser.parseDoc (documentEl);

PrintWriter pw = new PrintWriter(new OutputStreamWriter(
 new FileOutputStream(“out.xgtf”), “UTF-8”));
XMLSerializer.toWriter(data, pw);
pw.close();

27

The above code opens the file “example.xgtf” for parsing, parses it into the XML DOM

using the javax.xml package, extracts the ViperData using viper.api.impl.ViperParser and saves

it to a new file. The Xerces parser from xml.apache.org will also work.

6.2.3. Transactions

Transaction support is useful for combining multiple events as a single action. It also has

the benefit of automatic rollback, in event of a runtime exception. A doTransaction method takes

a Runnable object and executes it within the context of a transaction. The following Groovy

script snippet shows how to add transaction support to a ViPER-GT script.

void run(AppLoader application) {
 mediator = application.getBean("#mediator")
 sf = mediator->currFile
 if (sf != null) {
 success = false;
 trans = sf.begin(myIdentifier);
 try {
 // Modify sf here
 success = true;
 } finally {
 if (success) {
 trans.commit();
 } else {
 trans.rollback();
 }
 }
 }
}

6.3. Adding New Data Types

The most common user request is to add a data type to ViPER-GT. For each data type, an

AttributeDataWrapper handles parsing and serialization, Java JTable cell renderer and editors are

used to display the item in the Spreadsheet and on the ‘Default’ item in the schema editor,

CanvasEditor and CanvasCreator event handlers and an Attributable PNode add support for the

Video Canvas view, and an attribute data renderer added to the RendererFactory lets the data

type have a custom display in the Score view. To add a new type, these classes can be

constructed in any Java IDE, and then added to the classpath and the Limn3 system.n3 file must

be modified to load them.

The first extension is reading in the data to the API. This involves adding a new data

wrapper. Some examples are in the viper.api.datatypes package. For a simple example, see the

viper.api.datatypes.Bvalue, while the viper.api.datatypes.Polygon is a more complex example.

The attribute wrapper must implement AttrValueParser to support serialization and

deserialization, and DefaultedAttrValueWrapper to support taking default values. (To specify

28

parameters for the data in the schema section, implement ExtendedAttrValueParser instead of

AttrValueParser.)

An AttrValueWrapper is a utility object that enforces typing on the attributes. It can also

convert between an internal and external format. For example, an Enumeration can convert

between a String and an Integer. This allows space savings and possibly allows the use of ==

instead of .equals() . The interface AttrValueParser extends this to support serialization to an

XML DOM object. Note that the serialization functions use the encoded format of the data. To

add the data type to the list of allowed data types, modify the n3 file to invoke the

ViperDataFactoryImpl’s addType method.

While the parser does not require it, any new data types must be have an XML Schema

definition somewhere for the ViPER XGTF file to be valid XML. Writing the XML Schema

encourages good design, and gives other developers who wish to use the data type a reference. In

the ViPER XML Schema, each data element must extend the viper:null root type. As far as

design of the data type itself, types that more of their structure in XML are more accessible to

XML tools that use XPath and XQuery. For example, bounding boxes include x, y, width and

height as individual XML attributes, instead of saving them in a single ‘value’ attribute.

To test the wrapper object, the Java command line tool

viper. !api. !impl.!ViperParser. !FileTranscriberTest parses a file and serializes it again. Comparing

the output and input and checking the error stream will demonstrate any major errors the file

format and the wrapper object.

To add support to the Spreadsheet view, each data type implements a TableCellEditor

object. The Spreadsheet view uses the Limn3 properties object to get the TableCellEditor for

each attribute. Similarly, to add support for a spatial attribute to the Video Canvas, you have to

implement two event handlers (one for creation, another for editing) and create a Piccolo node

class for it. These are specified in the n3 file with the gt:visualCreator, gt:visualEditor and

gt:visualNode properties.

6.4. Adding New Interaction Methods: Wizards and Widgets

In developing large amounts of ground truth for specific applications, it is often cost-

effective to develop custom panels, or even data types, to extend ViPER-GT. This is in line with

the finding in the Related Work section that users prefer special-purpose tools. For example, it

might be useful to build a face annotation wizard to select face points, or a zone tool that allows

the user to quickly label zones of text.

6.4.1. An Example: Labeled Text Zones

One common form of ground truth is labeled text zones in a document. For normal,

scanner based OCR, this ground truth is often generated directly from source. However, no such

possibility is available to test camera based OCR, new script identification algorithms and any

system that works on older data. This example extension uses a simple schema, with a single

29

OBJECT Descriptor type called ZONE, with three attributes: an Enumeration indicating the zone

TYPE, a Bounding Box indicating its LOCATION, and a Relation LINK indicating its place in a

directed graph of other ZONE descriptors.
3

6.4.1.1. The Zone Editor Panel

First, a panel specifically for ZONE objects acts both as the main UI for this mode of

editing, but also to act behind the scenes with the Limn3 framework as a plug-in. There are two

zone editor panels in the example code: SimpleZoneEditor and FinalZoneEditor. This document

introduces the SimpleZoneEditor; for more detail, look at the example package documentation.

SimpleZoneEditor extends JPanel to provide the Zone editor functionality; it presents a

button selecting the type of zone the user wishes to draw. Clicking the same button twice exits

zone editor mode, so the user is able to access the standard ViPER-GT functionality. The panel

also features a checkbox allowing the user to quickly hide all other spatial data. It requires

editing the gt-config.n3 configuration file to load the plug-in.

 For ease of the example, the SimpleZoneEditor uses BoxLayout. It features a single

check-box which hides the other shapes, and a set of buttons that is derived at run-time from the

list of values the ZONE Type attribute may take. In order to do its work, the checkbox uses the

Mediator’s hiding mode. The buttons are somewhat more complicated.

In ViPER-GT, a user must first create a Descriptor instance, usually by clicking the

‘Create’ button on the spreadsheet, before configuring its Attributes. To support immediate

creation, the SimpleZoneEditor introduces a hack in the zone type buttons’ action listeners.

When the user first clicks a ZONE button, its action listener creates a ZONE Descriptor instance

of that Type, and sets the user’s selection to the Location attribute of the object. This way, the

Video Canvas view knows that a click will mean the start of a box creation event for that

Descriptor. Clicking on another ZONE Type button changes the type of the unplaced ZONE, and

clicking the same button deletes it. When a ZONE is placed on the video frame view, a

ViperMediatorChangeListener will know to create a new ZONE.

6.4.1.2. Adding Color to the Types

To add color to the boxes, the sample code includes a replacement for the existing

Piccolo node object with a new one. The association of attribute type to Piccolo node is found in

the gt-config.n3 file. The new node class overrides the get_x_DisplayProperties methods. These

methods tell the node how to render its lines while under highlights and other positions. To

determine the type of the box, it climbs the ViPER API. It first invokes getAttribute to gain

access to the viper data, then getParent to get a reference to the containing object. If the

3
 The code described in this example is available in the full source download from

SourceForge.net in the edu.umd.cfar.lamp.examples.zones package.

30

Descriptor is not an instance Zone, it returns the super method value. If it is, the custom renderer

uses the Zone Type Attribute’s value to select a different Paint color.

6.4.1.3. Displaying Connections

The replacement Piccolo node has a subnode in its Piccolo hierarchy that is a pointer to

the next item. It appears at first as a single handle at the bottom of the box. Dragging the handle

displays an arrowhead, which allows connection to another Zone. This lets the user connect a

zone to its successor, or back to itself to indicate no connection.

7. Future Work

There is a variety of improvements to be made to the system. To decide what direction to

take, a user study or detailed expert review should rank the importance of each improvement. In

addition to features required for parity with the tools described in Related Work, such as support

for OWL and audio annotation, each component should be checked over carefully and the whole

program profiled for memory leaks and performance problems.

For example, Limn3 supports serialization of entire programs to save on start time and

maintain user state across sessions. It can save two instances of the state: afterStart.dat and

last.dat. It checks against the modification time on the n3 files in its path and loads the most

recent file. To support this, all of the views loaded with ViPER-GT must be serializable. To

avoid bit rot, the user interface should include a ‘Reset’ button, which removes the serialized

state files and reloads the application from the n3.

Another large barrier to adoption is the difficulty in installing the software. Many major

Java desktop applications now support WebStart, a standard method for updating software and

quickly putting it on users’ desktops; with the click of a link, a user can install an entire

application. To support this, Limn3 must be modified to search for n3 files in more standard

places. This will likely take place in the context of a general code audit and upgrade to Java 5. In

addition, updating to Java 5 will lighten the ViPER download, as it will require fewer auxiliary

libraries; Java 5 includes some of the features provided by the XML and concurrency libraries

included with the ViPER-GT download.

The Interpolation tool has come a long way since it was first introduced. It now supports

marking regions as ‘interpolated’, and allows a user to quickly ‘update interpolated regions’.

However, this process should be transparent, like animation tweening in Macromedia’s Flash

developer application. Here, the values on the tweened frames will be updated automatically

whenever the keyframes are modified. This will likely involve moving interpolation support

from a client library in ViPER-GT to a standard function of the ViPER API itself, adding a value

check to the ‘getAttributeValue’ methods themselves. Since events are generated on the attribute

level, this will not cause a problem with existing event handlers.

A list of additional modifications to the ViPER interface is on the SourceForge web page.

All these changes should improve the experience, quality and efficiency of markup. Improving

31

the user experience overall, including things like caching the user state across sessions and using

WebStart, will help adoption of the program. ViPER-GT is singular in its ability to annotate

video; improvements to its interface and core functionality will assist it in becoming a standard

utility for video annotation and evaluation.

Even more important than core annotation functionality is extensibility. Many researchers

do not have time to focus on developing a user interface for their computer vision routines.

ViPER–GT’s generality required the development of a variety of features useful to the vision

community at large, including a suite of frame accurate Java video decoders, a simple metadata

file format and an application for quickly browsing generated annotations. The most important

feature to be added to ViPER-GT is to make it as available to developers as possible and easy to

extend. A humane interface is necessary for ViPER-GT to continue as a simple annotation

program developed by a closed lab, but a humane API is required for ViPER-GT’s future as an

open source project. ViPER-GT has the potential to become the basis for a plethora of computer

vision research tools; with the development of a vibrant developer community, like that around

ANVIL and Piccolo, it could help make vision algorithms research more user focused and

improve communication across the entire community.

8. Appendix: The Limn3 Application Loader

ViPER-GT version 4 uses a custom Java application launcher, the Limn3 Application

Loader. Limn3 reads Java application descriptions from a text file and builds the user interface

on the fly. It addresses a variety of concerns with IBM’s Bean Markup Language format

(primarily its ‘retirement’). [14] The application description is stored as OWL data in an N3 file.

Limn3 includes a variety of helpful objects for dealing with Java Swing applications, including

OWL ontologies for menus, Undo histories, icons and a JavaBean ontology. This means that it is

possible to rearrange the menus, and even add or remove components in the display, by editing a

text file. Also, the use of OWL instead of XML lends itself to greater extensibility, better error

messages and a more readable file format.

This Appendix should give the reader an understanding of how Limn3 loads an

application. Debugging a Limn3 configuration will be difficult, if not impossible, without an

understanding of how it loads and initializes itself.

Short

Name

Schema URI Description of Elements

limn3 http://viper-

toolkit !.!sourceforge. !!net/!o

wl/ !apploader#!

Provides the core set of Limn3 OWL classes and

properties, as well as declaring the Core javabean, which

is an instance of AppLoader. This schema provides most

of the functionality found in Bean Markup Language

option http://viper- Binds command line arguments, Java properties and

32

toolkit !.sourceforge!.net/!o

wl/ !apploader/ !prefs#

system environment variables to bean properties or

generic RDF triples.

menu http://viper-

toolkit !.sourceforge!.net/!o

wl/ !apploader/ !menu#

Used for specifying menu items and their actions.

mru http://viper-

toolkit !.sourceforge!.net/!o

wl/ !apploader/ !mru#

Keeps a ‘Most Recently Used’ file list.

undo http://viper-

toolkit !.sourceforge!.net/!o

wl/ !apploader/ !undo#

Binds Undoable events to their descriptions.

props http://viper-

toolkit !.sourceforge!.net/!o

wl/ !apploader/ !propertyshe

ets#

Useful for describing beans in detail, beyond that found

with JavaBeans introspection. This is mostly used for

generating property sheets, such as the one in the Schema

Editor.

hotkeys http://viper-

toolkit !.sourceforge!.net/!o

wl/ !apploader/ !hotkeys#

Binds hotkeys to action objects.

Figure 2: Limn3 schemata

8.1. System Management

This section focuses on how Limn3 loads components and responds to changes in the

preference model. At the heart of the system is an RDF triplestore, which keeps the state of the

program description, and a core bean, which provides the menu panel and a place to attach other

GUI elements; a PrefsManager object maintains the triplestore, and an AppLoader class

implements the core bean.

8.1.1. Bootstrapping

Limn3 first creates a PrefsManager object, then constructs an AppLoader bean. The

PrefsManager handles loading n3 files and modifying the in-memory application description. It

first loads a ‘system model,’ the initial set of triples. In ViPER-GT, this is the gt-config.n3 file.

The OptionsManager object converts command line arguments and environment variables to

OWL data or runs various commands specified in the preference model when certain variables

are set. The AppLoader is a subtype of JFrame, and includes a place to add other components

and menu items; it has the Limn3 URI limn3:Core. In its constructor, it loads and initializes the

application beans, sets up the menu and initializes itself as a Java Swing application.

The first step is loading the System model. The system model is either loaded from the

file found at the "limn3.prefs" property (passed to the JVM with -Dlimn3.prefs="file name"), or

from the file found at the location "CONFIG/system.n3" or "CONFIG/system.xrdf" (useful for

packaging jar applications, which do not support arguments to the JVM in the manifest).

33

After the system model is loaded, the options are activated. The options are specified as

option:PreferenceFlag or option:PreferenceTrigger resources. These present a unified method

for defining the command line options, preferences and system variable handling, as well as

automatically generating the usage statement (along with the limn3:Core limn3:shellCommand

"appname <options>" . triple). Triggers represent key/value pairs, and flags represent toggles. A

preference object can have a short, standard or long name. The short name is a single character

abbreviation preceded by a single dash on the CLI, specified by limn3:abbr.

The long name is a standard name that is proceeded by two dashes on the command line,

specified by an rdfs:label. The long name, which is used for java system properties passed via

the -D option to the java virtual machine, is specified with the limn3:longName property.

After the preference triggers and flags are parsed, the OptionsManager puts them into

action. First, it sorts through the system properties for the longNames. Then it parses the

command line in order. For each trigger or flag parsed, the system invokes the functor specified

specified with the option:invokes property. The functor class must implement the

TriggerHandler interface. The current system doesn't implement concatenating short names, like

tar does, but there is nothing really preventing this, and it might be useful for some applications

(find, tar, and other cli-oriented apps are possiblities).

There are two implementations of TriggerHandler included with the AppLoader. These

are PrintUsage and PropsToPrefs. PrintUsage does exactly that, printing out a usage statement

to the command line and exiting without an error code. The PropsToPrefs handler converts the

value of the preference trigger into a triple, inserting the reified value of the option:inserts into

the system model; if it is a flag, it inserts it unmodified, but a trigger will add any missing objects

in the inserted triples as a string literal.

With the model complete, and assuming no options have resulted in an exit or other

change in the flow of the program, the Core bean is loaded. The Core then loads and initializes

the other application beans. Note that beans are specified as members of the class of

limn3:ApplicationBean. These beans are global to the whole application, and are around for the

lifetime of the application. limn3:TemporaryBeans are generated as required, usually when

passed to another bean as a property value. limn3:requires links are used to determine in what

order to load and initialize the beans. To support cycles, these are separate stages. The load phase

places a new instance of each bean class into a lookup table, as per the limn3:className

property. The initialize phase examines each limn3:setProperty statement in the triplestore, and

sets the properties to the appropriate value, which can either be a literal, another bean, or a

property of another bean.

Finally, before the main frame is displayed, the menu is configured. The menu setup is

much simpler than the bean setup. It simply attaches menu items to menus (or the Core bean),

associating ActionListeners to the items. The ActionListeners must be retrieved from loaded

application beans.

34

8.1.2. The Triplestore

The RDF triplestore is held by a PrefsManager. In the current incarnation, it is a Jena2

RDF Model with extensions to handle change events. The preference manager bean also offers

some helper methods, and gives a tiered system of maintaining the triples, while providing a

unified store. The first tier is the System tier, loaded when the system starts from the limn3.prefs

file. The User tier is next, loaded from the user.n3 file in the user's application directory

(~/.appname/user.n3). Next is the temporary tier, which is not serialized.

Although the preference manager provides access to the unified model, direct changes to

it will be ignored. Instead of accessing the Jena Model directly, all changes must go through the

changeModel methods on the PrefsManager. These methods take a set of triples to remove and a

set of triples to add, in the form of Jena models. Changes to the User model will be persistent

across runs of the application, but not changes to the System or Temporary triple spaces.

8.1.3. Declaring a Bean

There are two types of beans, application beans and temporary beans. Application beans

are loaded at the start of the application, may be identified by URI, and are not removed until the

application closes. Temporary beans must be referenced indirectly through properties of other

beans or through the limn3:Parent link, and are created when needed. The initialization

procedure is similar for both: all bean properties are set, and then the visual representation is

dealt with.

A limn3:setProperty predicate identifies that a property of the bean should be initialized

to a given value. The target must be an limn3:BeanProperty resource with limn3:propertyName

and limn3:propertyValue links. The limn3:propertyName’s object must be the name of a

property. If there is no props:interfacer specified for the bean, then this label will be used to find

the JavaBean style property setter method on the object. The limn3:propertyValue can be either a

directly encoded value, an XSD typed literal, a String, an ApplicationBean’s URI, the value

limn3:Parent, another bean property with a limn3:propertyOf, or some RDF list of several of

these for multiparameter property set methods, as in setSize on a Dimension object. The

limn3:Parent resource is refers for the bean that the setter is called on, and is mostly useful for

configuring temporary beans, which are anonymous (without a fixed URI).

After the properties are loaded, beans with a graphical representation are displayed if

requested. Implementations of JFrame are displayed with the rdfs:label as their window title,

while JComponents are not made visible unless attached to an existing JFrame or JComponent

bean. For example, in ViPER-GT, the schema editor and action history are both loaded as a

components, but made available through menu items.

8.1.4. Declaring a Menu Item or Group

A menu item is like a bean, but is not implemented as such. The menu system has its own

menu namespace and schema. A Menu item may be attached to another Menu, to a menu Group,

35

or to a bean with a window as a visual representation. A menu attached to a window is

instantiated within a JMenuBar. A Menu attached to another menu uses the standard JMenu

class. The Groups do not show up as actual menus; these are used to provide JMenuSeperator-

defined groupings inside a menu. A future system could replace them with sub-menus when the

list becomes too long. The priorities are like Python array indexes: zero is the first element, -1 is

the last element. A downside to this rule-like approach is that it can be difficult to debug when

menu items are out of order.

For example:

:viewMenu
 a menu:Menu ;
 rdfs:label "View" ; # the default text string
 rdfs:label "Regarde"@"fr" ; # a localization
 menu:mnemonic "V" ; # Hitting Alt+V will get this menu
 # to come up
 menu:attachment lal:Core ; # The root window of any Limn3 app
 rdfs:comment "View menu; controls the user's perspective" ;
 # the comment may be used for the tooltip
 menu:priority "2" . # will come after items 0 (File), 1 (Edit)

:zoomGroup a menu:Group ; # a group for zoom commands
 menu:attachment :viewMenu ; # within the view menu
 rdfs:label "Zoom" ; # this could be used later
 menu:priority "-1" . # will be displayed last
 # groups are smart enough to not render a separator if
 # none is required - e.g. only one group exists, or
 # the group is empty.

:zoomToActual a menu:Item ; # a menu item
 menu:attachment :zoomGroup ; # within the zoom group
 rdfs:label "Actual Size" ; # the menu item text
 menu:generates :zoomActualSizeActionate ;
 # the event generated. This is a bean!
 menu:mnemonic "A" ; # for B.L.T.-ing
 menu:priority "-20" . # means the item will be near the
 # end of the group, but before
 # any items or sub-groups
 # with a priority -1 through -19

36

9. Appendix: Glossary

Attribute: An element of data associated with a descriptor. This is equivalent to a field in a

database or a property of an object. Attributes can be specified as ‘static’ or ‘dynamic’,

indicating if they can take on different values over the course of a video. Attributes are

typed.

Candidate Data: Also known as result data, this is the set of descriptors generated by some

algorithm that will be compared to the target data in ViPER-PE’s terminology.

Descriptor: The main unit of data in ViPER, a descriptor is equivalent to a row in a database, or

an object or record in a programming language.

Detection: An object is classified as Detected if one of its type is found on the frame. For

example, if you want to retrieve all the frames containing faces, you may find that

Detection is the only required depth of analysis.

GTF: Ground truth file. This is a file containing ViPER metadata, and need not refer to truth but

sometimes refers to software generated or otherwise untrustworthy metadata.

The Remote: The panel for controlling playback speed and position.

The Score: A time line display of the data in a viper metadata file.

The Spreadsheet: An excel/lotus view which displays the value of all descriptors on the current

frame.

Target Data: Also known as truth data, this is the set of descriptors that represent the true content

of the media file in ViPER-PE’s terminology.

The Video Canvas: The view of the current frame and any spatial markup.

Visibility Ball: The colored ball in each tab of the data panel, or at the top of each column. Green

indicates that the shapes are visible in the canvas, red means that the shapes are to be

invisible and unable to be selected, while yellow indicates the data is locked.

37

10. Bibliography

[1] J. Hunter. Adding Multimedia to the Semantic Web - Building an MPEG-7 Ontology. In

Proceedings of the First Semantic Web Working Symposium (SWWS), Stanford, USA,

261-281, 2001.

[2] Chang S.-F., Sikora T. and Puri A. Overview of the MPEG-7 Standard. IEEE

Transactions on Circuits and Systems for Video Technology, vol. 11, no. 6, pp. 688-695,

June 2001.

[3] P. Cohen. Empirical Methods for Artificial Intelligence. 1995. 0262032252. MIT Press.

[4] R. M. Haralick. Performance Assessment of Near-Perfect Machines. In MVA, vol. 2, no.

1, pp. 1-16, 1989.

[5] H. Karacao!lu. File Exchange Formats and Metadata. http://www.broadcastpapers.com/.

[6] M. Kipp. Gesture Generation by Imitation - From Human Behavior to Computer

Character Animation. Boca Raton, Florida: Dissertation.com. 2004

[7] D. Doermann and D. Mihalcik. Tools and Techniques for Video Performance Evaluation.

In 15
th

 International Conference on Pattern Recognition (ICPR’00), vol. 4, pp 41-67.

2000.

[8] C. Halaschek-Wiener, J. Golbeck, A. Schain, M. Gropve, B. Parsia and J. Hendler.

PhotoStuff – An Image Annotation Tool for the Semantic Web. In 4
th
 International

Semantic Web Conference – Poster Paper. 2005.

[9] C.Y. Lin, B.L. Tseng, and J.R. Smith. Video personalization and summarization system.

In 2002 IEEE Workshop on Multimedia Signal Processing. 9-11 Dec 2002. pp. 424-427.

[10] A. Gruenstein and J. Niekrasz. NOMOS User Manual. 2005.

http://godel.stanford.edu/twiki/bin/view/Public/NomosManual

[11] R. Schroeter, J. Hunter and D. Kosovic. Vannotea – A Collaborative Video Indexing,

Annotation and Discussion System for Broadband Networks. K-Cap 2003 Workshop on

Knowledge Markup and Semantic Annotation. Florida, Oct. 2003.

[12] F. Quek, Shi Y., C. Kirbas and Wu S. VisSTA: A Tool for Analyzing Multimodal

Discourse Data. In Seventh International Conference on Spoken Language Processing.

2002. Denver, CO.

[13] Ricoh MovieTool. http:// www.ricoh.co.jp/src/multimedia/MovieTool/

[14] S. Weerawarana, F. Curbera, M. J. Duftler, D. A. Epstein, and J. Kesselman. Bean

Markup Language: A Composition Language for JavaBeans Components. In Proceedings

from the 6ht USENIX Conference on Object-Oriented Technologies and Systems. Jan.

2001.

[15] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview. A

W3C Recommendation, 10 February 2004.

[16] P. Boersma and D. Weenink. Praat: doing phonetics by computer.

http://www.fon.hum.uva.nl/praat/

[17] B. B. Bederson, J.Grosjean, and J. Meyer. Toolkit Design for Interactive Structured

Graphics. IEEE Transactions on Software Engineering, 30 (8), pp. 535-546. 2004.

[18] M. Christel. Lessons Learned from the Informedia Project: Development and Evaluation

of Digital Video Library Interfaces. UNC SILS Interaction Design Lab Symposium on

Understanding Video, University of North Carolina at Chapel Hill, October 17-18, 2002.

[19] D. Mihalcik. ViPER Toolkit Home Page. http://viper-toolkit.sourceforge.net/

