Beating the Perils of Non-Convexity:
Machine Learning using Tensor Methods

Anima Anandkumar

Joint work with Majid Janzamin and Hanie Sedghi.

U.C. Irvine

Learning with Big Data

Learning is finding needle in a haystack

) Q(

Learning with Big Data

Learning is finding needle in a haystack

@ High dimensional regime: as data grows, more variables!
@ Useful information: low-dimensional structures.

@ Learning with big data: ill-posed problem.

Learning with Big Data

Learning is finding needle in a haystack

High dimensional regime: as data grows, more variables!
Useful information: low-dimensional structures.

Learning with big data: ill-posed problem.

Learning with big data: statistically and computationally challenging!

Optimization for Learning

Most learning problems can be cast as optimization.

Unsupervised Learning

@ Clustering
k-means, hierarchical ...

@ Maximum Likelihood Estimator i’
Probabilistic latent variable models D@,
Supervised Learning Output
@ Optimizing a neural network with Neuron

respect to a loss function

Input

Convex vs. Non-convex Optimization

Progress is only tip of the iceberg..

Nonconvex

optimization

Images taken from https://wuw.facebook.com/nonconvex

https://www.facebook.com/nonconvex

Convex vs. Non-convex Optimization

Progress is only tip of the iceberg.. Real world is mostly non-convex!

Nonconvex

optimization

Images taken from https://wuw.facebook.com/nonconvex

https://www.facebook.com/nonconvex

Convex vs. Nonconvex Optimization

M‘*\

7 / ”//M\\\
" M N
vmw//,l," “:e“‘:th'.»
'u\w‘

QX
S
‘gg ooqg%%
¢€¢‘::%§%Qy%@
‘o om o
‘.‘ 00‘0‘0“":,',,;;[1,,;%%“

5
‘\\\\\\\ \’
Sns
S ‘\\
Y

25
290
5

W
\\\\\\\

\\
\\\\\\\

XX
\\\\“o ”W"M"a
R,
R :.,,ylm
. R
: 2257

Unique optimum: global/local. @ Multiple local optima

Convex vs. Nonconvex Optimization

I

PO
(X000
SO0
sty

% [“ \\
M"n‘o‘o‘o‘*’o‘% N "/’/’illl/"”‘\\\
B “wo:oto'c' \\\&w’w s
“\\“\\\ mo :,'c ““ ,/ “ “\ \. \\\\‘,',:,;;
A \\‘ i 10
\

Unique optimum: global/local. @ Multiple local optima

@ In high dimensions possibly
exponential local optima

Convex vs. Nonconvex Optimization

\\\\\ “\\\

A\ NN 7
‘\\ \\\\\\\\\‘ u ;l/,,,,,,,/

\\\“\\\\ ’ll///////
W /

X ‘D QR
NS R a
\“‘\‘ o’

@ Unique optimum: global/local.

\“”o'l

3@ i "0
\\\\\\‘ \‘ Sl 0
N \“‘ iy '

Multiple local optima

In high dimensions possibly
exponential local optima

How to deal with non-convexity?

Outline

© Guaranteed Training of Neural Networks

Training Neural Networks

@ Tremendous practical impact
with deep learning.

@ Algorithm: backpropagation.

@ Highly non-convex optimization

Toy Example: Failure of Backpropagation

]

Z
Labeled input samples
Goal: binary classification

Our method: guaranteed risk bounds for training neural networks

Toy Example: Failure of Backpropagation

Z
Labeled input samples
Goal: binary classification

Our method: guaranteed risk bounds for training neural networks

animakumar
Line

animakumar
Line

Toy Example: Failure of Backpropagation

Z
Labeled input samples
Goal: binary classification

Our method: guaranteed risk bounds for training neural networks

animakumar
Line

animakumar
Line

Backpropagation vs. Our Method

Weights wa randomly drawn and fixed

Backprop (quadratic) loss surface

Backpropagation vs. Our Method

Weights wa randomly drawn and fixed

Backprop (quadratic) loss surface Loss surface for our method

Overcoming Hardness of Training

In general, training a neural network is NP hard.

How does knowledge of input distribution help?

Overcoming Hardness of Training

In general, training a neural network is NP hard.

How does knowledge of input distribution help?

Generative vs. Discriminative Models

Classy =1
Classy =0

plz,y) . p(ylz)

" " Inputdatax "~ "7

o Generative models: Encode domain knowledge.

@ Discriminative: good classification performance.

@ Neural Network is a discriminative model.

“Input'dataz " " "

Do generative models help in discriminative tasks?

Feature Transformation for Training Neural Networks

Feature learning: Learn ¢(-) from input data.

How to use ¢(-) to train neural networks?

Feature Transformation for Training Neural Networks

)
Feature learning: Learn ¢(-) from input data.
¢(x
How to use ¢(-) to train neural networks?
x

Multivariate Moments: Many possibilities, . ..

Ez®yl, Erere®y]l, Elj(r)®yl,

Tensor Notation for Higher Order Moments

@ Multi-variate higher order moments form tensors.

@ Are there spectral operations on tensors akin to PCA on matrices?

Matrix

o E[z ® y] € R™? is a second order tensor. H
° E[x ® y]ilz«iQ = E[xhyiz]'
@ For matrices: E[z ® y] = E[zy'].

Tensor

o Elr ® z ®y] € R4 is 3 third order tensor. %

° E[x ®r® y]il=i27i3 = E[xilwizyig]'

@ In general, E[¢(x) @ y] is a tensor.
@ What class of ¢(-) useful for training neural networks?

Score Function Transformations

@ Score function for z € R¢
with pdf p(-):

[Sl (CL’) = _vx Ing(x)}

m
7
&

Input: Si(z
r € RY

Score Function Transformations

@ Score function for z € R¢
with pdf p(-):

[Sl (CIJ) = _vx Ing(:L‘)}

€ R?

~—

Input: Si(z
r € RY

Score Function Transformations

@ Score function for z € R

with pdf p(-):

_vx 10g p(.’L‘)}

Si(a) :

SIS sI s

NSNS

SEEEENNNNNNNN

Score Function Transformations

@ Score function for z € R¢
with pdf p(-):

[81 (CIJ) = _vx Ing(x)}

@ m-order score function:
Input: ~ Si(z) € R?

r € R?

~—

Score Function Transformations

@ Score function for z € R¢
with pdf p(-):

[Sl (CIJ) = _vx Ing(:L‘)}

@ m-order score function:
Input: ~ Si(z) € R?

nYWp@)| ccR
p(z)

Sm(z) == (-1)

Score Function Transformations

@ Score function for z € R¢
with pdf p(-):

[81 (CI}) = _vx Ing(:L‘)}

@ m-order score function:
Input: So(r) € Réxd

nYWp@)| ccR
p(z)

Sm(z) == (-1)

Score Function Transformations

@ Score function for z € R¢
with pdf p(-):

[Sl (1’) = —Vx Ing(x)}

)

@ m-order score function:
Input: S3(z) € Rdxdxd

nYWp@)| ccR
p(x)

Sm(z) == (-1)

Moments of a Neural Network

Elyls) = f(@) = aj o(A]z +br) +by)

Moments of a Neural Network

Elyls) = f(@) = aj o(A]z +br) +by)

@ Given labeled examples {(x;,y;)}
Ely- Sp(@)] =E [0 f(2)]
I

Moments of a Neural Network

Elyla] = f(z) = e o(Alz +br) + by |
@ Given labeled examples {(x;,y;)}
Ely- Sp(@)] =E [0 f(2)] '
4

JEK]

M =Ely-Si(@)] = Y M- (A); J

Moments of a Neural Network

Elyls) = f(@) = aj o(A]z +br) +by)

@ Given labeled examples {(x;,y;)}
Ely- Sp(@)] =E [0 f(2)]
I

{M1 Ely - Si(x Z)\lj (A1); J

A11(A1)1 A12(A1)2

Moments of a Neural Network

Elyla] = f(z) = e o(Alz +br) + by |
@ Given labeled examples {(x;,y;)}
Ely- Sp(@)] =E [0 f(2)] '
4

My = Efy - Ssfa ZAQJ (4); ® (A1), J

Moments of a Neural Network

Elyls) = f(@) = aj o(A]z +br) +by)

@ Given labeled examples {(z;,vy;)}
Ely-Sn(a)] =E [V f(z)]
I

{MQ Ely- (o ZAQJ (41); ® (A1), J

=i_+i_.._.

A1(A1)1 ® (A1)1 A12(A1)2 ® (A1)2

Moments of a Neural Network

Elyls] = f(2) = ajo(Af +b1) + by
@ Given labeled examples {(x;,y;)}
Ely- Sp(@)] =E [0 f(2)]
4

=Ely- Ss(z Z/\:a] (A1); ® (A1); ® (A1);
JE[K]

Moments of a Neural Network

Elyls] = f(2) = ajo(Af +b1) + by
@ Given labeled examples {(x;,y;)}
Ely- Sp(@)] =E [0 f(2)]
4

=Ely- Ss(z Z/\:a] (A1); ® (A1); ® (A1);
JE[K]

/—‘\

L. L
o

Moments of a Neural Network

Elyla] = f(z) = e o(Alz +br) + by |
@ Given labeled examples {(z;,vy;)}
Ely- Sp(@)] =E [0 f(2)]
I

=Ely-Ss(x Z /\3J Al (Al)j ® (Al)j
JE[K]

Why tensors are required?
@ Matrix decomposition recovers subspace, not actual weights.

@ Tensor decomposition uniquely recovers under non-degeneracy.

Moments of a Neural Network

Elyls] = f(2) = ajo(Af +b1) + by
@ Given labeled examples {(x;,y;)}
Ely- Sp(@)] =E [0 f(2)]
4

=Ely-Ss(x)] = > Az - (41); ® (A1); ® (A1);
JE[K]

@ Guaranteed learning of weights of first layer via tensor decomposition.

@ Learning the other parameters via a Fourier technique.

NN-LiFT: Neural Network Learning
using Feature Tensors

E_}%

Input: S3(x) € Rixdxd
z € R4

NN-LiFT: Neural Network Learning

using Feature Tensors
Estimating M3 using
labeled data {(x;,v:)}

t 1
SN moment ~ Zyl ® Ss(x;) = Zyz

i=1

Input: S3(x) € Rixdxd Ss(z;)
z € R4

NN-LiFT: Neural Network Learning

using Feature Tensors
Estimating M3 using
labeled data {(x;,v:)}

— m 1Zyz®‘s3 :L'z - Zyz

Input: S3(x) € Rixdxd Ss(z;)
e Re CP tensor

decomposition

y a4
i—+i—+...

Rank-1 components are the estimates of columns of A;

NN-LiFT: Neural Network Learning

using Feature Tensors
Estimating M3 using
labeled data {(z;,y:)}

— m) 1Zyz®‘s3 :L'z - Zyz

Input: S3(x) € Rixdxd Ss (i)
e Re CP tensor

decomposition

r + r 4.
Rank-1 components are the estimates of columns of A;

Fourier technique = a9, b1, by

Estimation error bound

o Guaranteed learning of weights of first layer via tensor decomposition.

M; =Ely® S3(z Z Az (A1) ® (A1); ® (A1);

@ Full column rank assumption on weight matrix Ay
@ Guaranteed tensor decomposition (AGHKT'14, AGJ'14)

Estimation error bound

o Guaranteed learning of weights of first layer via tensor decomposition.

M3 =Ely ® S5(z Z Azj - (A1); ® (A1) ® (A1);

@ Full column rank assumption on weight matrix Ay
@ Guaranteed tensor decomposition (AGHKT'14, AGJ'14)

@ Learning the other parameters via a Fourier technique.

Estimation error bound

o Guaranteed learning of weights of first layer via tensor decomposition.

Ms =E[y®S3(z)] = Y Az;- (41); ® (A1); ® (A1);
J€[K]

@ Full column rank assumption on weight matrix Ay
@ Guaranteed tensor decomposition (AGHKT'14, AGJ'14)

@ Learning the other parameters via a Fourier technique.

Theorem (JSA'14)

@ number of samples n = poly(d, k), we have w.h.p.

@) = f@)P < O(1/n).

“Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor
Methods” by M. Janzamin, H. Sedghi and A., June. 2015.

Our Main Result: Risk Bounds

@ Approximating arbitrary function f(z) with bounded

Cp = / lollz - |F(w)dw

@ n samples, d input dimension, k& number of neurons.

Our Main Result: Risk Bounds

@ Approximating arbitrary function f(z) with bounded

C%:/HWrWWWw
Rd

@ n samples, d input dimension, k& number of neurons.

Theorem(JSA'14)
® Assume C'y is small.
Ellf(z) — f(@)] < O(C3/k) + O(1/n).
@ Polynomial sample complexity n in terms of dimensions d, k.

@ Computational complexity same as SGD with enough parallel
processors.

"“Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor

Methods” by M. Janzamin, H. Sedghi and A. , June. 2015.

Outline

© Overview of Other Results on Tensors

Tractable Learning for LVMs

GMM HMM ICA

Multiview and Topic Models

0 h e [K],
@@ ‘ X € RY % € R%,... X € R%

k = # components, ¢ = # views (e.g., audio, video, text).

N & B

View 1: X; € R% View 2: X, ¢ R%2 View 3: X3 € R%

At Scale Tensor Computations

Randomized Tensor Sketches
@ Naive computation scales exponentially in order of the tensor.
@ Propose randomized FFT sketches.
@ Computational complexity independent of tensor order.
°

Linear scaling in input dimension and number of samples.

(1) Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A. , NIPS 2015.

(2) Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

At Scale Tensor Computations

Randomized Tensor Sketches
@ Naive computation scales exponentially in order of the tensor.
@ Propose randomized FFT sketches.
@ Computational complexity independent of tensor order.
°

Linear scaling in input dimension and number of samples.

Tensor Contractions with Extended BLAS Kernels on CPU and GPU
@ BLAS: Basic Linear Algebraic Subprograms, highly optimized libraries.

@ Use extended BLAS to minimize data permutation, 1/O calls.

(1) Fast and Guaranteed Tensor Decomposition via Sketching by Yining Wang, Hsiao-Yu Tung, Alex Smola, A. , NIPS 2015.

(2) Tensor Contractions with Extended BLAS Kernels on CPU and GPU by Y. Shi, UN Niranjan, C. Cecka, A. Mowli, A.

Preliminary Results on Spark
@ In-memory processing of Spark: ideal for iterative tensor methods.
@ Alternating Least Squares for Tensor Decomposition.

K 2
Lin T— Z NA(:,1) @ B(:,1) @ C(:,19)
=1 F
Update Rows Independently Results on NYtimes corpus
[EI 3 % 10° documents, 10% words

Spark | Map-Reduce
— | 26mins 4 hrs
— |

T erter]
e Ty

|

(2) Topic Modeling at Lightning Speeds via Tensor Factorization on Spark by F. Huang, A. , under preparation.

Convolutional Tensor Decomposition

J- > eb- R
x I wy

(a)Convolutional dictionary model (b)Reformulated model

T F* w*

Cumulant A1 (F7)®s +A2(F3)®3

N

Efficient methods for tensor decomposition with circulant constraints.

Convolutional Dictionary Learning through Tensor Factorization by F. Huang, A. , June 2015.

Reinforcement Learning (RL) of POMDPs

o Partially observable Markov decision processes.

Proposed Method

@ Consider memoryless policies. Episodic learning: indirect exploration.
@ Tensor methods: careful conditioning required for learning.

@ First RL method for POMDPs with logarithmic regret bounds.

271

N
)

.g--a---8--8--

6
.
.
.
N
o

f g
B AA--a
a ks - g
Z 24 W
['4
[} i)
g |
@ 6 g3t
g s N . - -O--O- -0
ST A A A A A A A A
N O SM-UCRL-POMDP|
2] WV UCRL-MDP
: O Q-learning
. . . . < Random Policy
0 1000 2000 3000 4000 5000 6000 7000

Number of Trials

Logarithmic Regret Bounds for POMDPs using Spectral Methods by K. Azzizade, A. Lazaric, A.
, under preparation.

Outline

@ Conclusion

Summary and Outlook

Summary

@ Tensor methods: a powerful paradigm for guaranteed large-scale
machine learning.

@ First methods to provide provable bounds for training neural
networks, many latent variable models (e.g HMM, LDA), POMDPs!

Summary and Outlook

Summary

@ Tensor methods: a powerful paradigm for guaranteed large-scale
machine learning.

@ First methods to provide provable bounds for training neural
networks, many latent variable models (e.g HMM, LDA), POMDPs!

Outlook

@ Training multi-layer neural networks, models with invariances,
reinforcement learning using neural networks ...

@ Unified framework for tractable non-convex methods with guaranteed
convergence to global optima?

My Research Group and Resources

@ Podcast/lectures/papers/software available at
http://newport.eecs.uci.edu/anandkumar/

	Introduction
	Guaranteed Training of Neural Networks
	Overview of Other Results on Tensors
	Conclusion

