Declarative Abstractions and Scalable Platforms for

Big Data Analytics

Amol Deshpande

Department of Computer Science and UMIACS
University of Maryland at College Park

Big Data

® Explosion of data, in pretty much every domain

Sensing devices and sensor networks that can monitor everything
from temperature to pollution to vital signs 24/7

Increasingly sophisticated smart phones

Internet, social networks making it very easy to publish data
Scientific experiments and simulations
Internet of Things

Many aspects of life being turned into data (“dataification”)
® “Big Data” (= extracting knowledge and insights from data)
becoming fundamental

Science, business, politics -- largely driven by data and analytics
Many others (Education, Social Good) are slowly being

Four V’s of Big Data

® Big data not just about “Volume”
Large scale of data certainly poses many problems

But most datasets are pretty small...

e Variety and heterogeneity in both data and applications
Text, networks, time series, nested/hierarchical, multimedia, ...

Increasingly complex and specialized analysis tasks

e Velocity

Data generated at very high rates and often needs to be
processed in real time

® Veracity
What/who to trust? How to reason about data quality issues?

Easy to draw wrong statistical conclusions from large datasets
Issues becoming more important with increasing automation...

My Research

® Building data management systems to address challenges
in managing and analyzing big data by..
Designing intuitive, formal, and declarative abstractions to

empower users, and

Developing scalable platforms and algorithms to support those
abstractions over large volumes of data

® Major research thrusts over the last 10 years
Uncertain and probabilistic data management
Graph data management
Data management in the cloud
Collaborative data analytics
Query processing and optimization

® Graph Data Management

Declarative Graph Cleaning

A Framework for Distributed Graph Analytics

e DataHub: A platform for collaborative data
science

Recreation/Storage Tradeoff in Version Management
(or, why git/svn are not good at managing datasets)

Graph Data

® Increasing interest in querying and reasoning about the underlying
graph (network) structure in a variety of disciplines

Linked [T}

Social networks

Federal funds networks

A protein-protein interaction Knowledge Graph
network

World Wide Web

Citation networks

Communication networks

Financial transaction

Disease transmission networks SN
networks Stock Trading Networks

< /NS

Wide Variety in Graph Queries/Analytics

Different types of “queries”

Subgraph pattern matching: Given a “query” graph,
find where it occurs in a given “data” graph A

Reachability; Shortest path;, Keyword search; ... Query

Historical or Temporal queries: “Find most important Graph
nodes in a communication network in 2002?”

Data Grapl

Linked [}

LR Social networks
A protein-protein interaction Knowledge Graph
network] World Wide Web

Citation networks

Communication networks

Financial transaction

Disease transmission networks [
networks Stock Trading Networks

Wide Variety in Graph Queries/Analytics

Different types of “queries” Continuous “queries” and Real-time
Subgraph pattern matching; analytics

Reachability; Shortest path; Online prediction in response to new data
Keyword search; Historical or Monitoring: “Tell me when a topic is
Temporal queries... suddenly trending in my friend circle”

Anomaly/Event detection: “Alert me if the
communication activity around a node
changes drastically”

Linked [}

R Social networks
A protein-protein interaction Knowledge Graph

network World Wide Web

Citation networks

Communication networks .
Financial transaction

Disease transmission networks [
networks Stock Trading Networks

Wide Variety in Graph Queries/Analytics

Different types of “queries” Continuous “queries” and Real-
Subgraph pattern matching; time analytics

Reachability; Shortest path; Online prediction; Monitoring;
Keyword search; Historical or Anomaly/Event detection

Temporal queries...

Batch analysis tasks/Network science

Centrality analysis: Find the most central
nodes in a network

Community detection: Patrtition vertices
into groups with dense interactions

Network evolution: Build models for
network formation and evolution

Network measurements: Measure

Linked [}

Social networks

A protein-protein interaction
network

Citation networks

! ~ Statistical properties
Communication networks - . . .
Financial transaction Graph cleaning/inference: Remove noise
Disoass transmission NGWOKS in the observed network data

networks Stock

Wide Variety in Graph Queries/Analytics

Different types of “queries” Continuous “queries” and Real-
Subgraph pattern matching; time analytics

Reachability; Shortest path; Online prediction; Monitoring;
Keyword search; Historical or Anomaly/Event detection

Temporal queries...
Batch analysis tasks

Centrality analysis; Community
detection; Network evolution;
Network measurements; Graph

cleaning/inference
LiNkedm Y./ Federal funds
. LS4 = networks
Social networks

A protein-protein interaction Knowledge Graph

network worid wide wer M1AChine learning tasks

Many algorithms can be seen
as message passing in
specially constructed graphs

Citation networks

Communication networks

Financial transaction

Disease transmission networks [
networks Stock Trading Networks

Graph Data Management: State of the Art

® Much prior and ongoing work — most of it outside, or on top of,
general-purpose data management systems

Specialized indexes or algorithms for specific types of queries
Stand-alone prototypes for specific analysis tasks

® Emergence of specialized graph databases in recent years
Neodj, Titan, OrientDB, DEX, AllegroGraph, ...
Rudimentary declarative interfaces/query languages

® Several “vertex-centric” frameworks in recent years
Pregel, Giraph, GraphLab, GRACE, GraphX, ...
Only work well for a very limited set of tasks

e Little work on continuous/real-time query processing, or on
supporting evolutionary or temporal analytics

What we are doing

® Goal: A graph data management system with unified declarative
abstractions for graph queries and analytics

® Work so far
Declarative graph cleaning [Gbwv'11, SIGMOD Demo’13]
NScale: a distributed programming framework [vVLDB Demo’14]

Real-time continuous queries [SIGMOD’12, ESNAM’14, SIGMOD’14]

e Techniques for continuous query processing over large dynamic graphs

e Expressive query language for specifying anomaly detection queries

Historical graph data management [ICDE’13, SIGMOD Demo’13]

e New indexing structure for retrieving historical snapshots

e A high-level temporal/evolutionary analytics framework
Subgraph pattern matching and counting [IcCDE'12, ICDE’14]

GraphGen: graph analytics over relational data [vLDB Demo’15]

® Graph Data Management

Declarative Graph Cleaning

A Framework for Distributed Graph Analytics

e DataHub: A platform for collaborative data
science

Recreation/Storage Tradeoff in Version Management

® The observed, automatically-extracted information networks are
often noisy and incomplete

® Need to extract the underlying true information network through:
Attribute Prediction: to predict values of missing attributes
Link Prediction: to infer missing links
Entity Resolution: to decide if two references refer to the same entity

Collective (relational) Inference

Attribute prediction: Predict topic of the paper

A Statistical Model for Multilingual } Language Model Based
Entity Detection and Tracking | Arabic Word Segmentation. NL ?
I/

Automatic Rule Refinement for
Information Extraction

Why Not?

Extraction Output: Quality Matters! System for Relational Databases Relational Operators

[Join Optimization of Information] [An Annotation Management } [Tracing Lineage Beyond }

Link prediction Entity resolution
Graham
Flip Korn Sl
Petre Prabhu Amol
Stoica Babu Deshpande B;ZZ:
Divesh Lukasz
Srivastava . Golab
Avishek William Samir
Saha Roberts ¢ Khuller
Vladislav \
Nick Theodore Shkapenyuk J Jian Jian ’
Koudas Johnson Li Li

® The observed, automatically-extracted information networks are
often noisy and incomplete

® Need to extract the underlying true information network through:
Attribute Prediction: to predict values of missing attributes
Link Prediction: to infer missing links
Entity Resolution: to decide if two references refer to the same entity

e Typically iterative and interleaved application of the techniques
Use results of one to improve the accuracy of other operations

Significant benefits to using graph structure (“collective” inference)

® Numerous techniques developed for the tasks in isolation
No support from data management systems
Hard to evaluate new techniques, especially for joint inference

| "] Declarative Noisy Network / x

€ - C [} localhost/declarative_network_analysis/demo.html| =

Declarative Noisy Network Analysis

Dataset

'DBLPDataset

Datalog Program

DOMAIN Bin(#X,#Y) :- Edge(X,Z,’'Co-Aut
IntersectionCount (#X,#Y,Count<2>))
Similarity(#X,#Y,S):-Node(X, Accou
Features-LP(#X,#Y,F1,F2):-Intersec

}

ITERATE(10) {

INSERT Edge(X,Y, 'Co-Author’):-Featu
predict-LP(F1,F2)=true,

confidence-LP(F1,F2) IN TOP 1%
. 4

e (D XD

Suggestions

Attr Predict Link Predict Sim Entities

Check From To Edge Conf More

®» O O | [Declarative Noisy Network » » '\

Hanene Azzag - Hanane Azzag

DISPLAY
ATTRIBUTE

NAME Hanane Azzag
ATTRIBUTES
DB 0O

Al 1

SE 0
CHANGELOG

1. suggested in 1st
iter

Overview of the Approach

® Declarative specification of the cleaning task
Datalog-based language for specifying --
e Prediction features (including local and relational features)
e The details of how to accomplish the cleaning task
e Arbitrary interleaving or pipelining of different tasks

Task Specification Framework

—_— [Specify the domain](—

[Compute features]

v

[Make Predictions, and Compute]

Confidence in the Predictions

v

Choose Which Predictions to
Apply

Task Specification Framework

For attribute prediction,
the domain is a subset of

the graph nodes.
—_— Specify the domain I(—
[peciy For link prediction and
‘1’ entity resolution, the
domain is a subset of
[Compute features] pairs of nodes.
Make Predictions, and Compute Local: word frequency,
Confidence in the Predictions income, etc.
‘L Relational: degree,
clustering coeff., no. of
Choose Which Predictions to neighbors with each
Apply attribute value, common
neighbors between pairs
| of nodes, elc.

Task Specification Framework

Attribute prediction: the
missing attribute

—_ [Specify the domain]<_ Link prediction: add link

or not?
‘1' Entity resolution: merge
[Compute features] two nodes or not?

v

[Make Predictions, and Compute]

Confidence in the Predictions After predictions are made,

‘1, the graph changes:
Attribute prediction
(—|Choose Which Predictions to] il?alizges (’;’_Cf_’ attr ’ﬁ“tes- "
ink prediction changes the
Apply graph links.
| Entity resolution changes
both local attributes and

graph links.

Overview of the Approach

® Declarative specification of the cleaning task
Datalog-based language for specifying --
e Prediction features (including local and relational features)
e The details of how to accomplish the cleaning task
e Arbitrary interleaving or pipelining of different tasks

® A mix of declarative constructs and user-defined
functions to specify complex prediction functions

® Prototype implementation using Java BerkeleyDB
Datalog rules converted into SQL
Optimized the execution through caching, incremental
evaluation, and pre-computed data structures

Example

® Real-world PubMed graph
Set of publications from the medical domain, their abstracts, and citations

® 50,634 publications, 115,323 citation edges

® Task: Attribute prediction
Predict if the paper is categorized as Cognition, Learning, Perception or Thinking

® Choose top 10% predictions after each iteration, for 10 iterations

DOMAIN Uncommitted(X):-Node(X,Committed=‘no’)

{
ThinkingNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label="Thinking’)
PerceptionNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label=‘Perception’)
CognitionNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label=‘Cognition’)
LearningNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label=‘Learning’)
Features-AP(X,A,B,C,D,Abstract):- ThinkingNeighbors(X,A), PerceptionNeighbors(X,B),

CognitionNeighbors(X,C), LearningNeighbors(X,D),Node(X,Abstract, ,)
}
ITERATE(10)

{
UPDATE Node(X, ,P,‘yes’):- Features-AP(X,A,B,C,D,Text), P = predict-AP(X,A,B,C,D,Text),
confidence-AP(X,A,B,C,D,Text) IN TOP 10%

® Graph Data Management

Declarative Graph Cleaning

A Framework for Distributed Graph Analytics

e DataHub: A platform for collaborative data
science

Recreation/Storage Tradeoff in Version Management

Scaling Graph Analysis Tasks

® Graph analytics/network science tasks too varied
Centrality analysis; evolution models; community detection
Link prediction; belief propagation; recommendations
Motif counting; frequent subgraph mining; influence analysis
Outlier detection; graph algorithms like matching, max-flow
An active area of research in itself...

(a) (o) ©) date.lba [friends

. Family
Feed-fwd Loop Feed- back Loop Bi-parallel Motif in CS dept Friends members

Counting network motifs Identify Social circles in a user’s ego network

Scaling Graph Analysis Tasks

® Graph analytics/network science tasks too varied
Centrality analysis; evolution models; community detection
Link prediction; belief propagation; recommendations
Motif counting; frequent subgraph mining; influence analysis
Outlier detection; graph algorithms like matching, max-flow
An active area of research in itself...

® Hard to build general platforms like MapReduce

What is a good programming abstraction to provide?
e Needs to cover a large fraction of use cases, and be easy to use
e MR not a good fit for graph analytics

No clear winner yet, so little progress on systems
e Especially on distributed or parallel systems

Application developers largely doing their own thing

“Vertex-centric” Frameworks

® Introduced by Google in a system called “Pregel”
Inspired by BSP (Bulk Synchronous Protocol)

® Adopted by many other systems
GraphLab, Apache Giraph, GraphX, Xstream, ...
Most of the research, especially in databases, focuses on it

® “Think like a vertex” paradigm
User provides a single compute() function that operates on a
vertex
Executed in parallel on all vertices in an iterative fashion
Exchange information at the end of each iteration through
message passing

Example: PageRank

Compute() at Node n:

PR(n) = sum up all the incoming weights
Let the outDegree be D
Send PR(n)/D over each outgoing edge

PR (2)

PR (2)

PageRank values
computed in iteration 10

PR10(1)

Messages sent after
iteration 10

PR (3)

PR10 (4) PR10 (4)

Programming Frameworks

® Vertex-centric framework
Works well for some applications
e Pagerank, Connected Components, ...
e Some machine learning algorithms can be mapped to it
However, the framework is very restrictive
e Most analysis tasks or algorithms cannot be written easily
e Simple tasks like counting neighborhood properties infeasible
e Fundamentally: Not easy to decompose analysis tasks into
vertex-level, independent local computations

® Alternatives?
Galois, Ligra, GreenMarl: Not sufficiently high-level
Some others (e.g., Socialite) restrictive for different reasons

Example: Local Clustering Coefficient

LCC(n) = neighborhood density around n
Compute() at Node n:
Need to count the no. of edges between neighbors
But does not have access to that information
Option 1: Each node transmits its list of
neighbors to its neighbors

Huge memory consumption

Option 2: Allow access to neighbors’ state

Neighbors may not be local
What about computations that require 2-
hop information?

NScale Programming Framework

* An end-to-end distributed graph
programming framework

» Users/application programs
specify:
* Neighborhoods or subgraphs of
interest

* A kernel computation to operate
upon those subgraphs

* Framework:

e Extracts the relevant subgraphs
from underlying data and loads in
memory

* Execution engine: Executes user
computation on materialized
subgraphs

e Communication: Shared state/
message passing

O

NScale: LCC Computation Walkthrough

|

NScale programming model

Underlying graph
data on HDFS

Subgraph extraction query:

Compute (LCC) on

Extract ({Node.color=orange}
{k=1}
{Node.color=white}
{Edge.type=solid}
)

Query-vertex predicate
Neighborhood Size
Neighborhood vertex predicate

Neighborhood edge predicate

NScale: LCC Computation Walkthrough

[NScale programming model

Underlying graph Specifying Computation: BluePrints API
data on HDFS

ArrayList<RVertex> n_arr = new ArrayList<RVertex>();
for (Edge e: this.getQueryVertex().getOutEdges)
n_arr.add(e.getVertex(Direction.IN));

int possiblelLinks = n_arr.size()* (n_arr.size()-1)/2;

// compute #actual edges among the neighbors

Program cannot be executed as is in vertex-centric programming frameworks.

NScale: LCC Computation Walkthrough

[

GEP: Graph extraction and packing

Underlying graph
data on HDFS

MapReduce

Subgraph Extraction
Cost based optimizer

Set Bin Packing
_

y

MR2: Map Tasks

Node to

= Bin

mapping

MR2: MR2:
Reducer 1 _| Reducer N
Exec) Exec
Engine Engine

)

NScale: LCC Computation Walkthrough

[GEP: Graph extraction and packing

Graph Extraction
and Loading

Underlying graph
data on HDFS

MapReduce
(Apache
Yarn)

l

Subgraph
extraction

NScale: LCC Computation Walkthrough

[GEP: Graph extraction and packing

Goal:

* Group graphs with high similarity

* Minimizes memory consumption

Techniques explored

e Set bin packing, graph partitioning,
clustering

Shingle based set bin packing

 Min-hash signatures based sorting

* Grouping based on Jaccard similarity

Bin Packing

* Set union operation

e Bin Capacity: Elastic resource allocation

* Max # Subgraphs: Handles Skew

SG-3 SG-m

oo dpoe 5
$

SG-m SG-1 SG-3

S

Constraints:

Pack subgraphs in Bin-Capacity
first available bin Max # Subgraphs per Bin

DO

Bin 1 Bin 2 Bin 3 Bin n

Subgraph
Ordering

NScale: LCC Computation Walkthrough

[GEP: Graph extraction and packing]
dataon HDFS 1 and Loading :
| o
: MapReduce : > Bin 1: SG-1,SG-4 .
| (Apache | /AT
: Yarn) : "
o] ofihg "
I I N\
I Subgraph I 0 '
: extraction :
; ' Bin 2: SG-2, SG-3
: Cost Based :
I Optimizer I
| |
1 1
| l |
: Data Rep & :
: Placement :

NScale: LCC Computation Walkthrough

[GEP: Graph extraction and packing

Subgraphs in
Distributed Memory

Underlying graph | Graph Extraction
dataon HDFS 1 and Loading

MapReduce
(Apache
Yarn)

l

Subgraph
extraction

Cost Based
Optimizer

l

Data Rep &
Placement

NScale: LCC Computation Walkthrough

Distributed execution of user computation

Underlying graph | Graph Extraction

data on HDFS

and Loading

MapReduce
(Apache
Yarn)

l

Subgraph
extraction

Cost Based
Optimizer

l

Data Rep &
Placement

Subgraphs in

Distributed Memory

Distributed

Execution Engine

-

%é 9

N

/

Node
Master

4654

\

NScale: Summary

* Users write programs at the abstraction of a graph
* More intuitive for graph analytics

» Captures mechanics of common graph analysis/cleaning tasks

* Generalization: Flexibility in subgraph definition
* Subgraph = vertex and associated edges: vertex-centric programs
e Subgraph = an entire graph: global programs

* Scalability
* Only relevant portions of the graph data loaded into memory

* User can specify subgraphs of interest, and select nodes or edges
based on properties

e Carefully partition (pack) nodes across machines so that:

* Every subgraph is entirely in memory on a machine, while using
very few machines

Experimental Evaluation

* Datasets * Baselines
* Web graphs — Apache Giraph
 Communication/interaction — GraphlLab
graphs — GraphX
* Social networks * Evaluation Metrics

— Computational Effort
— Execution Time
— Cluster Memory

* Cluster Setup
— 16 Node Cluster
— Apache YARN (MRv2)
— Each Node:

e 2 x4-core Intel Xeon
e 24GB RAM, 3 x 2 TB disks

e Graph applications
* Local Clustering Coefficient
* Motif counting
* |dentifying weak ties
* Triangle Counting
* Personalized Page Rank

Experimental Evaluation

Dataset NScale Giraph GraphlLab GraphX
CE (Node- Cluster CE (Node- Cluster CE (Node- Cluster CE (Node- Cluster
Secs) Mem (GB) = Secs) Mem (GB) Secs) Mem (GB) Secs) Mem (GB)
EU Email 377 9.00 1150 26.17 365 20.10 225 4.95
NotreDame 620 19.07 1564 30.14 550 21.40 340 9.75
Google Web 658 25.82 2024 35.35 600 33.50 1485 21.92
WikiTalk 726 24.16 DNC OooM 1125 37.22 1860 32.00
LiveJournal 1800 50.00 DNC OoOoM 5500 128.62 4515 84.00
Orkut 2000 62.00 DNC (0]0]) DNC OooM 20175 125.00
Dataset NScale Giraph GraphlLab GraphX
#Source CE (Node- Cluster CE (Node- @ Cluster CE (Node- Cluster CE (Node- Cluster
Vertices Secs) Mem Secs) Mem (GB) = Secs) Mem (GB) = Secs) Mem (GB)
(GB)
EU Email 3200 52 3.35 782 17.10 710 28.87 9975 85.50
NotreDame 3500 119 9.56 1058 31.76 870 70.54 50595 95.00
Google Web = 4150 464 21.52 10482 64.16 1080 108.28 DNC -
WikiTalk 12000 3343 79.43 DNC OooM DNC ooM DNC -
LiveJournal 20000 4286 84.94 DNC OoOoM DNC OooM DNC -

Orkut 20000 4691 93.07 DNC OoOoM DNC OOoOM DNC =

® Graph Data Management

Declarative Graph Cleaning

A Framework for Distributed Graph Analytics

® DataHub: A platform for collaborative data
science

Recreation/Storage Tradeoff in Version Management

Collaborative Data Science

® Widespread use of “data science” in many many domains

EDIT: Append Column
NEW: Add file

CSV from
data.gov

\

EDIT: Correct
“addresses”

=)0
e :

=__1 000s of
versions

\2 \2

EDIT: Project rows
columns

A typical data analysis workflow

Collaboraiiipuasarzes: | !
Untitled 241.doc
. Untitled 138 copy.docx ,
® Widespread | Untitkd 138 copy 2. docx Ny many domains
: Untitled 139. docx
® Increasinglyl | pntitled 4o MOM ADDRESS.Jp9| B the process,
especially d Untit’cg %‘iZ.doc
.1 | Untitled 243.doc :
Many privz Untitled 243 IMPORTANT. doc | |sive redundancy
No easy wj YlL.7 between datasets
Manual inf 4 OH MY GOD bnflicts
No efficien) datasets
No way to] of a dataset
e Ad hoc data| Dropbox) used
Much of th i can’t use DBs
The proces hoc and exploratory
Scientists/ uch on their own

PROTIP: NEVER LOOK IN SOMEONE.
ELSE’s DOCWMENTS FOLDER.

DataHub: A Collaborative Data Science Platform

The one-stop solution for qu) =) [RawFiles |
collaborative data science and - 2
63 Ingest (Import)]
dataset version management 3L
g [Database System]
<
‘ﬁl [Fork, Branch,]
Merge
[Version }
)) Management | (. (Shari
http://data-hub.org o JLL\ gihaind J

~~

[Query Language]

-
0\ [Integrate / Visualize / Other Apps]

DataHub: A Collaborative Data Science Platform

The one-stop solution for
collaborative data science and

dataset version management

Client DataHub

query Applications Notebook

builder

ingest || vizualize

* a dataset management system —
import, search, query, analyze a large
number of (public) datasets

lll: Language Agnostic Hooks

ll: Native App Ecosystem

I: Versioning APl and Version Browser

Dataset Versioning Manager

* a dataset version control system —
branch, update, merge, transform large
structured or unstructured datasets

—
—

Versioned Datasets,
Version Graphs,
Indexes, Provenance

v
DataHub: A Collaborative Data Analytics Platform

e an app ecosystem and hooks for

external applications (Matlab, R,
iPython Notebook, etc)

DataHub Architecture

Can we use Version Control Systems (e.g., Git)?

¥ No, because they typically use fairly simple algorithms
and are optimized to work for code-like data

== gzip = 10.2 GB |
= Ej svh = 8.5 GB ‘
QOOversmns
\\\\ git = 202 MB |

LF Dataset (Real World)
#Versions =100
Avg. version size =423 MB

*this = 159 MB |

Can we use Version Control Systems (e.g., Git)?

¥ No, because they typically use fairly simple algorithms
and are optimized to work for code-like data
¥ Git ends up using large amounts of RAM for large files

) Working with large files-.. X 4 2 Why can't Git handle large.. X = =4

@ https://help.github.com/articles/working-with-large-files 6 @ stackoverflow.com/questions/29393447 fwhy-cant-git-handle-large-files-and-large-repos Elv ¢ ®search
= \\\
GitHub Help |=| stackoverflow =3
Managing Large Files / Working with large files Why can't Git handle large files and large repos?
Work|ng W|th Iarge f||eS A, Dozens of questions and answers on SO and elsewhere e asize that Git can't handle T&ge files
or large repos. A handful of workarounds are suggested sudl as git-fat and git-annex, but idfally
A Git repository contains every version of every file. But ft 3 Git would handle large files/repos natively.

revisions of large files increase the clone and fetch times

las not yet been
nto Git that makes

v If this limitation has been around for years, is there are reason the limitatioa
€ as much free spacg removed? | assume that there's some technical or design challenge bakeg
is 1GB, Git requires 1(large file and large repo support extremely difficult.

‘ T!
1
D O N ° nageable for you and Lots of related questions, but none seem to explain why this is suc

o git with large files

£ big hurdle:

» Code files
. . e What are the file limits i
» Versioned ass&§s, such as graphics

. . . []
el Use extensions™
¢ \ersioning large text fil

e How to handle a large on

We suggest removing the following types of

e Managing large binary files with git

» Database dumps

s Log files e What is the practical maximum size of a Git repository full of text-based data? [Quora]

git

Can we use Version Control Systems (e.g., Git)?

No, because they typically use fairly simple algorithms
and are optimized to work for code-like data

Git ends up using large amounts of RAM for large files
Querying and retrieval functionalities are primitive, and
revolve around single version and metadata retrieval

No way to specify queries like:

 identify all datasets derived of dataset A that satisfy property P

 identify all predecessor versions of version A that differ from it
by a large number of records

* rank a set of versions according to a scoring function

 find the version where the result of an aggregate query is
above a threshold

 find parent records of all records in version A that satisfy
certain property

Can we use Version Control Systems (e.g., Git)?

¥ No, because they typically use fairly simple algorithms
and are optimized to work for code-like data

¥ _Git ends up using large amounts of RAM for large files

VQuel: A Unified Query Language for querying versioning
and derivation information [USENIX TAPP’15]

Example: What commits did Alice make after January 01, 20157

range of V is Version
retrieve V.all
where V.author.name = "Alice” and

V.creation ts >= "01/01/2015”

—

IO TTTE VETSTOTT WITETE TITE TESUTT OT alT aygreyare query 1S
above a threshold

 find parent records of all records in version A that satisfy
certain property

® Graph Data Management

Declarative Graph Cleaning

A Framework for Distributed Graph Analytics

e DataHub: A platform for collaborative data
science

Recreation/Storage Tradeoff in Version Management

Storage cost is the space required to store a set of versions

5 5 B = |

100 MB 101 MB 102 MB

(100 + 101 + 102)]
= 303 MB

llll
ll
il

Recreation cost is the time* required to access a version
B
[lo0 MB = 4

A delta between versions is a file which allows constructing
one version given the other

-~ @
101 MB Eip -

llll
ll
1[{

= 303 MB

(100 + 101 + 1@2)]

: : - @
[Send entire version 102 MB 9-

Recreation cost = 10 cost

Example: Unix diff, xdelta, XOR, etc.

delete™ jddm= g @

Directed delta E A delta has its own storage cost
delete ™ add == > and recreation cost, which,
delete™ add = E in general, are independent of

each other

Undirected delta

Storage-Recreation Tradeoff

(—l Scenario 1 |—\
330 MB 1@ MB

100 MB
Storage cost
=(100+30+10)
K =140 MB)
100/MB 130|{MB 140 MB
v A v

Total Access Cost
= 370 MB

(—l Scenario 2 I—\

% "0 |=)storage cost
orage cos
(N
= 1 MB =(100+30+11)
100 MB __=141 MB
100/MB 130/MB 1190 MB
v v v
‘ Ef
|

Total Access Cost
= 341 MB

(—l Scenario 3 |—\

5M

110 MB

g

Storage cost

=(110+5+10)
B _125 mB

/

115|/MB 110|MB 120 MB
v v v
: :
|

Total Access Cost
= 345 MB

Storage-Recreation Tradeoff

Given

1) a set of versions

2) partial information about deltas between versions

Find a Storage Solution that:

® minimizes total recreation cost given a storage budget, or
® minimizes max recreation cost given a storage budget

Storage Recreation Cost Undirected Directed Directed
Cost Case, A=® |Case,A=® | Case, A=D
P1 min C R <o Vi PTime, Minimum Cost Arborescence (MCA)
P2 C<w min {max{R, | 1 <i<n}} PTime, Shortest Path Tree (SPT)
P3 C<pB min{Y R} NP-hard, NP-hard, LMG Algorithm
2 ; LAST* Alg .
I P4 C=P min {max{R, | 1 <i<n}} NP-hard, MP Algorithm
I P5 min C x.R=<0 NP-hard, NP-hard, LMG Algorithm
; : LAST* Alg :
P6 min C max{R |1<i<n}<0 NP-hard, MP Algorithm

Baselines

“Null” Version

Minimize Storage Cost Minimize Recreation Cost
Recreation Cost: No = | e Storage Cost: No
constraint U constraint

{ 1

4)

25/ = — = —
28
3 I
26
NRDLLE B
. = =, _ = =
Minimum Cost Arborescence (MCA) Shortest Path Tree (SPT)
Edmonds’ algorithm Dijkstra’s algorithm

Time complexity = O(E + V logV) Time complexity = O(E logV)

Comparing Different Solutions

B—l LMG A—A LAST
e—e VP Vv GitH

/ MCA Storage Cost

rS [Dataset DCJ

\\JType = CSV files

E #Versions = 1000160
#Deltas = 18086876
Average version size =
347.65 MB

MCA Recreation Cost =
11.5 PB

SPT Storage Cost = 34 TB

Sum of Recreation Costs (TB)

1 2 3 4

Storage Cost (TB) SPT Recreation Cost

Storage budget of 1.1X the MCA
reduces total recreation cost by 1000X

