
From Penetrate and Patch
to Building Security In

Michael Hicks
Professor of Computer Science
and the UofM Institute for Advanced Computer Studies (UMIACS)

Distinguished Scholar-Teacher talk
September 28, 2015

Security breaches
• TJX (2007) - 94 million records*

• Adobe (2013) - 150 million records, 38 million users

• eBay (2014) - 145 million records

• Anthem (2014) - Records of 80 million customers

• Target (2013) - 110 million records

• Heartland (2008) - 160 million records

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

Just a few:

*containing SSNs, credit card nums, other private info

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

Defects and Vulnerabilities

2B LOC 50M LOC

……

• Many (if not all of) these breaches begin by
exploiting a vulnerability

• This is a security-relevant software defect (bug) or
design flaw that can be exploited to effect an
undesired behavior

• The use of software is growing
• So: more bugs and flaws
• Especially in places that are new to using software

http://www.nytimes.com/
2010/09/26/world/middleeast/

26iran.html

Stuxnet specifically
targets … processes
such as those used to
control … centrifuges
for separating nuclear
material. Exploiting four
zero-day flaws, Stuxnet
functions by targeting
machines using the
Microsoft Windows
operating system …,
then seeking out
Siemens Step7 software.

http://www.nytimes.com/2010/09/26/world/middleeast/26iran.html

http://www.wired.com/2015/07/
hackers-remotely-kill-jeep-

highway/

The result of their work
was a hacking technique
—what the security
industry calls a zero-day
exploit—that can target
Jeep Cherokees and
give the attacker
wireless control, via the
Internet, to any of
thousands of vehicles.

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Considering Correctness

• All software is buggy, isn’t it? Why not a
problem from way back?

• A normal user never sees most bugs, or
figures out how to work around them

• Therefore, companies fix the most likely
bugs, to save money

Considering Security
Key difference:

An attacker is not a normal user!

• The attacker will actively attempt to find defects,
using unusual interactions and features

• A typical interaction with a bug results in a crash
• An attacker will work to exploit the bug to do

much worse, to achieve his goals

Cyber-defense?

Cyber-defense?
Popular technologies

such as firewalls, anti-
virus, and intrusion

detection/prevention,
attempt to detect the
attacks themselves.

But new attacks can
be produced that

avoid detection but
exploit the same

vulnerabilities

1. Find a vulnerability
2. Develop patch
3. Deploy patch (and

detection signature)

But: Still vulnerable to
undiscovered bugs

 … and new bugs
introduced by software
upgrades

Penetrate and Patch

http://www.zdnet.com/article/
fireeye-kaspersky-hit-with-zero-

day-flaw-claims/

Security researcher Tavis
Ormandy disclosed the
existence of a vulnerability
which impacts on Kaspersky
[security] products.

Hermansen, [another
researcher,] publicly disclosed
a zero-day vulnerability within
cyberforensics firm FireEye's
security product, complete
with proof-of-concept code.

and bugs in security
products themselves!

http://www.zdnet.com/article/fireeye-kaspersky-hit-with-zero-day-flaw-claims/

Building Security In
The long-term
solution is to prevent
all exploitable bugs
before deploying

Avoid the holes to
start with!

Analogy
• How do you

build a bridge
that stands up
despite harsh
conditions?

• Heavy use
• Earthquakes
• Extreme

weather
• Etc.

Analogy
• Study the

problem.
Develop the
best

• Methods
• Materials
• Tools

• Then use them
from Day 1!

Analogy
• Study the

problem.
Develop the
best

• Methods
• Materials
• Tools

• Then use them
from Day 1!

Do not
• Use methods that fail to incorporate larger

lessons (i.e., from past bridges built and past
failures)

• Use cheap materials that are unresilient

• Use unreliable tools that produce inconsistent
results

• Assume that you can do these things and
everything will be OK (you can just patch
problems later)

Unless you want your bridge to fail

Building Security In
• What about software?

Building Security In
• What about software?

Same idea: Security from Day 1

• Consider it in your design

• Use the best tools and methods
• Best programming languages
• Best program development environment
• Best testing and verification methods

Building Security In
Why not done already?

• Ignorance
• Unproven/insufficient technology
• Concerns about cost

• to change legacy programs
• to (re)train staff in new process, technology, etc.

Some of my work
• Eliminating vulnerabilities at the outset with better

languages and testing tools
• Highlight: Cyclone: A safer “low level” programming

language

• Focusing attention on building, not breaking
• Coursera on-line course on software security
• Build-it, Break-it, Fix-it programming contest

IT
BUILD
BREAK
FIX

From bugs to exploits

Software
• Software consists of

instructions that tell a
computer what to do

• A program is a set of
instructions to achieve
a particular task

• Instructions are kept
within the computer’s
memory when executed
by the processor

Data and
Instructions

Processor
(CPU)

Memory
(RAM)

• Goal: multiply X by itself a total of Y times

• Program: R will contain the final result
• Use a counter C to track of the number of

multiplications
• Like counting on your fingers!

Computing R = XY

Computing R = XY

Set R to 1
Set C to Y
Is C ≤ 0 ?
 If so, skip to the end

Set R to X · R
Set C to C - 1
If C > 0 repeat the above two instructions

X =

Y =

C =

R =

3

2

InstructionsData

2

Computing R = XY

Set R to 1
Set C to Y
Is C ≤ 0 ?
 If so, skip to the end

Set R to X · R
Set C to C - 1
If C > 0 repeat the above two instructions

X =

Y =

C =

R =

3

2

1

InstructionsData

2

Computing R = XY

Set R to 1
Set C to Y
Is C ≤ 0 ?
 If so, skip to the end

Set R to X · R
Set C to C - 1
If C > 0 repeat the above two instructions

X =

Y =

C =

R =

3

2

13

1

InstructionsData

2

Computing R = XY

Set R to 1
Set C to Y
Is C ≤ 0 ?
 If so, skip to the end

Set R to X · R
Set C to C - 1
If C > 0 repeat the above two instructions

X =

Y =

C =

R =

3

2

13

10

9

InstructionsData

Done

Computing R = XY

exp:
 movl $1, %eax
 testl %esi, %esi
 jle .L3
.L6:
 imull %edi, %eax
 subl $1, %esi
 jne .L6
.L3:

machine instructions %edi = contains base value X
%esi = contains exponent Y and counter C
%eax = contains result R

Set R to 1
Set C to Y
Is C ≤ 0 ?
 If so, skip to the end

Set R to X · R
Set C to C - 1
If C > 0 repeat the above two instructions

Programming Languages
• Many machine instructions for simple programs -

hard for humans to understand and maintain!

• Programming languages designed to help
• Higher level - Closer to human language
• First ones (e.g., FORTRAN) in the 1950’s

• Programs are translated (aka compiled) into machine
instructions to be executed by the processor

• Many languages developed in the last 60 years!
• Different languages have different strengths

Programming Languages

Programming Languages

Programming Languages

What is popular today?

http://spectrum.ieee.org/static/interactive-the-top-programming-languages

http://spectrum.ieee.org/static/interactive-the-top-programming-languages

Our program in the C language

int exp(int x, int y) {
 int r = 1;
 while (y > 0) {
 r = r * x;
 y = y - 1;
 }
 return r;
}

In Java it would look much the same,
but that’s not true in general

Our program in the Python language

def exp(x, y):
 r = 1
 while y > 0:
 r = r * x
 y = y - 1
 return r

Our program in the OCaml language

let rec exp x y =
 if y = 0 then
 1
 else
 x * exp x (y-1)

Our program in the Prolog language

exp(X,0,1) :- !.
exp(X,Y,R) :-
 Y1 is Y-1,
 exp(X,Y1,R1),
 R is X * R1.

Software flaws and defects
• Programmers make mistakes
• So software often has defects (aka bugs)

int exp(int x, int y) {
 int r = 1;
 while (y ≥ 0) {
 r = r * x;
 y = y - 1;
 }
 return r;
}

should be “greater than”
not “greater than or equal to”

Exploitable bugs
• Some bugs can be exploited

• An attacker can control how the program runs so that
any incorrect behavior serves the attacker

• Many kinds of exploits have been developed over
time, with technical names like

• Buffer overflow
• Use after free
• SQL injection
• Command injection
• Cross-site scripting
• Cross-site request forgery
• …

What is a buffer overflow?
• A buffer overflow is a dangerous bug that affects

programs written in C and C++

• Normally, a program with this bug will simply crash

• But an attacker can alter the situations that cause
the program to do much worse

• Steal private information
• Corrupt valuable information
• Run code of the attacker’s choice

Buffer overflows from 10,000 ft
• Buffer =

• Block of memory associated with a variable

• Overflow =
• Put more into the buffer than it can hold

• Where does the overflowing data go?

Data

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = abc123

Password?
abc123
Failed

X

Normal interaction

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = Overflow!!!!! 3.log in

Data

Password?
Overflow!!!!! 3.log in
Access granted

Exploitation

Key idea
• The key feature of the buffer overflow attack is the attacker

getting the application to treat attacker-provided data as
instructions (code)

• This feature appears in many other exploits too

• SQL injection treats data as database queries
• Cross-site scripting treats data as browser commands
• Command injection treats data as operating system commands
• Etc.

Building security in

Stopping the attack
• Buffer overflows rely on the ability to read or write

outside the bounds of a buffer

• C and C++ programs expect the programmer to
ensure this never happens

• But humans (regularly) make mistakes!

• Other languages (like Python, OCaml, Java, etc.)
ensure buffer sizes are respected

• The compiler inserts checks at reads/writes
• Such checks can halt the program
• But will prevent a bug from being exploited

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = Overflow!!

Data

Password?
Overflow!!!!! 3.log in

Program halted

Preventing Exploitation

So why use C and C++?
• Billions of lines of existing C programs
• Programmers are very familiar with C
• C gives you fine control over hardware resources

• Very efficient
• Great for writing “low level” programs

• Best current advice: Use other languages
whenever you can, and use C and C++ when you
must

• Research question: Can we do better?

• Cyclone is a language with the
efficiency and control of C but the
safety of modern languages

• Developed 2001 - 2006 in
collaboration with researchers at
Cornell, Harvard, Washington, and
AT&T Labs Research

• Several contemporary efforts

My Research

ccured

Science of language design
How do we know if Cyclone meets its goals?

• Formalize it mathematically, and prove that its
programs are secure

• Show that it can be used to write useful programs
• Choose them from relevant benchmarks and domains
• And attempt to measure the difficulty of writing these

programs

• Show that Cyclone programs perform well

Performance comparison

1.6x
Cyclone

8.5x
Java

Translated the C programs to Cyclone; changed only 5-15% of the program

Performance comparison
Low effort More effort

• Programmers can tune performance while retaining safety
• Space usage is much closer to C’s when using these

features (and far better than typical modern languages)

Takeaway
Cyclone addresses several of the reasons people
use inadequate methods:
• Ignorance
• Unproven/insufficient technology
• Concerns about cost

• to change legacy code
• to (re)train staff

• By staying close to C, Cyclone provides a path
from legacy code to something safer, while
addressing technical and non-technical concerns

Impact
• Cyclone was a research language - its influence

(and that of related efforts) is on modern language
and system design.

• The Rust language from Mozilla borrows many of
the memory management features from Cyclone

• Coming soon:
• Intel MPX hardware: support to make checking faster

• Safe C extension to LLVM, being developed by
Microsoft Research

https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-
protection-extensions-intel-mpx-support-in-the-gnu-toolchain

https://www.rust-lang.org/

https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-protection-extensions-intel-mpx-support-in-the-gnu-toolchain
https://www.rust-lang.org/

Engendering and
Evaluating

the Build-it Mentality

Cybersecurity: White hat,
Build it

• Design and implement computer systems
in a way that prevents security defects

• Find defects that constitute
vulnerabilities and exploit them

Break it

Black Hat

Problem: Too much emphasis on breaking, not building

• Find defects that constitute
vulnerabilities and exploit them

Break it

Black Hat

DEFCON CTF, Collegiate Cyber defense challenge (CCDC), Pwn to Own, …

IT
BUILD
BREAK
FIX

A new kind of security contest:
rewards breaking and building

Our proposed remedy

(BIBIFI)

• Build-it Score

• Break-it Score

• Winners in both categories

Scoring System

• Gains points for unique bugs found (scaled by how
many other teams found the same bug)

Build-it Score
Break-it Score

• Gains points for good performance
• Gains points for implementing optional features
• Loses points for unique bugs found

- More points for (obviously) security-relevant bugs
- Fixing bugs helps show that multiple test cases might be tickling

the same bug, thus reducing the penalty for those test cases

Educational Experiment
• This contest aims to educate its participants, but it

has a broader agenda too

• Many ideas for improving computer security
• But few of these have been put to a scientific test

• This contest sets up an experiment
• Independent variables are the choices you make

when you develop, or when you hunt for bugs
• The dependent variable is the final outcome
• Science: Which choices correlate with success?

Show what works!

May-June 2015 Contest
• 98 registered teams

• Teams ranged in size from 1-5 (median 2)

• 79 teams made a build-it submission
• 62 teams’ submissions qualified

• 66 teams made a break-it submission
• 9128 non-unique correctness bugs
• 36 unique confidentiality bugs
• 40 unique integrity bugs

Build-it Winners

1st prize: Team JavaTheHut

Break-it Winners

1st prize: Team Black_Horse 2nd prize: Team Tosca

Language choices
• Many languages used

• C, C++
• C#, Java, Scala
• Python, Perl
• Bash
• Javascript
• Visual Basic
• F#, OCaml
• PHP

• Python most popular, followed by Java, C, C++
• Seems to follow general popularity trends
• Winners used Java

Build-it Break-it Fix-It Judging
Time →

Bu
ild

-it
 S

co
re

 →
Teams that implemented their
program in C or C++ scored
worse, on average, than other
teams

• But: knowing C or C++ and
not using it correlated with
scoring well

Contest promise
Recall the reasons people use inadequate
methods, once again:
• Ignorance
• Unproven/insufficient technology
• Concerns about cost

• to change legacy programs
• to (re)train staff

• BIBIFI hopes to educate students, and provide
evidence for what works

• More data gathering and analysis in progress

Outreach and
Education

PL Research
• My efforts occur within a broad research community

considering how programming languages (PL) can
improve the quality of software

• How? By developing
• Novel programming languages or constructs
• Advanced programming tools and techniques
• Mathematical methods for understanding software

- To prove that it satisfies desirable security properties
• And more …

• Lots of really fantastic work happening

• In June 2014 I started blogging
about the great work being done in
programming languages
• Tutorials, interviews, cross-

disciplinary connections, more

• Since then, about 45 posts,
180,000 page views (most popular
post received 30K views).

Blogging

http://www.pl-enthusiast.net/

http://www.pl-enthusiast.net/2015/06/02/the-pl-
enthusiast-turns-one/

http://www.pl-enthusiast.net/
http://www.pl-enthusiast.net/2015/06/02/the-pl-enthusiast-turns-one/

MOOCs
• In November 2014 I started

teaching an on-line course on
software security

• Some of the course slides in
this presentation

• It has been offered 4 times,
with 93,332 learners enrolled,
and 3,034 who have completed
the course.

• Since May 2015, I have hosted
the Coursera “Capstone”
project using the BIBIFI
contest

Looking ahead
• Things are getting better

• Many software systems that were
previously vulnerable to attack are finally
becoming more secure

• Researchers and practitioners are creating
better technology and getting the word out
about building software to be more secure

• But they are also getting worse
• The consequences of a mistake are higher
• New domains for software sometimes

result in repeating the mistakes of the past

There is more work to do!

…

Many thanks! - Students and
post-docs,

- Collaborators
and mentors,

- Family

Summary
• We need to make building software more like building

bridges
• No more penetrate and patch
• Consistent consideration of quality goals, including security,

from day 1
- Using the best methods, tools, programming languages, etc.

• Academics, researchers, practitioners all have a role to play

