From Penetrate and Patch
to Building Security In

Michael Hicks

Protessor of Computer Science
and the UofM [nstitute for Advanced Computer Studies (UMIACS)

Distinguished Scholar-Teacher talk
September 28, 2015

MARYLAND

CYBERSECURITY CENTER

X1

Security breaches x50

Just a few:
e TJX (2007) - 94 million records”

-

\ N /‘—"' tm
"\“ A /‘ /3/
<v't A V" /
L &
A Yy 4

 Adobe (2013) - 150 million records, 38 million users

 eBay (2014) - 145 million records Anthem
© Va\

o BlueCross BlueShield
 Anthem (2014) - Records of 80 million customers
» Target (2013) - 110 million records @

TARGET:

Heartland

“containing SSNs, credit card nums, other private info
hitps://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

 Heartland (2008) - 160 million records

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

Defects and Vulnerabilities

 Many (if not all of) these breaches begin by
exploiting a vulnerability

* This s a security-relevant software defect (bug) or
design flaw that can be exploited to effect an
undesired behavior
| | Go gle ER Windows
* [he use of software is growing SB | OC 50M LOC
* S0: more bugs and flaws
- Especially in places that are new to using software

SECTIONS @& HOME (Q SEARCH @])c N(‘lll’ﬂ!ﬂl’k @illll‘ﬁ

MIDDLE EAST

Iran Fights Malware Attacking Computers

By DAVID E. SANGER SEPT. 25, 2010

WASHINGTON — The Iranian government agency that runs the

Email A s 13 :
country’s nuclear facilities, including those the West suspects are part
of a weapons program, has reported that its engineers are trying to

K share protect their facilities from a sophisticated computer worm that has
infected industrial plants across Iran.

W Tweet
The agency, the Atomic Energy Organization, did not specify whether

@ Save the worm had already infected any of its nuclear facilities, including
Natanz, the underground enrichment site that for several years has

» More been a main target of American and Israeli covert programs.

But the announcement raised suspicions, and new questions, about
the origins and target of the worm, Stuxnet, which computer experts
say is a far cry from common computer malware that has affected the
Internet for years. A worm is a self-replicating malware computer
program. A virus is malware that infects its target by attaching itself
to programs or documents.

Stuxnet specifically
fargets ... processes
such as those used to
control ... centrifuges
for separating nuclear
material. Exploiting four
zero-day flaws, Stuxnet
functions by targeting
machines using the
Microsoft Windows
operating system ...,
then seeking out
Siemens Step/ software.

http://www.nytimes.com/

2010/09/26/world/middleeast/

20iran.htmi

http://www.nytimes.com/2010/09/26/world/middleeast/26iran.html

SUBSCRIBE

ANDY GREENBERG SECURITY 07.21.15 6:00 AM

The result of their work

HACKERS REMOTELY KILL A JEEP was a hacking technique
ONTHE HIGHWAY-WITH ME INITT ~ —whatthe security

industry calls a zero-day
Hackers Remotely Kill ajeep on the Highway . exploit—that can target
—With Me/in;lt \ Jeep Cherokees and
give the attacker
wireless control, via the
Internet, to any of
thousands of vehicles.

http://www.wired.com/2015/07/
L. hackers-remotely-kill-jeep-
highway/

| WAS DRIVING 70 mph on the edge of downtown St. Louls when the exploit began

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Considering Correctness

* All software is buggy, isn't it” Why not a
oroblem from way back”

* A normal user never sees most bugs, or
figures out how to work around them

* Therefore, companies fix the most likely
bugs, t0 save money

Considering Security

Key difference:

An attacker is not a normal user!

* [he attacker will actively attempt to find defects,
using unusual interactions and features

» A typical interaction with a bug results in a crash

+ An attacker will work to exploit the bug to do
much worse, to achieve his goals

Cyber-detense”

VﬁSymantec WU McAfee

An Intel Company

)
<© FireEye aliafi, KAPIR|KY 8
Next Generation Threat Protection c I s c o)

O tenable &Ij @

Cyber-detense”

i Popular technologies
pooaww 3/ N such as firewalls, anti-
' | virus, and intrusion
detection/prevention,
attempt to detect the

attacks themselves.

' — e \ But new attacks can
<M =C N it | be produced that

avold detection but

exploit the same
vulnerabilities

Pentrat and Patch

1. FInd a vulnerabillity
2. Develop patch

3. Deploy patch (and
detection signature)

But. Still vulnerable to
undiscovered bugs

... and new bugs
iIntroduced by software
upgrades

MUST READ THE NIGHT ALEXA LOST HER MIND: HOW AWS OUTAGE CAUSED ECHO MAYHEM

FireEye, Kaspersky hit with zero-day flaw claims

Researchers have disclosed severe security flaws within the firm's
oroducts over the holiday weekend.

a By Charlie Osborne for Zero Day | September 8, 2015 -- 09:45 GMT (02:45 PDT) | Topic: Security

N - 3
o Ir,
‘l.: l'.l

Researchers have revealed the existence of zero-day vulnerabilities within Kaspersky

and FireEye's systems which could compromise customer safety.

Over the holiday weekend, security researcher Tavis Ormandy disclosed the
existence of a vulnerability which impacts on Kaspersky products. Ormandy, known in
the past for publicly revealing security flaws in Sophos and ESET antivirus products,

said the vulnerability is "about as bad as it gets.” In a tweet, the researcher said.

and bugs In security
products themselves!

Securr

Orm

existence o

andy O

F

'y researcher lavis

sclosed the
a vulnerability

which impacts on Kaspersky
[security] products.

Hermansen, [another
researcher,] publicly disclosed
a zero-day vulnerability within
cyberforensics firm FireEye's
security product, complete
with proof-of-concept code.

http://www.zdnet.com/article/

fireeye-kaspersky-hit-with-zero-
day-flaw-claims/

http://www.zdnet.com/article/fireeye-kaspersky-hit-with-zero-day-flaw-claims/

Building Security In

4 The long-term
solution Is to prevent
all exploitable bugs

¥ before deploying

Avolid the holes to
start with!

“ -

ST RLR 11 Bl

.'l' : ’ P . ' vt fplliante " SN : : :'.x
. " ‘ | v " L
= S ein

* How do you . S e
build a bridge vt NN i
that stands up .
despite harsh
conditions”?

* Heavy use

+ Earthquakes

» Extreme
weather

- EtcC.

Analogy [

» Study the R |
problem. R
Develop the R e | Al
best _ T

M

e

- Methods T A .
- Materials ned |
- Tools I i
 [hen use them
from Day 1!

—ee

+ cavTiTYn

LAY
O 0 EAE N TEIREEe et B TR

- Ve AL

Wi\

A

\

N

DO Not

Use methods that fail to incorporate larger
lessons (i.e., from past bridges built and past
fallures)

Use cheap materials that are unresilient

Use unreliable tools that produce inconsistent
results

Assume that you can do these things and
everything will be OK (you can just patch
problems later)

Unless you want your bridge to fall

Building Security In

e \What about software”

Building Security In
* \What about software”

Same idea: Security from Day 1

o Consider it in your design

* Use the best tools and methods
- Best programming languages
- Best program development environment
- Best testing and verification methods

Building Security In
Why not done already?

* |gnorance
o Unproven/insufticient technology

e Concerns about cost
- to change legacy programs
» to (re)train staff in new process, technology, etc.

Some of my work

* Eliminating vulnerabllities at the outset with better
languages and testing tools

- Highlight: Cyclone: A safer “low level” programming
language _

* Focusing attention on building, not breaking
» Coursera on-line course on software security mUI'SEI'CI

- Buila-it, Break-it, Fix-it programming contest

—rom bugs to explolts

Software

Processor
(CPU)

e Software consists of
Instructions that tell a
computer what to do

A program is a set of
INstructions to achieve
a particular task

* |[nstructions are kept
within the computer’s
memory when executed
by the processor

Data and Memory
Instructions (RAM)

Computing R = XY
o Goal: multiply X by itself a total of Y times

 Program: R will contain the final result

« Use a counter C to track of the number of
multiplications

» Like counting on your fingers!

X =

By,
1

almln

Computing R = XY

Data |lNStructions

= Set R to 1

SetCtoY
IsC<07
[f so, skip to the end

SetRtoX-R
SetCtoC-1
[f C > 0 repeat the above two instructions

>

_<

=[] [[

1

Computing R = XY

lNnstructions

SetRto 1
SetCtoY
[sC<07
[f so, skip to the end

J
=)
Q)

wi Sct Rto X - R
SetCtoC-1
[f C > 0 repeat the above two instructions

Computing R = XY

lNnstructions

SetRto 1
SetCtoY
[sC<07
[f so, skip to the end

J
=)
Q)

>
1

<
]

<1 [

SetRtoX-R
SetCtoC-1
->/f C > 0 repeat the above two instructions

By,
1

Computing R = XY

lNnstructions

SetRto 1
SetCtoY
[sC<07
[f so, skip to the end

J
=)
Q)

>
1

<
]

<= [5[=]

SetRtoX-R
SetCtoC-1
[f C > 0 repeat the above two instructions

= Done

By,
1

Computing R = XY

exp:

movl $1, %eax

testl %esi, %esi

jle .L3

L6:
Imull %edi, %eax
subl $1, %esi
jne .L6

L3:

machine instructions

SetRto 1
SetCtoY
[sC <07
[f so, skip to the end

SetRtoX R
SetCtoC-1

[f C > 0 repeat the above two instructions

%ed| = contains base value X
%esi = contains exponent Y and counter C
%eax = contains result R

Programming Languages

 Many machine instructions for simple programs -
hard for humans to understand and maintain!

* Programming languages designed to help

» Higher level - Closer to human language
» First ones (e.g., FORTRAN) in the 1950’s

 Programs are translated (aka compiled) into machine
INstructions to be executed by the processor

- Many languages developed in the last 60 years!
» Different languages have ditferent strengths

Programming Languages

1954 1960 1965 1970

Forth
1969

Logo
1968

FORTRAN sy FORTRAN | e FORT R AN 1l s O R T R AN 1 s £ O R T R AN 1V s O R T R AN 1V
Nov, 1954 Oct. 1956 1957 end-1958 1962 (FORTRAN 66 ANS)

1966

Prolog
1970

B-0 Flow-Matic COBOL COBOL 61 COBOL 61 COBOL COBOL 68 ANS
1957 1958 1959 1961 Extended 1965 1968
1962

CPL s BCPL e B —— C ——
1963 July 1967 1969 1971

Programming Languages

1954 1960 1965 1970 1975 1980 1985 1990

Rox 1,00 oy Rox 2.00 Rex 3.00 Rexx 3,20 .
Wy to0n %o AL L)
PostSeript PostSeriph lovel 2
1982 19n
Forth T 00 Forth
198 197
Oberen Oberon-2 g==
ey 1991
Object Logo
e 0%
Tel o, TeliTx
e |Mrnl 190 I
FORTRAAN s O T AN | F O TR AN 1 s £ O T AN] s O RN 1 —— FORTRAN IV FORTRAN V FOrtIan 00 150 ——
Nov e Od 18 199 CUREE) e FORTRAN 65 ANS IFORTIRAN 77 ARy "wn
e LI A M —
(L) 1
Prolog ¥ Prolog I
1970 o T 1084
Sharp APL J .
"o

e ——————— et VI erirsrnrsrnrnrnrnrnrer e errernrnrnrernr-rnrnr-rnrnnrrnronr-rnrnrornrrerrnrrerrrreee e e Y I Y e ey VI N e

1 Sept 15707 198 1"
Modula 3
™ -
wmwe——_ e ——————— = = = e e — e e e e e e
1w Aoont 1934
L] ABC Gam
" .
——— e
16
Borland Pascal
Object
B8-0 Flow-Matic CoBOL COBOL 61 cosoL 61 CoBOL . COBOL 65 ANS COBOL 74 ANSI COBOL 85 OSUVANS|
1957 1968 195% 1951 Extended 1865 1963 rd 1985
e e N B
W "
PUM Moduba —OHU1A 2 |
w2 wn 19
Nda Ada 83 ANSI Ada IS0
" Jo 1943 1907
P PUT ANS i Object Pascal Mot Roxx
T4 - — = - 100% 080 —r- T |
1564 ANSIC IsocC
B — BCPL b e ¢ e ——— C (K&R) = — (cs9) [C50] re—— |
" iy 197 160 i 1978 190 e 15, 1000
(=11 o Objective-
Yar4 o3 I
GO e e
1oy
C with Classes Cos -
fonl 1060 July 1083
Simuba | Simula 67
) 197
e
b 198
Mesa
1977 — o=
e R — A R o —— T —— e e ——————— e e——— R e
168 190 Dev. 1958 roes Fe 24, 1663
APPISSCID
193
Smalltalk Smamtalk-72 Soaaitalk-T4 SIRAIAIK- 75— UK 78 s S 11K -0
%0 e Yare %76 78 0
Self
Eiffet Eiftel 2. - |
15
1SWin awk e P
6 1«8 1945
tosh Sather 0.1
Jute I
A e T
1961
csh
0et 1978
SASL =
AEny
Perl 1,000 ey P 3,000 Parl 4,000 Py
Dec 01907 Och 70, 1989 Nagh 211991 o
Medap oo e
"
sh KEN e e s
W 198
e
1909
BAsiC — MS Basic 2.0 = = e e e Visunl Basic 1.0 puuy |
My 1 198 Joy 195 My 20,1997
|
10
Cos >
e
ISP (10 I uspP1s Common Lisp Comm
e 18 12 "ed D
Scheme Scheme MIT Scheme 84 Scheme IEEE
1955 1978 15eL 1950
Haskell 1.0 Haskell 1,1 Haskell 1.2 |

o foril) 1800 Morch 198¢

1954

1960

Programm

1965

1970

1975

INQ

1980

| anguages

1985

1990

2001

2002 2003

LR [T e e Wt b o
AL e e LC A
Poatlargl Foribuipt wpet ¢ Powtiergl eel 3
1) Vo ™
e
«- an
Ll Svest
" -
g
- i
ToTR AN TN A T Tl b4 L TR T L TR——
oI B M » Ihphg 4, 21 - T
TN SRAN FORTRAN 17 Pottren w0 a0 Ferhoam W V8 Fartran pe -
b AR e ST N (A I (S oy
e [N " . ol -
- ™ >
oy L1 Pk 10 L
~ P4 e !
|
Py, ' 1.1 2
iy NS) NIV i ~ AN Open "ae
giron o cH - s ey - - <
L Dolphi 5 Balohi &
- e 110 o 14 Vit ot hem ol ¥ -
A L% Ariwe,
- o ol e -
J e -
wl et -
e ’ PO e P O s DY O e VY984
o T — i "
Borand Panal A1) ool £ 9000 (a0 W e (T " o o e YT T T
et
L] Mow Mun (o L U s o L) COROL €8 s 00 2a AL asvnl o o cotnd oy
I vt “ vt Grkedet ‘- .t e 1™ b -
IT™ o Phkee iy -
o -
nw Wedwn 1 Vaduds 2 10 -
wh A " -
s LU LA A
e - I i e
" USRS L o Ot Pored i b D
L L) \ e " My 1L e “ “
Ao 0 200 Mpte4 LA -
0--‘"-‘__‘
i ean ove "o
o . 3 € (VAN ™Y X i B0 G
- .. el " " A o b, v M
e o,
Wy 1. —
av - Onpmebns €
2 V-
G ———
1. - .
€ Wb Chawas Car Cos Ma1ae
. - -
ML BCMAs cpt
-, L
S | ks 47 oo doang Adtmasain Mctentiriph 1.0
e = 1! Ja 1 e ?v'l" |I."| .-': Ibl.\.' m”l)—‘ o ‘..I.
L) ot Rkl . (L A\ ¥
et Raughh eyl P gy o T e o i 4 e (V1)] w2, S
Ve - e T
Wit <=
ALGOL W e S Faky a9 Ny 1.} w0 Pady 122 Wty 141 Ay VAT 144 A
- - - Pext oif i e S R e ey Co— P | pe—-
1A,
o 1 -
ATl . Sl ide 74 Sensdtuie Sonilieds
- " e e - e >
- was et e
LU ot Tt Yool mor
(= 0] B 1, (L R} LR b ar
(3] - vt - [([P L 7 — " i D N Tl L B ——
ey o Vas rah A0 [Py ey 0, - B 4 20t AR AL Ay T2 0000 B TN B 212000 Feb 11 20N Vi ol M000 At 21 2000
L) L] Sabwr 18 Sather 00
ey ot A
-
i Sl
(ST
ALL -
™
ol 100 1008 Pt L, Porl 500 Porl 6006 50, Pl 48 Pt 570, S1'7] et S0
foe 10 i 08 . Ve it ! LW P S Wt b B St . oy L 0 o -
Vaasds
ey -
" o Objectve Cuml
L4l - ’ .~ ’
L
.
s LR L Viossd Pasis 00 Vhow Bese 80 " »
T S o 2010 PV [
Waugi e
. A et
rien
o~ e
On
o -
usr e use s Comavin L Commnen Lip £t
"wa I [s - Dot T
S Sobwatn W11 Suwee 14 S liEE Seheow WL
RS " .. r .
Wavhek 10, LT L L — R) Pk £ 0 Mokl 14 [rp -
" Ao T LR Ll L Aot 100]
SN s OO D o IO Y s WAL & - w st S5, SML 9 - fhe
Yo T -~ s o "y -l T [
[ra Camd Camd 241 Gand 3.1
v S — > e i s -

2004

What is popular today”?

Language Rank Types Spectrum Ranking
TR
A 00
. o Joe s
wopn @ T WAL
oo @0 EEL
oo @ BB
by @ B

. 7 S
owras o

http:/spectrum.ieee.org/static/interactive-the-top-programming-languages

http://spectrum.ieee.org/static/interactive-the-top-programming-languages

Our program in the C language

int exp(int x, 1nt y) {
int r = 1;
while (y > 0) {
r=r * Xx;
y =y - 1]
¥

return r;

¥

In Java It would look much the same,
but that's not true Iin general

Our program in the Python language

def exp(x, y):
r =1
while y > 0:
r=r * x
y=y -1
return r

Our program in the OCaml language

let rec exp Xy =
1f y = 0 then
1
else
X ¥ exp x (y-1)

Our program in the Prolog language

exp(X,0,1) :- !.
exp(X,Y,R) :-
Y1 1s Y-1,
exp(X,Y1,R1),
R 1s X * R1.

Software flaws and defects

 Programmers make mistakes S o n
* SO software often has defects (aka bugs) ;@\

int exp(int x, 1nt y) {
int r = 1;
while Cy 2 0) 4
r=r * x; = should be “greater than’
y =y - 1; not “greater than or equal to”

¥

return r;

¥

-Xploitaple bugs

 Some bugs can be exploited

» An attacker can control how the program runs so that
any incorrect behavior serves the attacker

 Many kinds of exploits have been developed over
time, with technical names like
Buffer overflow
» Use atfter free
+ SQL injection
« Command injection
» (Cross-site scripting
» (Cross-site request forgery

What is a bufter overflow”

* A buffer overtlow is a dangerous bug that affects
programs written in € and C++

 Normally, a program with this bug will simply crash

e But an attacker can alter the situations that cause
the program to do much worse
- Steal private information
» Corrupt valuable information
* Run code of the attacker’s choice

Butter overtlows rrom 10,000 ft

o Buffer =
» Block of memory associated with a variable

e Overflow =
« Put more Iinto the buffer than it can hold

- Where does the overflowing data go?

Password? Normal interaction
apc123

Failed INstructions

= 1.print “Password?” to the screen

ata 2. read input into variable X

X =|abclZ23 3.1f X maXhes the password then log 1n

4. else print “Failed” to the screen

Password? EXpIOitatiOn

INstructions

= 1.print “Password?” to the screen

ata 2. read input into variable X

<
1
-
<
,
)
—h
p—d
O
‘E\
W
]
O
<
— .
>

4. else print “Failed” to the screen

Key idea

* The key feature of the bufter overtlow attack is the attacker
getting the application to treat attacker-provided data as
instructions (code)

e This feature appears in many other exploits too

+ SQL injection treats data as database queries

» (Cross-site scripting treats data as browser commands

- Command injection treats data as operating system commands
- Etc.

Bullding security In

Stopping the attack

o Buffer overflows rely on the ability to read or write
outside the bounds of a buffer

 C and C++ programs expect the programmer to
ensure this never happens

» But humans (regularly) make mistakes!

* Other languages (like Python, OCaml, Java, etc.)
ensure buffer sizes are respected
+ The compiler inserts checks at reads/writes
» Such checks can halt the program
- But will prevent a bug from being exploited

Password? Preventing exploitation

INstructions

= 1.print “Password?” to the screen

ata 2. read input into variable X

OverFlow! ’.iF X matches the password then log in

Program halted 4. else print “Failed” to the screen

SO why use C and C++7

 Billions of lines of existing C programs
 Programmers are very familiar with C
* C gives you fine control over hardware resources
» Very efficient
 Great for writing “low level” programs

 Best current advice: Use other languages
whenever you can, and use C and C++ when you
MUuSt

 Research question: Can we do better?

M y | : e S e a rC | I C' [https://cyclone.thelanguage.org % 3
"7 |)1 .\".I:'b t‘:;"} ",.'7;?'—31 '(:'.:“‘\. |?:*' -
| b1 '(l' ! -
Vit o) IV L.

* Cyclone is a language with the

efficiency and control of C but the A AL
safety of modern languages Cyclone is a safe dialect of C.
Cyclone is like C: it has pointers and pointer
e Developed 2001 - 20006 In arithmetic, structs, arrays, goto, manual memory
o

Co\laboration With researchers at management, and C’s preprocessor and syntax.
Cornell, Harvard, \/\/ashing’[()n, =1ale Cyclone adds features such as pattern matching,
AT&T Labs Research algebraic datatypes, exceptions, region-based memory

management, and optional garbage collection.

Cyclone is safe: pure Cyclone programs are not

» Several contemporary efforts vulnerable to a wide class of bugs that plague C

rograms: buffer overflows, format string attacks,
SoftBound e . . g
double free bugs, dangling pointer accesses, etc.
ccured

CETS

Science of language design

How do we know if Cyclone meets its goals?

 Formalize it mathematically, and prove that its
programs are secure

* Show that it can be used to write useful programs
« Choose them from relevant benchmarks and domains

- And attempt to measure the difficulty of writing these
programs

» Show that Cyclone programs perform well

Performance comparison

10
. _
.E 8 - W gcc] Java
B B cyclone 85)(
a 6 — O java
=
P
u prmmy
S 4 '
E - -
s 2 Cyclone
I I 1.6X
O -
Sy Gy, G G D O % 4 YL
¢ '{C " C 60 //50 § 5./0 //)V ¢ 2 (//)}(. % “ 2.
%, Q. % d e
Z 2

Translated the C programs to Cyclone; changed only 5-15% of the program

Performance comparison

Low effort More effort
Test C Cyclone GC Cyclone Manual
Time Mem Time Mem Time Mem

Epic 0.70 125M | 1.11(1.61) |22.3M (1.78)}| 1.11(1.61) | 12.5M (1.0)
KissFFT | 1.33 394K | 1.40(1.05) | 708K (1.80) || 1.41 (1.06) |392K (0.99)
Betaftpd | 4.00 6.2K 4.00 (1.0) 192K (30.1) || 4.00 (1.0) 8.2K (1.32)
Cfrac 8.75 284K | 15.23(1.74) [1.44M (5.19)|| 14.53 (1.66) | 706K (2.49)
8139too | 334 27.7K 333(0.99) 31.8K (1.14)

 Programmers can tune performance while retaining safety
 Space usage is much closer to C's when using these
features (and far better than typical modern languages)

lakeaway

Cyclone addresses several of the reasons people
use Inadeqguate methods:

* |gnorance
- Unproven/insufficient technology
» Concerns about cost

to change legacy code
to (re)train staff

* By staying close to C, Cyclone provides a path
from legacy code to something safer, while
addressing technical and non-technical concerns

mpact

* Cyclone was a research language - its influence
(and that of related efforts) is on modern language
and system design.

* The Rust language from Mozilla borrows many of
the memory management features from Cyclone

https://www.rust-lang.org/

mozilla research

e Coming soon:
* Intel MPX hardware: support to make checking faster

(in te l) https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-

protection-extensions-intel-mpx-support-in-the-gnu-toolchain

- Safe C extension to LLVM, being developed by wicrosoft:

Microsoft Research Resea 'C h

https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-protection-extensions-intel-mpx-support-in-the-gnu-toolchain
https://www.rust-lang.org/

—ngendering and
-valuating
the Bulld-it Mentality

Cybersecurity: White hat, Black Hat
Build it

- Design and implement computer systems
N a way that prevents security defects

L —

Break it
* Find defects that constitute
vulnerabilities and exploit them

Black Hat

Problem: [oo much emphasis on breaking, not building

Break it

* Find defects that constitute
vulnerabilities and exploit them

DEFCON CTF, Collegiate Cyber defense challenge (CCDC), Pwn to Own, ...

Qur proposed remeady

(BIBIFI)

A new Kind of security contest:
rewards breaking and building

Scoring System

Build-it Score
» Gains points for good performance
+ Gains points for implementing optional features

» Loses points for unique bugs found

More points for (obviously) security-relevant bugs

Fixing bugs helps show that multiple test cases might be tickling
the same bug, thus reducing the penalty for those test cases

Break-it Score
+ Gains points for unique bugs found (scaled by how
many other teams found the same bug)

Winners in both categories

Educational Experiment

* [his contest aims to educate Its participants, but it
has a broader agenda too

Show what works!

 Many ideas for improving computer security
+ But few of these have been put to a scientific test

* [his contest sets up an experiment

* Independent variables are the choices you make
when you develop, or when you hunt for bugs

» The dependent variable is the final outcome
- Science: Which choices correlate with success?

May-dune 2015 Contest

- 98 registered teams
 Teams ranged in size from 1-5 (median 2)

- 79 teams made a build-it submission
* 62 teams’ submissions qualified

- 66 teams made a break-it submission
e 9128 non-unigue correctness bugs

e 36 unigque confidentiality bugs

e 40 unigque Integrity bugs

Bulld-1t Winners

1st prize: Team JavaTheHut

Break-1t Winners

1st prize: Team Black_Horse 2nd prize: Team Tosca

L anguage cholices

 Many languages used
¢ C,C++
o C#, Java, Scala
* Python, Perl
e Bash
» Javascript
e \isual Basic
e F# OCaml
e PHP

* Python most popular, followed by Java, C, C++
 Seems to follow general popularity trends
 Winners used Java

I i

|

Teams that implemented their
program in C or C++ scored
worse, on average, than other
teams

o But: knowing C or C++ and
not using It correlated with
scoring well

Build-it

Fix-1t

Judging

Contest promise

Recall the reasons people use inadequate
methods, once again:

- Ignorance
- Unproven/insufficient technology

- Concerns about cost
» to change legacy programs
» to (re)train staft

 BIBIFI hopes to educate students, and provide
evidence for what works

More data gathering and analysis Iin progress

Outreach and
Education

Pl Research

My efforts occur within a broad research community
considering how programming languages (PL) can
improve the quality of software

 How”? By developing
- Novel programming languages or constructs
- Advanced programming tools and techniques

- Mathematical methods for understanding software
To prove that it satisfies desirable security properties

« And more ...

@

» | ots of really fantastic work happening

PROGRAMMING @ UNIVERSITY OF
:)

LANGUAGES % MARYLAND

B10gging

e |In June 2014 | started blogging
about the great work being done in
programming languages
e [utorials, interviews, Ccross-

disciplinary connections, more

e Since then, about 45 posts,
180,000 page views (most popular
post received 30K views).

http://www.pl-enthusiast.net/2015/06/02/the-pl-
enthusiast-turns-one/

http://www.pl-enthusiast.net/

www.pl-enthusiast.net Q o

The Programming Languages

Enthusiast

ABOUT THE PL ENTHUSIAST

BY MICHAEL HICKS | SEPTEMBER 15, 2015 Search

1D . TY 4
'aatTala2ak s P FaYak of @
L ¢] ‘ [- -1 ‘ 0 R

A N ~ s A\J »

Interview with Facebook’s Peter ecent Posts
O,Hearn = Interview with Facebook’s Peter

O’Hearn

In this post, I interview Peter
_ = What is a bug?
O’Hearn, programming
= PL conference papers to get a

languages professor, journal?

researcher, and evangelist. = Interview with Mozilla’s Aaron Turon

Peter now works at Facebook = The PL Enthusiast Turns One!

on the Infer static analyzer,

which was publicly released D Arncvd £ A v v v o
NECEINL LOoImMIments

back in June 2015. In this

. . . = Azadeh F What is a bug?
interview we take a brief tour aden Farzan on What is a bug

= Michael Hicks on Interview with

of Peter’s background Facebook’s Peter O’'Hearn

(including his favorite papers)
and the path that led him and

Infer to Facebook. We discuss

= Jon Awbrey on Interview with
Facebook’s Peter O’Hearn

s Interview with Facebook's Peter
O'Hearn - The PL EnthusiastThe

how Infer is impacting mobile application development at Facebook, and what . _
Programming Languages Enthusiast

n o Py Cp ey SR g) SO SN S SRR DT W o S W IS, (RS ST ISR L NG, ek u s Sra g DECOROIOC (Y

http://www.pl-enthusiast.net/
http://www.pl-enthusiast.net/2015/06/02/the-pl-enthusiast-turns-one/

€& C' O https://www.coursera.org/course/softwaresec Ky !l % IR

M O O (: S coursera := Catalog Q Institutions Log In

UNIVERSITY OF

MARYLAND

&

In November 2014 | started |
teaching an on-line course on Software Security
SOftV\/are Secuy rlty Part of the Cybersecurity Specialization »

This course we will explore the foundations of software

® SO m e Of 'th e CO U rse S ‘ | d eS | N security. We will consider important software vulnerabilities

and attacks that exploit them -- such as buffer overfiows,

th | S p re Se ntat | O n SQL injection, and session hijacking -- and we will consider

defenses that prevent or mitigate these attacks, including

® |'|: h aS b ee r‘] Offe re d 4 't| m eS advanced testing and program analysis techniques.

Importantly, we take a "build security in" mentality,

Wl h 93 332 ‘ ear r] e rS e n rO‘ | e d considering techniques at each phase of the development

cycle that can be used to strengthen the security of software

and 3,034 who have completed sysems
the course.

About the Course Sessions
® S | n Ce M ay 20 1 5 : | h ave h OSted Software is everywhere: in laptops and desktops, mobile phones, the September 14, 2015 - November { 4
(0 y) power grid ... even our cars and thermostats. Software is increasingly
th e CO u rS e ra C a p Sto n e the vehicle that drives our economy and our personal lives. But
: , Join Course
p rOJ eCt u S | r] g th e B ‘ B ‘ I: ‘ root of many security compromises is vulnerable software.
In this course we will look at how to build software that is secure. o
contest Eligible for

software’s pervasiveness, and its importance, make it a target: at the
To start, we must know what we are up against. As such, we will

| OOKINQ

* [hings are getting better

Many software systems that were
oreviously vulnerable to attack are finally
becoming more secure

Researchers and practitioners are creating
pbetter technology and getting the word out
about building software to be more secure

 But they are also getting worse
» The conseqguences of a mistake are higher

New domains for software sometimes
result in repeating the mistakes of the past

There 1s more work to do!

aheaad

Coverity Prevent” @) coverity-

~ a higher code’

Ensuring Superior Software Quality Eliminate critical
Coverity Prevent is the leading automated approach for ensuring the highest-quality, most .

reliable software at the earliest phase of the development lifecycle. The most accurate static defeCtS al'.ld lmR Alhds
code analysis solution available today, Prevent automatically scans C/C++, Java and C# software lntegr lty.

5}\ N

-~
I8 a6

L -'/Q
’YRYLP\e « . TM

F indBligé

because 1t's easy

 “Wake up little boy.
Dao 3

Maﬂy thaﬂ KS' - - Students and

pOst-docs,

- Collaborators
and mentors,

~ Family

summary

* \We need to make building software more like building
bridges
No more penetrate and patch

Consistent consideration of quality goals, including security,
from day 1

Using the best methods, tools, programming languages, etc.

 Academics, researchers, practitioners all have a role to play

@um

PROGRAMMING UNIVERSITY OF

LANGUAGES MARYLAND

MARYLAND

GCYBERSECGURITY GENTER

IX

