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Software runs the world

• We (sometimes indirectly) interact with devices 
running (lots of) software every day
■ Desktops, laptops, routers, smartphones, tablets

■ Coffee makers, TVs, energy meters, medical devices

■ Cars, aircraft, weapon systems, nuclear centrifuges
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Software failures are disruptive

• 3/11: Mizuho FG’s ATM system goes down

■ 5,600 machines offline for 24 hours

• 8/10: Toyota Prius brakes fail due to software glitch

■ Ford also issues patch for similar problem

• 6/10: Stuxnet malware

■ Exploits flaws in industrial control systems

• 3/08: Heartland exposes 134M credit cards

■ SQL injection used to install spyware

• 8/07: LAX offline due to faulty network card

■ 17,000 planes grounded for eight hours

• 8/03: Northeast, multi-state blackout

■ Race condition in power plant management software cascades
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• Typically require restarting the program

• interrupts active users / processing

• makes services unavailable
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Programming Languages
A vehicle to a solution

• The language facilitates and constrains software’s 
implementation
■ To make it easy to implement a given design

■ While discouraging/disallowing poor coding idioms

• Software tools can play a similar role
■ Enforce/encourage good coding practice

■ Simplify addition of useful features

■ Apply to existing software in existing languages

5
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My research

• Tackles problems of software
■ reliability: software does what it should

■ security: software free from vulnerability

■ availability: avoid downtime by updating on the fly

- and avoid delayed use of security-critical patches and upgrades

• Two-pronged approach
■ Formalize and prove key idea is correct

■ Implement and evaluate idea on real software

- Using existing software, or write new software in new language
6
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Roadmap

• Dynamic software updating (DSU)
■ Kitsune: Flexible and Efficient DSU for C programs

• Program analysis for security and reliability
■ Knowledge-based security: quantitatively tracking 

information

• Quick tour of some other work

7
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■ Avoid interruptions

- Overwhelming number of security breaches due to unpatched software
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Dynamic Software Updating (DSU)

• Goal: Update programs while they run 
■ Avoid interruptions

- Overwhelming number of security breaches due to unpatched software

■ Preserve critical program state

• Useful for:
■ Non-stop services

- E.g., Financial processing, air traffic control, network infrastructure

■ Programs with long-lived connections

- E.g., OpenSSH and media streaming

■ Long-running programs with large in-memory state

- E.g., operating systems, caching servers, in-memory databases
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Dynamic Software Updating (DSU)

• Run program at the old version

• At some point update to the new version, 
preserving and updating existing program state

• existing connections, important data on the stack 
and heap, program counter, ...
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upd. process

Dynamic Software Updating (DSU)

• Run program at the old version

• At some point update to the new version, 
preserving and updating existing program state

• existing connections, important data on the stack 
and heap, program counter, ...

v1 code

v0 process

v0 state transformed state
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Many forms of DSU now mainstream
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Many forms of DSU now mainstream

language run-times app. tools OSes
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Bought by
Oracle in

2011
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DSU research challenges

• Which mechanisms should we use to update a 
running program/service?
■ Compilers, binary rewriters, run-time systems, VMs, 

process migration, ... 

• How do we ensure a dynamic update is correct?
■ Formal specifications, static analyses, testing tools, ...

• How do we balance various competing 
concerns?
■ Flexibility, efficiency, ease-of-use, portability, ...

11
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Our research in DSU

• We have thoroughly researched these questions
■ We have built DSU implementations for C and Java 

[PLDI’06, PLDI‘09x2, HotSWUp’10, OOPSLA’12]

■ We have experience performing dozens of real-world 
updates on a wide variety of programs

■ We have developed methods for systematic testing 
and static analysis to reason about dynamic updates 
[POPL’05, TOPLAS’07, POPL’08, HotSWUp’10, VSTTE’12]

■ We have developed and empirically validated a variety 
of automatic safety checks for ensuring safety [TSE’11]

• Next: Kitsune, new DSU system for C [OOPSLA’12]
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DSU state of the art: Transparency

• Goal: work on any program, with no changes

• Assessment: Laudable, but highly impractical
■ At odds with the reasons people use C

- Control over low-level data representations, explicit resource 
management, legacy code, high performance

■ Empirical study shows existing transparent update 
approaches allow incorrect updates [TSE’11]

■ Not as transparent as they seem

- Often requires refactoring to permit future updates

- and/or requires satisfying a conservative static pointer analysis

13
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New approach: Kitsune

• Favors explicitness over transparency
■ Kitsune treats DSU is a program feature and helps 

developers implement and maintain it as such

• Having the developer orchestrate DSU allows:
■ simpler DSU mechanisms

■ easier developer reasoning

■ full flexibility

■ better performance and control

• Principle: Pay for what you use
■ Design carefully builds on lessons from earlier work

14

Kitsune (fox) - a 
shapeshifter according
to Japanese folklore
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Results

• Applied Kitsune to six open-source programs
■ memcached, redis, icecast, snort: 3-6 mos. of releases

■ Tor, vsftpd: 2, and 4, years of releases, respectively

• Performance overhead in the noise

• Update times typically less than 40ms

• Programmer effort manageable
■ 50-160 LOC per program (largely one-time effort)

- Program sizes from 5KLOC up to 220KLOC

■ 27-200 LOC of xfgen specs across all releases

- xfgen is our DSL for writing state transformer functions
15
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Kitsune: whole-program updates
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Kitsune: whole-program updates

16

driver 	  	  	  	  	  	  main()

ver	  2

state

1. Load first version
2. Run it
3. Call back to driver when update ready
4. Load second version
5. Migrate and transform state
6. Free up old resources
7. Continue with new version
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Kitsune build process

17

Summary:
• For each source file

• replace gcc -c with composition of kitc and gcc
• Add -shared flag to linker and include kit-rt.a
•Allows us to update the entire program at once

.c
.c

.c
kitc gcc -c

-fPIC

-fvis...=

gcc

-shared

.c
.c

.c

.c
.c

.o

.so

kit-rt.a
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Programmer obligations

• To implement DSU as a program feature, Kitsune 
requires the programmer to:
■ Choose update points: where updates may take place

■ Code for data migration: Identify the state to be 
transformed, and where it should be received in the 
new code

■ Code for control migration: Ensure execution reaches 
the right event loop when the new version restarts

18
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Example single-threaded server
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typedef	  int	  data;
data	  *mapping;
int	  l_fd;
void	  client_loop()	  {
	  	  	  	  int	  cl_fd	  =	  get_conn(l_fd);
	  	  	  	  while	  (1)	  {
	  	  	  	  	  	  	  //	  ...	  process	  client	  requests
	  	  	  }	  	  	  
}
int	  main()	  {
	  	  	  mapping	  =	  malloc(...);
	  	  	  l_fd	  =	  setup_conn();
	  	  	  while	  (1)	  {
	  	  	  	  	  	  	  client_loop();
	  	  	  }	  	  
}

before modification
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We also support migration of locals
Generalizes to multi-threaded programs
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Migrating and transforming state

• State may need to be transformed to work with 
the new program
■ Transformation piggybacks on top of migration 

21

typedef	  int	  data;
data	  *mapping;old typedef	  char	  *data;

data	  *mapping; new
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Migrating and transforming state

• State may need to be transformed to work with 
the new program
■ Transformation piggybacks on top of migration 

21

For	  each	  value	  x	  of	  type	  data	  in	  the	  running	  program
and	  its	  corresponding	  loca6on	  p	  in	  the	  new	  program	  
do
	  	  	  *p	  =	  malloc(N);
	  	  	  snprin5(*p,N,”%d”,x);
end

Xform

typedef	  int	  data;
data	  *mapping;old typedef	  char	  *data;

data	  *mapping; new
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Migrating and transforming state

• State may need to be transformed to work with 
the new program
■ Transformation piggybacks on top of migration 

21

For	  each	  value	  x	  of	  type	  data	  in	  the	  running	  program
and	  its	  corresponding	  loca6on	  p	  in	  the	  new	  program	  
do
	  	  	  *p	  =	  malloc(N);
	  	  	  snprin5(*p,N,”%d”,x);
end

Xform

typedef	  int	  data;
data	  *mapping;old typedef	  char	  *data;

data	  *mapping; new

new::mapsz	  =	  old::mapsz;
new::mapping	  =	  malloc(new::mapsz*sizeof(char*));
for	  (int	  i=0;i<new::mapsz;i++)	  {
	  	  old::data	  x	  =	  old::mapping[i];
	  	  new::data	  *p	  =	  &new::mapping[i];
	  	  *p	  =	  malloc(N);
	  	  snprinJ(*p,N,”%d”,x);
}
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Migrating and transforming state

• State may need to be transformed to work with 
the new program
■ Transformation piggybacks on top of migration 

21

For	  each	  value	  x	  of	  type	  data	  in	  the	  running	  program
and	  its	  corresponding	  loca6on	  p	  in	  the	  new	  program	  
do
	  	  	  *p	  =	  malloc(N);
	  	  	  snprin5(*p,N,”%d”,x);
end

Xform

typedef	  int	  data;
data	  *mapping;old typedef	  char	  *data;

data	  *mapping; new

new::mapsz	  =	  old::mapsz;
new::mapping	  =	  malloc(new::mapsz*sizeof(char*));
for	  (int	  i=0;i<new::mapsz;i++)	  {
	  	  old::data	  x	  =	  old::mapping[i];
	  	  new::data	  *p	  =	  &new::mapping[i];
	  	  *p	  =	  malloc(N);
	  	  snprinJ(*p,N,”%d”,x);
}

Xfgen tool
• Require programmer to write relevant xform        
   code using high-level specs
• Automate generation of transformation code

•requires some additional type annotations
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Migrating and transforming state

• State may need to be transformed to work with 
the new program
■ Transformation piggybacks on top of migration 

21

Xform

typedef	  int	  data;
data	  *mapping;old typedef	  char	  *data;

data	  *mapping; new

typedef data → typedef data: {
   $out = malloc(N);
   snprintf($out, N, “%d”, $in);
}
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Using Kitsune and xfgen

22

.c
.c

.c
kitc gcc -c

-fPIC

-fvis...=

gcc

-sharedxfgen

.c
.c

.ts

.xf

.c
.c

.c

.c
.c

.o

.so

st.c rt.a

.c
.c

.ts

(old)
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Using Kitsune and xfgen

22

• Transformation specs in per-update .xf file
• Linked in with new version and invoked by   
kitsune_do_automigrate() and MIGRATE_LOCAL() 

.c
.c

.c
kitc gcc -c

-fPIC

-fvis...=

gcc

-sharedxfgen

.c
.c

.ts

.xf

.c
.c

.c

.c
.c

.o

.so

st.c rt.a

.c
.c

.ts

(old)
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Kitsune benchmarks: changes required

23
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Kitsune benchmarks: changes required
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Kitsune benchmarks: changes required

23
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Performance overhead

24

• 21 runs each, median, siqr reported

• Overall: -2.18% to 2.35% overhead (in the noise)
• (No performance measurements for snort yet)
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Update times

25

• < 40ms in all cases but icecast
■ Icecast includes 1s sleeps; icecast-nsp removes these

Program Med. (siqr) Min Max
64-bit, 4×2.4Ghz E7450 (6 core), 24GB mem, RHEL 5.7

vsftpd →2.0.6 2.99ms (0.04ms) 2.62 3.09

memcached →1.2.4 2.50ms (0.05ms) 2.27 2.68

redis →2.0.4 39.70ms (0.98ms) 36.14 82.66

icecast →2.3.1 990.89ms (0.95ms) 451.73 992.71

icecast-nsp →2.3.1 187.89ms (1.77ms) 87.14 191.32

tor →0.2.1.30 11.81ms (0.12ms) 11.65 13.83

32-bit, 1×3.6Ghz Pentium D (2 core), 2GB mem, Ubuntu 10.10

vsftpd →2.0.3 2.62ms (0.03ms) 2.52 2.71

memcached →1.2.4 2.44ms (0.08ms) 2.27 3.12

redis →2.0.4 38.83ms (0.64ms) 37.69 41.80

icecast →2.3.1 885.39ms (7.47ms) 859.00 908.87

tor →0.2.1.30 10.43ms (0.46ms) 10.08 12.98

Table 3. Kitsune update times

download 7 music files, each roughly 2MB in size. For all

programs, we ran the client and server on the same machine.

Table 2 reports the results. We ran each benchmark 21

times and report the median time for the unmodified pro-

grams along with the semi-interquartile range (SIQR), and

the slowdowns for Kitsune and Ginseng (the median Kitsune

or Ginseng time compared to the median original time). The

top of the table gives results on a 24 core, 64-bit machine,

and the bottom gives results on a 2 core, 32-bit machine;

Ginseng only works in 32-bit mode.

From this data, we can see that Kitsune has essentially

no steady-state overhead: the performance differences range

from -2.18% to 1.79%, which is well within the noise on

modern environments [12]. In contrast, for two of the three

programs (vsftpd and memcached), the Ginseng overhead is

more significant. While we have not ourselves benchmarked

UpStare, the authors of that system report vsftpd overheads

of 4.9% and 7.4%, depending on the features enabled [10].

Tor. While we did not measure the overhead of Kitsune

on Tor directly, we did test it by running a Tor relay in

the wild. We dynamically updated this relay from version

0.2.1.18 to version 0.2.1.28 as it was carrying traffic for

Tor clients. We initiated several dynamic updates during

periods of load, when as many as four thousand connections

carrying up to 11Mb/s of traffic (up and down) were live. No

client connections were disrupted (which would have been

indicated by broken or renegotiated TLS sessions). Over the

course of this experiment, our relay carried 7TB of traffic.

Time required for an update. We also measured the

time it takes to deploy an update, i.e., the elapsed time from

when an update is signaled as available to when the update

has completed. Table 3 summarizes the results for the last

update in each streak, giving the median, SIQR, minimum,

and maximum update times. For each program, we picked a

suitable workload during which we did the update. For vs-

ftpd, we updated after an FTP client had connected to and

interacted with the server; for redis and Memcached, we

inserted 1K and 15K key-value pairs, respectively, prior to

update; and for icecast, we established one connection to a

Figure 4. State size vs. update time

music source and 10 clients receiving that stream prior to

updating. For Tor, we fully bootstrapped as a client, estab-

lishing multiple circuits through the network and communi-

cating with directory servers, and then applied the update.

For all programs except icecast, the update times are quite

small. For icecast, most of the nearly 1 second delay occurs

while the Kitsune runtime waits for each thread to reach an

update point. This time was lengthened by one-second sleeps

sprinkled throughout several of these threads. The line in

the table labeled icecast-nsp measures the update time when

these sleeps are removed, and shows the resulting time is

much shorter. Because the sleeps are there, we conjecture

icecast can tolerate the pause for updates; we did not observe

a noticeable stop in the streamed music during the update.

In recent work [8], we have developed techniques to support

faster update times, showing significant improvements for

icecast in particular. We plan to port these ideas to Kitsune

in the near future.

Recall from Section 3.2 that xfgen-generated transform-

ers may traverse significant portions of the heap, and thus

for some updates the update time may vary with the size of

the program state. Among our programs, the most likely to

exhibit this issue are redis and memcached, as they may ac-

cumulate significant state. Figure 4 graphs the update time

for these two programs versus the number of key-value pairs

stored. For redis, the update time grows linearly because we

traverse each of the data items on the heap, since some con-

tain pointers to global variables that must be redirected to

the new version’s data segment. On the other hand, mem-

cached’s update times remain relatively constant because it

stores its data in arrays that we treat opaquely, removing the

need to traverse each instance.

Examining redis more closely, we observed that the point-

ers that force us to traverse the heap in fact point to a small,

finite set of static locations. Thus, we created a modified

(42 LOC changed) version of redis, labeled redis-mod, that

stores integer indices into a table in place of those point-

ers. This obviates the need for a full heap traversal for all
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Key idea #1: Update points
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Key idea #1: Update points

• Competing approach: update anywhere
■ (when code to be changed not running)

■ Used by Ksplice, K42 (OS), OPUS

26
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Key idea #1: Update points

• Competing approach: update anywhere
■ (when code to be changed not running)

■ Used by Ksplice, K42 (OS), OPUS

• Benefits of update points
■ Simplifies reasoning for programmers

- Particularly for multithreaded programs

■ May accelerate update times

- As opposed to waiting for updated code to become inactive

■ Simplifies updating mechanism

26
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Key idea #2: Whole program updates

27
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Key idea #2: Whole program updates

• Competing approach
■ Program keeps running the current code, and subsequent 

function calls to new versions

■ Used by Ginseng, POLUS, OPUS, Ksplice, K42

27
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Key idea #2: Whole program updates

• Competing approach
■ Program keeps running the current code, and subsequent 

function calls to new versions

■ Used by Ginseng, POLUS, OPUS, Ksplice, K42

• Benefits of whole-program updates:
■ Can update active code (e.g., long-running loops) in an 

arbitrary manner

- very important in practice

■ Explicit control migration simplifies reasoning, maintenance

■ More efficient implementation

- No need to insert levels of indirection, use trampolines, etc.

- No need to compile datastructures differently
27
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Ongoing work

28
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Ongoing work

• Means to specify and verify the correctness of 
dynamic software updates [VSTTE’12]

■ Reuse specifications for each version individually

■ Explicate acceptable backward-incompatible behaviors

28
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• Means to automatically generate state 
transformations from dynamic analysis [OOPSLA’12]

■ E.g., automatically correct leaks in running heap
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dynamic software updates [VSTTE’12]

■ Reuse specifications for each version individually

■ Explicate acceptable backward-incompatible behaviors

• Means to automatically generate state 
transformations from dynamic analysis [OOPSLA’12]

■ E.g., automatically correct leaks in running heap

• Adapt Kitsune methodology to Java
■ Contrast to our earlier VM-based approach [PLDI’09]

28

Tuesday, September 25, 2012



Ongoing work

• Means to specify and verify the correctness of 
dynamic software updates [VSTTE’12]

■ Reuse specifications for each version individually

■ Explicate acceptable backward-incompatible behaviors

• Means to automatically generate state 
transformations from dynamic analysis [OOPSLA’12]

■ E.g., automatically correct leaks in running heap

• Adapt Kitsune methodology to Java
■ Contrast to our earlier VM-based approach [PLDI’09]

• Implement lazy state transformation for Kitsune
28
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DSU project team

• Former students / post-docs

■ Manuel Oriol, post-doc 2005-06,                  @University of  York (UK) and ABB

■ Gareth Stoyle, Ph.D. (Cambridge) 2007,        @UBS (UK)

■ Iulian Neamtiu, Ph.D. 2008,                          @UC Riverside

■ Suriya Subramanian, Ph.D. (UT Austin) 2011, @Intel

■ Stephen Magill, post-doc 2010-11,                @IDA/CCS (Gov. lab)

■ Chris Hayden, Ph.D. 2012,                            @Washington Post Labs

• Current students

■ Karla Saur (3rd year), Ted Smith (undergrad), Luis Pina (3rd year, visiting)

• Profs/researchers

■ Kathryn McKinley, Prof @UT, MSR; Jeff Foster, Prof @Maryland; 

■ Nate Foster, Prof @Cornell; Peter Sewell, Prof @Cambridge; Gavin Bierman, 
@MSR Cambridge

29
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Roadmap

• Dynamic software updating (DSU)
■ Kitsune: Flexible and Efficient DSU for C programs

• Program analysis for security and reliability
■ Knowledge-based security: quantitatively tracking 

information

• Quick tour of some other work

30
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Program analysis to improve quality

• Software is ubiquitous, and critically important
■ Yet it is often unreliable and insecure

• So: build tools to analyze software automatically
■ Static analysis applied before running the program

- Examples: Type checkers/inferencers, tools like FindBugs

- Pros: Complete coverage (considers all runs), no run-time overhead

- Cons: problems are undecidable, so often false alarms

■ Dynamic analysis observes actual executions

- Pros: Very precise, no false alarms

- Cons: Less coverage, instrumentation adds run-time overhead, 
discovered problems hard to remediate in deployment

31
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Hybrid analysis: best of both worlds

• Dynamic analysis, optimized by static analysis
■ Eliminate redundant checks; no false alarms

■ Ex: concurrency error checking [POPL’10], atomicity enforcement [TX’06]

• Dynamic analysis, proved correct statically
■ Prove that necessary checks take place for all possible executions

■ Ex: Fable/SELinks for security checking [Oakland’08, SIGMOD’09]

• Static analysis, made more precise by dynamic analysis 
■ Added contextual information reduces false alarms

■ Ex: Synthesis of DSU state transformers [OOPSLA’12], Knowledge-based 
security [CSF’11, PLAS’12], Rubydust [POPL’11, STOP’11]

32
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Hybrid analysis: best of both worlds

• Dynamic analysis, optimized by static analysis
■ Eliminate redundant checks; no false alarms

■ Ex: concurrency error checking [POPL’10], atomicity enforcement [TX’06]

• Dynamic analysis, proved correct statically
■ Prove that necessary checks take place for all possible executions

■ Ex: Fable/SELinks for security checking [Oakland’08, SIGMOD’09]

• Static analysis, made more precise by dynamic analysis 
■ Added contextual information reduces false alarms

■ Ex: Synthesis of DSU state transformers [OOPSLA’12], Knowledge-based 
security [CSF’11, PLAS’12], Rubydust [POPL’11, STOP’11]

33
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No privacy: They have your data

Photography

34

your data

you

query/filter

page + ads

advertisers

This is the status quo
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Alternative: Maintain your own data

Photography
response

35

querier

you

query
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Alternative: Maintain your own data

Photography
response

35

querier

you

query

The question then becomes: 
Which queries should you answer 

and which should you refuse? 
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Query 1: Useful and non-revealing

Photography

out = 24 ≤ Age ≤ 30
& Female?

    & Engaged? *

true

36
* real query used by a Facebook advertiser

querier

you
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Query 2: Reveals too much!

out =
  (gender,

   zip-code,
   birth-date) *

reject

37
* - gender, zip-code, birth-date can be used to uniquely identify 87% of Americans
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

…

38

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

…

38

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

…

38

Belief ≜
probability
distribution

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

…

38

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

Q1…

38

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

Q1…

38

Bayesian 
reasoning
to revise

belief

When to accept, when to reject

Tuesday, September 25, 2012



• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

Q1…

38

OK (answer)

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

Q1…

38

OK (answer)

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

Q1… Q2

38

OK (answer)

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

Q1… Q2

Reject

38

OK (answer)

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

Q1… Q2

Reject

38

OK (answer)

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

Q1 Q3… Q2

Reject

38

OK (answer) OK (answer)

When to accept, when to reject
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• Maintain a representation of the querier’s belief about secret’s possible values
• Each query result revises the belief; reject if actual secret becomes too likely

• Cannot let rejection defeat our protection.

time

Q1 Q3… …Q2

Reject

38

OK (answer) OK (answer)

When to accept, when to reject
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Meet Bob

= 0 ≤ bday ≤ 364
1956 ≤ byear ≤ 1992

Bob (born September 24, 1980)
bday = 267
byear = 1980 Secret

bday

byear

1956

1992

0 364

39

 Assumption: this is accurate
each equally likely
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bday-query1
today := 260;
if bday ≤ today && bday < (today + 7)
  then out := 1
  else out := 0

|= (out = 0)

1956

1992

0 364259 267

40

1956

1992

0 364
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bday-query1
today := 260;
if bday ≤ today && bday < (today + 7)
  then out := 1
  else out := 0

|= (out = 0)

1956

1992

0 364259 267

=

41

Problem
  Policy: Is this acceptable?
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Idea: policy as knowledge threshold

•Answer a query if, for querier’s revised belief,            
Pr[my secret] < t
• Call t the knowledge threshold

•Choice of t depends on the risk of revelation

42
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Bob’s policies

= 0 ≤ bday ≤ 364
1956 ≤ byear ≤ 1992

Bob (born September 24, 1980)
bday = 267
byear = 1980 Secret

Policy
Pr[bday] < 0.2
Pr[bday,byear] < 0.05

bday

byear

1956

1992

0 364

Currently
Pr[bday] = 1/365
Pr[bday,byear] = 1/(365*37)

Pr[bday = 267] …

43

each equally likely
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bday-query1
today := 260;
if bday ≤ today && bday < (today + 7)
  then out := 1
  else out := 0

|= (out = 0)

1956

1992

0 364259 267

44

1956

1992

0 364

Back to the query ...
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bday-query1
today := 260;
if bday ≤ today && bday < (today + 7)
  then out := 1
  else out := 0

|= (out = 0)

1956

1992

0 364259 267

Potentially
Pr[bday] = 1/358 < 0.2
Pr[bday,byear] = 1/(358*37) < 0.05

=

45
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bday-query2
today := 261;
if bday ≤ today && bday < (today + 7)
  then out := 1
  else out := 0

Next day …

1956

1992

0 364259 267

|= (out = 1)

46

1956

1992

0 267 So reject?Pr[bday] = 1

P
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1956

1992

0 267

if bday ≠ 267 if bday = 267

1956

1992

0 364259 268

Querier’s perspective

will get answer will get reject

Assume querier knows policy

47
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Rejection problem

| =reject

• Policy: Pr[bday = 267 | out = o] < t
• Rejection, intended to protect secret, reveals secret!

48
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Rejection revised

• Policy: Pr[bday = 267 | out = o] < t

• Solution?
• Decide policy independently of secret

• Revised policy

• for every possible output o,
• for every possible bday b,

• Pr[bday = b | out = o] < t

• So the real bday in particular

49
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bday-query1
today := 260;
if bday ≤ today && bday < (today + 7)
  then out := 1
  else out := 0

accept

50

initial belief
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bday-query2
today := 261;
if bday ≤ today && bday < (today + 7)
  then out := 1
  else out := 0

reject

(regardless of what bday actually is)

51

(after bday-query1)
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bday-query3
today := 266;
if bday ≤ today && bday < (today + 7)
  then out := 1
  else out := 0

52

(after bday-query1)

accept

This is acceptable since it is five days after the last accept, keeping the probability within t = 0.2; 
i.e., Pr[266 ≤ bday ≤ 270] = 1/5 if out =1, Pr[bday] = 1/353 otherwise
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Implementation

• Our query analysis in the style of abstract 
interpretation
■ We developed a novel probabilistic polyhedral domain

■ Scales far better than monte carlo sampling

• Precisely analyzes a particular sequence of 
queries, rather than all possible sequences
■ Far less conservative than considering all possible 

sequences of queries

53
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Illustration of improved scalability

54
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Illustration of improved scalability
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Illustration of improved scalability
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Related work

• Significant work on database-oriented privacy, 
e.g., differential privacy.  Key differences:
■ Trusts third party data provider to run safe aggregate 

queries.  We work with individual data directly

■ DP’s powerful adversary severely compromises utility, 
particularly for queries specific to individuals

■ Does not perform on-the-fly query analysis

• Also work on quantifying information flow
■ Tracks “bits leaked” but not relevant policies

■ Considers all possible query streams; too conservative
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Current activities

• Application to secure multiparty computation 
[PLAS’12]

■ Two parties p1, p2 have secrets s1, s2 and compute 
compute f(s1,s2) = x, revealing only x to each

■ How much does x reveal about s1 and s2?

• Time-indexed data: protect predictive features
■ Cooperative computations over coalition sensor 

networks

■ Ensuring anonymity of location traces [CCS’12]

• General direction: Privacy as a right
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Collaborators (on analyses/tools)

• Former students / post-docs

■ Nikhil Swamy, Ph.D. 2008,                            @MSR Redmond

■ Polyvios Pratikakis, Ph.D. 2008,                     @FORTH Labs (Crete, Greece)

■ Avik Chaudhuri, post-doc 2009-10,               @Adobe Research

■ Saurabh Srivastava, Ph.D. 2010,                     @Berkeley (CIFellow post-doc)

■ Martin Ma, Ph.D. 2011,                                 @Amazon

■ Nataliya Guts, post-doc 2011-12,                  @Google

• Current students/post-docs

■ Khoo Yit Phang (7th year), Piotr Mardziel (4th year),  Aseem Rastogi (4th year), 
Matt Hammer (post-doc)

• Profs/researchers

■ Jeff Foster (Maryland); Jonathan Katz (Maryland); Mudhakar Srivatsa (IBM T.J. 
Watson); Miguel Castro et al. (MSR Cambridge); Daan Leijen (MSR Redmond)
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Other research

• Systems/networking 
research
■ Pavlos Papageorgiou (Ph.D, 

2008), Passive-Aggressive 
Measurement with MGRP 
[SIGCOMM’09]

■ Justin McCann (Ph.D., 2012), 
Automating Performance 
Diagnosis in Networked 
Systems

• SCORE: Agile method 
for academic research 
[CACM’10]
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Maryland Cybersecurity Center (MC2)

• MC2 Director (since Oct 2011)

■ Two new CMSC faculty (Shi and Feamster)

■ Fifteen corporate partners (SAIC, NGC, Sourcefire, ...)

■ First MC2 Symposium, May 2011

■ Google Cybersecurity Seminars

■ ACES honors program, Prof. Masters, new courses

• Several new research initiatives underway
■ Privacy as a right

■ Anti-censorship

59

MC2
Maryland
Cybersecurity
Center

Tuesday, September 25, 2012



Summary: Building better software

• Along with colleagues and students, I am working 
to understand how to construct software that is 
available, reliable, and secure; i.e., software that
■ never crashes

■ adapts to changing circumstances and requirements

■ properly protects data

■ nevertheless provides useful and efficient services
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• Programming languages, tools, 
and analyses, utilizing theory 
and implementation, are a 
powerful mechanism to this end
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